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Abstract. The subword complexity function pw of a finite word w over a finite
alphabet A with card A = q ≥ 1 is defined by pw(n) = card(F (w) ∩ An) for
n ∈ N, where F (w) represents the set of all the subwords or factors of w. The
shape of the complexity function, especially its piecewise monotonicity, is studied
in detail.

The function h defined as h(n) = min {qn, N − n + 1} for n ∈ {0, 1, ..., N} has
values greater than or equal to those of the complexity function pw for any w ∈
AN , i.e., pw(n) ≤ h(n) for all n ∈ {0, 1, ..., N}. As a first result regarding h, it is
proved that for each N ∈ N there exist words of length N for which the maximum
of their complexity function is equal to the maximum of the function h; a way
to construct such words is described. This result gives rise to a further question:
for a given N, is there a word of length N whose complexity function coincides
with h for each n ∈ {0, 1, ..., N}? The problem is answered in affirmative, with
different constructive proofs for binary alphabets (q = 2) and for those with
q > 2. This means that for each N ∈ N, there exist words w of length N whose
complexity function is equal to the function h. Such words are constructed using
the de Bruijn graphs.
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1. DEFINITIONS

Let an alphabet A with cardA = q ≥ 1 be given. A factor (subword) u of
an infinite sequence or finite word w has the right valence j if there are j and
only j distinct letters xi such that uxi, 1 ≤ i ≤ j are also in F (w) (the set of
all the subwords, or factors, of w); if a factor has the right valence j it can
be extended on the right in exactly j ways. The left valence is defined in a
similar way. A factor having the right (left) valence ≥ 2 is called right (left)
special; a factor which is both right and left special is called bispecial. The
length of a word w will be denoted by |w| .
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For an infinite sequence U any factor u can always be extended on the right
in a factor of U . For a finite word w there are subwords which cannot be
extended on the right. Such words have to be suffixes of w. Let us denote by
w0 the suffix of w of minimal length which cannot be extended on the right and
by K the length of w0. Then any other subword λw0 also cannot be extended
on the right. Considering the prefix of w of minimal length which cannot be
extended on the left, we shall denote its length by H. The constants K and
H were defined by de Luca [15].

Let us denote by S0(w) the set of all suffixes of w which cannot be extended
on the right in F (w), i.e., their right valence is 0. If the length of w is N, then
we set for any 0 ≤ n ≤ N

s0(n) = card(S0(w) ∩An) = s(0, n).
For all 0 ≤ n ≤ N, one has s0(n) ≤ 1. Moreover, K being the length of w0
(the suffix of w of minimal length which cannot be extended on the right), s0
is given by

s0(n) =
{

0, 0 ≤ n ≤ K − 1,
1, K ≤ n ≤ N.

It follows that the number of subwords which cannot be extended on the right
is

card(S0(w)) = N −K + 1.
For an infinite sequence U, the (subword) complexity function pU : N −→ N

(defined in [17] as the block growth, then named subword complexity in [6]) is
given by pU (n) = card(F (U) ∩ An) for n ∈ N, so it maps each nonnegative
number n to the number of factors of length n of U ; it verifies the iterative
equation

(1) pU (n+ 1) = pU (n) +
q∑

j=2
(j − 1)s(j, n),

s(j, n) being the cardinal of the set of the factors of U having the length n
and the right valence j.

For a finite word w of length N, the complexity function pw : N −→ N given
by pw(n) = card(F (w) ∩ An), n ∈ N, has the property that pw(n) = 0 for
n > N. The corresponding iterative equation is

(2) pw(n+ 1) = pw(n) +
q∑

j=2
(j − 1)s(j, n)− s0(n).

Since s0(n) = s(0, n) we can write (2) in a condensed form

(3) pw(n+ 1) = pw(n) +
q∑

j=0
(j − 1)s(j, n).

The above relations have their correspondents in terms of left extensions of
the subwords.
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For a finite word w of length N over the alphabet A with cardA = q, the
subword complexity pw(n) will be less than or equal to the number qn of all
the possible words of length n over the q-letter alphabet and also less than or
equal to the number N − n + 1 of all occurrences of subwords of length n in
w. The map h : {0, 1, ..., N} −→ N defined in [15]
(4) h(n) = min{qn, N − n+ 1}
will have values greater than or equal to those of any complexity function pw for
w ∈ AN , i.e., pw(n) ≤ h(n), n ∈ {0, 1, ..., N}. The fact that pw(n) ≤ N−n+1
was stated in [11], while pw(n) ≤ h(n) appeared in [20].

We recall that for infinite sequences U one has
pU (n) ≤ qn, n ∈ N,

and that there exist sequences, called complete, for which the complexity is
precisely qn for all n ∈ N. An example is the Champernowne sequence

0.1.10.11.100.101.110.111.1000. ...
containing successively all the nonnegative integers written in base 2, and,
more generally, in base q (it was used in [4] to construct a normal number in
base ten).

2. PROPERTIES OF THE FUNCTION h

Remark 1. We mention at first the trivial case when q = 1, for which
h(n) = 1 for all n ∈ {0, 1, ..., N}; there is a word, namely w1 = aN , whose
complexity satisfies pw1(n) = 1 for all n ∈ {0, 1, ..., N}.

For n ≥ 1, q ≥ 2 and N ≤ q, we have
N − n+ 1 ≤ q ≤ qn,

hence h(n) = N − n + 1 for all n ∈ {1, ..., N}. For each word w2 containing
N ≤ q distinct elements of A the complexity function is pw2(n) = N−n+1 for
all n ∈ {1, ..., N}, and pw2(0) = h(0) = 1, hence in this case it also coincides
with h. �

In what follows we shall consider q ≥ 2 and N > q. The values of the
function h are given by the minimum of the values of an increasing exponential
and of a descending line, so at the beginning h will follow the exponential, and
then the descending line. The following result is presented without proof in
[15]:

Proposition 1. If eN denotes the first point where (eN , h(eN )) is on the
descending line, the maximum hmax of the function h is attained at eN , and
eN is given by

[
logq N

]
or
[
logq N

]
+ 1 (for a real x, [x] denotes the largest

integer which is less than or equal to x).

We shall determine precisely the point (eN , h(eN )) where the maximum of
the function h is taken.
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Proposition 2. Let eN = min {m ∈ {1, ..., N} : h(m) = N −m + 1}. If
N ∈ N is given so that qk + k < N < qk+1 + k + 1, then eN = k + 1 and this
is the unique point where h attains its maximum N − k; for N = qk + k, we
have eN = k + 1 and the function h attains its maximum N − k at both eN

and eN − 1.
In fact, if qk + k ≤ N < qk+1 + k + 1, the function h is given by

(5) h(n) =
{
qn if n ≤ k
N − n+ 1 if n ≥ k + 1

and hmax = N − k = h(k + 1), for N = qk + k the maximum being attained
also at the point k.

Proof. Let N ∈ N be given so that qk +k ≤ N < qk+1 +k+ 1. The function
h being increasing on {0, 1, ..., eN−1} and decreasing on {eN , ..., N}, we have
only to compare its values on eN − 1 and eN . From the definition of h and of
eN we have
(6) qeN−1 < N − (eN − 1) + 1
and
(7) qeN ≥ N − eN + 1,
which means that
(8) qeN−1 + eN − 1 ≤ N < qeN + eN .

But h(eN − 1) = qeN−1 and h(eN ) = N − eN + 1, hence from (6) it follows
that the maximum of h is taken at eN . The function f(x) = qx + x being
increasing, from (8) one obtains eN = k + 1 and h(eN ) = N − k.

If qk + k < N < qk+1 + k + 1 we have h(k + 1) > h(k), so eN = k + 1
is the unique point where h attains its maximum which is equal to N − k; if
N = qk + k, we have h(k+ 1) = h(k), so the maximum N − k of h is taken at
two points eN = k + 1 and eN − 1. �

The description of h given in (5) was established in [12]. The value of eN

being related to the integer part of logq N, we can give a more precise result
than that in the above Proposition 1.

Remark 2. For qk + k ≤ N < qk+1 + k + 1, we have k = [logq N ] for
qk + k ≤ N < qk+1, and k + 1 = [logq N ] for qk+1 ≤ N < qk+1 + k + 1;
it follows that in the first case eN = [logq N ] + 1, and in the second case
eN = [logq N ]. �

Given the number N, the maximum of the function h can be easily deter-
mined.

Example 1. Let N = 6, q = 2 ; we obtain eN = 3 and hmax = 4 = h(2) =
h(3). For N = 7, q = 2, we have eN = 3 and hmax = 5 = h(3). �
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3. PROPERTIES OF THE COMPLEXITY FUNCTION pw

For an infinite sequence U, the complexity function pU is nondecreasing; if
there exists m ∈ N such that pU (m + 1) = pU (m), then pU is constant for
n ≥ m. The complexity function for a finite word w of length N has obviously
a different behaviour, because of pw(N) = 1 (there is a unique factor of length
N, namely w). The study of the shape of pw was considered by Heinz [11]
and then by de Luca in [15], the results in [15] being briefly exposed in what
follows. Then the piecewise monotonicity of pw is established in Theorems 5
and 6.

Let us consider for n ∈ {0, ..., N} the number Rw(n) of all right special
factors of length n. Any suffix of a right special factor is still a right special
factor. Since Rw(N − 1) = Rw(N) = 0, one can define an integer R by

R = min{n ∈ N : Rw(n) = 0}.

One has 0 ≤ R ≤ N − 1; thus R − 1 represents the maximal length of a
right special factor of w (excepting the case of the word aN which has no
special factor and for which R = 0). If R = 1, in w there are no right special
factors of length n ≥ 1; such an example is w = (ab)k , k ≥ 1. Similarly,
there exists a number 0 ≤ L ≤ N − 1 so that L − 1 represents the maximal
length of a left special factor of w (except if w = aN ). Remember the number
K (H) representing the minimal length of a suffix (prefix) of w which cannot
be extended on the right (left). The numbers K and R (or their duals H and
L) play an important role in the description of the shape of pw.

Let us denote

r (n) =
q∑

j=2
(j − 1) s (j, n) , n ∈ {1, ..., N} .

The function r has the property that r(n) > 0 for n ∈ [0, R− 1] , and r (n) = 0
for n ∈ [R,N ] . The recurrence relation (2) can be written as

(9) pw(n+ 1) = pw(n) + r(n)− s0(n).

If R < K, for n ∈ [0, R− 1] one has s0 (n) = 0 and r (n) > 0. From (9) we
obtain that pw is strictly increasing on [0, R] . For n ∈ [R,K − 1] , s0 (n) = 0
and r (n) = 0, so pw is constant on the interval [R,K] . For n ∈ [K,N − 1] ,
s0 (n) = 1 and r (n) = 0, so pw is strictly decreasing on [K,N ] , and, moreover,
for n ∈ [K,N − 1] , pw (n+ 1) = pw (n)− 1.

If R ≥ K, for n ∈ [0, K − 1] we obtain s0 (n) = 0, r (n) > 0, so from (9)
pw will be strictly increasing on [0,K] . For n ∈ [K,R− 1] , s0 (n) = 1 and
r (n) > 0, hence pw is non-decreasing on [K,R] . For n ∈ [R,N − 1] one has
s0 (n) = 1 and r (n) = 0, which implies that pw is strictly decreasing on [R,N ]
and, for n ∈ [R,N − 1] , pw (n+ 1) = pw (n)− 1.

It follows
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Proposition 3. [15]. The subword complexity pw takes its maximum at R
and, moreover,

pw (R) = N −max{R,K}+ 1.

Proof. In both cases analyzed above, pw has its maximum at R. If R ≥ K,
pw (n+ 1) = pw (n) − 1 for all n ∈ [R,N − 1] , so 1 = pw (N) = pw (R) −
(N −R) and then pw (R) = N−R+1. If R < K, pw (n+ 1) = pw (n)−1 for all
n in [K,N − 1] and 1 = pw (N) = pw (K)− (N −K) . Since pw (K) = pw (R)
the result follows. �

In a similar way, one can prove

Proposition 4. [15]. The subword complexity pw takes its maximum at L
and, moreover,

pw (L) = N −max{L,H}+ 1,
hence max{R,K} = max{L,H}.

From the analysis before Proposition 3, we have the following information
on the shape of the function pw [15]:

For R < K, it is strictly increasing (starting from pw (0) = 1 and pw (1) =
q = cardA), then constant, and then strictly decreasing (with pw (n+ 1) =
pw (n)− 1 on the last interval).

For R ≥ K, pw is at first strictly increasing, then non-decreasing, and at
last strictly decreasing also with pw (n+ 1) = pw (n)− 1.

So in both cases, there is an interval on which pw is increasing and one on
which pw is strictly decreasing. The only problem is that in the second case
it could be that after becoming constant, pw would increase again. We show
that this is not the case.

Let us consider n ∈ [K,R− 1] , so s0 (n) = 1, r (n) > 0 and pw(n + 1) ≥
pw(n). Suppose that there exists n so that

K ≤ n < n+ 1 < n+ 2 ≤ R,

(10) pw (n+ 1) = pw (n) ,

(11) pw (n+ 2) > pw (n+ 1) .

From (10) one obtains that s (2, n) = 1 and s (j, n) = 0 for j ≥ 3, i.e., there
exists a unique right special factor having length n, and its valence is 2: let it
be denoted vn. From (11) it follows that

r (n+ 1) =
q∑

j=2
(j − 1) s (j, n+ 1) > 1,

which is possible for two situations:
I. s (2, n+ 1) = 2;
II. ∃ j ≥ 3, s (j, n+ 1) 6= 0.
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If II. is true, there will be a right special factor of length n+1 having valence
at least 3, and then the factor obtained by excluding its first letter will have
length n and valence at least 3, contradicting the uniqueness of vn.

If I. is true, there will exist two different right special factors of length n+1
and valence at least 2. They can differ only by their first letter, otherwise
there would exist two different factors of length n and valence 2. So they will
have the form

avn, bvn, a 6= b,

i.e., vn will be bispecial, and in the word w there will be also
(12) avnc, avnd, bvnc, bvnd, a 6= b, c 6= d.

The subword vn cannot be a suffix of w since vn is extendable to the right
and there is no extendable suffix of length greater than or equal to K. Let us
consider the last occurrence of vn, suppose it is followed by c. Then
(13) w = z1vncz2,

and, vnc being left special, vnc will have another occurrence in w, so
w = z′1vncz

′
2,
∣∣z′2∣∣ > |z2| .

Let u be the longest common prefix of vncz2 and vncz
′
2, which will satisfy

n+ 1 ≤ |u| ≤ |vncz2| .
Since the subword u is a proper prefix of vncz

′
2, u is right extendable; then

it cannot be a suffix of w, hence it is also a proper prefix of vncz2, and thus
right special. The suffix of length n of u is then right special, in contradiction
with the fact that the last occurrence of vn, the unique right special factor of
length n, was chosen so that w = z1vncz2. It follows that in the case K < R, if
pw(n) = pw(n+1) for a value n ≥ K, then pw will remain constant until it will
begin (at R) to decrease to 1 (it cannot start increasing again). We mention
that Heinz [11] proved that from pw(n) = pw(n + 1) and N > pw(n) + n it
follows pw(n) = pw(n+ 2).

Let us denote by J the smallest number greater than or equal to K for
which w has precisely one right special factor of that length, with valence 2
(if this is not the case, take J = R). We have established the following

Theorem 5. For a finite word of length N , the complexity function is at
first strictly increasing, then constant and at last decreasing having the slope
−1. If R < K, the successive intervals are [0, R], [R,K] and [K,N ], while for
R ≥ K they are [0, J ], [J,R] and [R,N ].

One can easily avoid to analyze two cases by simply considering instead
of a word w ∈ AN , a word W ∈ (A ∪ {∗,#})N+2 obtained by adding two
different symbols which are not in A at the beginning and at the end of w, i.e.,
W = ∗w#. The complexity functions for w and W are related by pW (n) =
pw(n) + 2 for n ∈ {1, ..., N + 1} (and obviously pW (N + 2) = 1). So the
graph of pW is the graph of pw shifted by two units parallel to the y-axis,
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and the two functions have the same monotonicity. For W we have KW = 1,
RW ≥ Rw and, similarly, HW = 1, LW ≥ Lw, hence in this case we have always
RW ≥ KW ; from Proposition 4 it follows also RW = LW . The advantage of
considering the word W is that instead of the four parameters K,H,R,L we
are left with only one, namely the common value M of RW = LW . Denoting
by J the smallest positive number for which W has precisely one right special
factor of that length, with valence 2 (if there is not such a factor, J = M), we
obtain

Theorem 6. For a finite word w of length N, the intervals of monotonic-
ity of pw are [0, J ], [J,M ] and [M,N ], the function increasing at first, be-
ing constant and then decreasing with the slope −1; the maximum of pw is
pw(M) = N −M + 1. The numbers J and M are those defined above for the
word W = ∗w#.

Example 2. Let w = babbabbbaa, so N = 10, K = 2, R = 5, H = 5, L = 4,
J = 4, M = 5. In this case pw (0) = 1, pw(1) = 2, pw(2) = 4, pw(3) = 5,
pw(4) = 6, and pw(n) = 11− n for n ∈ {5, ..., 10}.

For w = aababbabab, we have N = 10, K = 5, R = 4, H = 2, L = 5, J = 4,
M = 5 and pw (0) = 1, pw(1) = 2, pw(2) = 4, pw(3) = 5, pw(4) = 6, and
pw(n) = 11− n for n ∈ {5, ..., 10}. �

Remark 3. For the words in example 2, the function pw is concave on
[1, N ], i.e.,

pw(k + 2)− pw(k + 1) ≤ pw(k + 1)− pw(k), k ∈ {1, ..., N − 2}.
However this is not the rule, as the following examples show for both K < R
and K > R. �

Example 3. Let w = abbabbbaaba, so N = 11,K = 3, R = 4, H = 4, L = 4,
J = 4, M = 4. In this case pw (0) = 1, pw(1) = 2, pw(2) = 4, pw(3) = 7, and
pw(n) = 12− n for n ∈ {4, ..., 11}.

Let w = abbabbbaababbba, so N = 15, K = 7, R = 4, H = 4, L = 7, J = 4,
M = 7. In this case pw (0) = 1, pw(1) = 2, pw(2) = 4, pw(3) = 7, pw(4) =
pw(5) = pw(6) = pw(7) = 9, and pw(n) = 16− n for n ∈ {8, ..., 15}. �

We mention that the refinement of de Luca’s result has been proved inde-
pendently by Levé and Séébold [14] while studying k-reachable integers.

4. THE FUNCTION h AND RELATED WORDS

In section 2 we found the point where the function h takes its maximum.
A problem to be considered is the following: are there any words w of length
N such that h(eN ) = max {pw(n) : n ∈ {0, ..., N}}? If such words do exist,
they have the property that the maximum of their complexity function cannot
be exceeded by the maximum of the complexity function of any other word of
length N.
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The answer to this problem is in affirmative and it relies on the following
result which was stated by Good in [10] for q = 2. The enumeration of the
words whose existence is proved was given by de Bruijn [2], who later [3]
acknowledged the priority of C. Flye Sainte-Marie [7].

Lemma 7. Given an alphabet A with card A = q, for each k ∈ N the shortest
word containing all the qk words of length k has qk + k − 1 letters.

Proof. The existence of such a word (which is usually named de Bruijn
word of order k) is proved by considering the de Bruijn graph Bk−1 (which
is strongly connected) with qk−1 vertices labelled with the elements of Ak−1,
and qk arcs (an arc from u to v exists if and only if there exist two letters
x, y ∈ A such that ux = yv ∈ Ak). Each vertex has the same number q of
inward and outward arcs; therefore, there exists an Eulerian cycle, and each
path, starting from any vertex and following the cycle until coming back to
that vertex, will provide a word (obviously the shortest) of length qk + k − 1
which contains exactly one occurrence of all the qk words of length k. The
word of length qk + k − 1 is often identified with the cycle formed by its first
qk letters. �

Remark 4. For the de Bruijn word of order k, whose existence was proved
in Lemma 7, we have R = K = J = k, and the maximum of its complexity
function is attained at k and equals qk. Such a word can be represented in
the form x1...xqk ...xqk+k−1 (with xqk+1...xqk+k−1 = x1...xk−1), or as a cycle
(x1...xqk) or as an infinite periodic sequence with the period qk. �

The first algorithm which constructs such a word was given by Martin [16].
Considering the alphabet A = {i1, ..., iq}, the algorithm in question is built up
out the following three rules.

I. Each of the first k − 1 symbols is chosen equal to i1.
II. The symbol am to be added to the sequence a1a2...ak...am−k+1...am−1,

where a1 = ... = ak−1 = i1, m ≥ k and the a’s stand for the i’s in a certain
order, is the ij with the greatest subscript consistent with the requirement that
the section am−k+1...am−1am duplicate no previously occurring section of k
symbols in the above sequence.

III. Rule II. is first applied for m = k (in which case am = ak = iq) and is
then applied repeatedly until a further application is impossible.

This algorithm needs a very large memory (for all the subwords of length
k which have already been obtained), but there exist also some memoryless
algorithms exposed, for example, in [8], [9] and [18].

We can prove now
Theorem 8. For each N ∈ N, there exists a word of length N over an

alphabet A with cardA = q for which the maximum of the complexity function
is equal to the maximum hmax of h; the maximum is taken at the same points
for both functions. Such words can be easily constructed using the de Bruijn
words.
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Proof. Keeping in mind the considerations in Remark 1, which mean pre-
cisely that the theorem is true for q = 1 and for q ≥ 2, N ≤ q, we shall
consider q ≥ 2 and N > q. Let k be the unique natural number so that

qk + k ≤ N ≤ qk+1 + k.

If N = qk + k, we apply Lemma 7 for k, obtaining a word of length N − 1
containing as factors all the qk words of k letters, and qk − 1 distinct words
of length k + 1. The word v obtained by adding a letter from A at its end
will contain qk words of k letters and qk distinct words of length k + 1, hence
pv(k) = pv(k+1) = N −k. This is the maximum of the function pv, it is equal
to hmax and it is attained at the same points as the maximum of h given in
Proposition 2. Actually, in this case we have pv = h.

Let us now consider the case N = qk+1 + k−m, m ∈ {0, 1, ..., qk+1 − qk −
1}. Applying Lemma 7 for the number k + 1, we obtain a shortest word w
containing all the qk+1 words of length k + 1, having qk+1 + k letters. So for
each m ∈ {0, 1, ..., qk+1− qk − 1}, the prefix wm of w obtained by deleting m
final letters will satisfy pwm(k + 1) = qk+1 −m > qk ≥ pwm(k), this being the
maximum of the complexity function for the considered word. The maximum
is attained only for k + 1.

Applying Proposition 2 for N = qk+1 + k−m we obtain hmax = h(k+ 1) =
qk+1+k−m−k = qk+1−m, which means that the maximum of the complexity
function for wm is equal to the maximum of the complexities of all possible
words of length qk+1 + k −m. �

Example 4. Let us consider for the 2-letter alphabet A = {a, b} the values
N = 6 and N = 7. For N = 6 = 22 + 2 we have k = 2 and, by adding a letter
(for example a) to the Martin word of order 2, abbaa, we obtain v = abbaaa;
the maximum of pv is pv(2) = pv(3) = 4. For N = 7 = 22 + 3 we can consider
the Martin word of order 3, aabbbabaaa, and delete three symbols from the
end. The word w3 = aabbbab has the maximum of its complexity function
given by pw3(3) = 5.

The maximum of the function h for N = 6 and N = 7 was calculated in
Example 1 and it coincides with that of pv, respectively pw3 and is taken at
the same points. �

5. THE REPRESENTATION OF h AS A COMPLEXITY FUNCTION

An interesting problem is: Let q ≥ 1 and N ∈ N be given and the function
h : {0, 1, ..., N} −→ N defined as in (4). Is there a word w of length N over
the q-letter alphabet A such that

(14) h(n) = pw(n) for all n ∈ {0, 1, ..., N},

i.e., h is the complexity function for that word? If such a word does exist, how
can it be constructed?
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The question has an affirmative answer for the trivial cases q = 1 and q ≥ 2,
N ≤ q, mentioned in Remark 1, so it has to be studied for q ≥ 2, N > q. In the
proof of Theorem 8 it was shown that, given the number N = qk + k, k ≥ 1,
there exists a word v of length N containing qk distinct words of length k+ 1,
and also qk words of length k. This means that h and pv coincide on k and
k+ 1. One the one hand, pv(k) = h(k) = qk means that v contains all possible
words of length k as factors, and this implies that it also contains all possible
words of shorter lengths, hence h(n) = pv(n) = qn for n ∈ {0, 1, ..., k}. On the
other hand, pv(k+1) = h(k+1) = N−k means that each of the N−k factors
of length k+ 1 of v occurs exactly once, as there are precisely N − k available
positions for a factor of this length, and this implies that longer factors occur
only once too, hence h(n) = pv(n) = N + 1 − n for n ∈ {k + 1, k + 2, ..., N}.
We have shown that h(n) = pv(n) for all n ∈ {0, 1, ..., N}, and the question is
positively answered for N = qk + k, k ≥ 1.

If we consider now N = qk+1 + k, k ≥ 1, case which corresponds to the
choice m = 0 in the proof of Theorem 8, we obtain the existence of a word
w = w0 of length N containing all qk+1 words of length k + 1. The point
(k+1, pw(k+1)) being on both the curves (n, qn) and (n,N+1−n), it follows
that h(n) = pw(n) for all n ∈ {0, 1, ..., N}.

We mention at first a sufficient condition for the existence, for q ≥ 2 and
N > q, of a word w of length N whose complexity function is equal to h.

Lemma 9. Given an alphabet with cardA = q ≥ 2, if for each k ≥ 1
there exists a de Bruijn word v of order k + 1 from which it is possible to
obtain successively words shorter with one symbol so that the number of sub-
words of length k + 1 decreases by one, but the number of words of length
k remains qk, until we are left with a word of length qk + k, then for each
N ∈

{
qk + k, ..., qk+1 + k

}
there exists a word vN with pvN = h.

Proof. Let vN be the word of length N ∈
{
qk + k, ..., qk+1 + k

}
obtained

from v after having removed qk+1 + k−N letters, at each step the number of
subwords of length k+1 being diminished by 1, while the number of subwords
of length k remains constant. Then pvN (k + 1) = N − k = h(k + 1) and
pvN (k) = qk = h(k), hence pvN (n) = h(n) for each n ∈ {0, ..., N}. �

Remark 5. The condition in Lemma 9 is fulfilled if there exists a de Bruijn
word of order k+1 whose prefix is a de Bruijn word of order k. In this case we
can simply delete in turn one letter from the end of the word of order k+1. �

The existence of words which satisfy the conditions in Lemma 9 (in fact
those in Remark 5) was proved for q ≥ 3 by Vörös [20]. It follows also as a
consequence of a stronger result obtained by Cummings and Wiedemann in
Proposition 2 from [5]. In fact the overlap of the two de Bruijn sequences
in [5] is even longer than it is needed in Remark 5. We remind that the
de Bruijn graph Bk has as vertices the elements in Ak and an arc from any
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vertex x1...xk to x2...xkxk+1, where xi ∈ A for i ∈ {1, ..., k + 1} . The graph
Bk+1 has as vertices the arcs of Bk, and the arcs in this graph are obtained
by joining two consecutive arcs in Bk. An Eulerian circuit in Bk corresponds
to a Hamiltonian one in Bk+1 and conversely. The result of Cummings and
Wiedemann follows from the fact that if one removes from the Eulerian circuit
in Bk, which corresponds to a de Bruijn sequence of order k + 1, the circuit
corresponding to a de Bruijn sequence of order k, the remaining graph is still
Eulerian and connected (it is essential that q ≥ 3).

Lemma 10. [5]. If q ≥ 3 and k ≥ 1 each de Bruijn sequence of order k can
be strongly embedded in a de Bruijn sequence of order k + t with t ≥ 1, i.e.,
the two sequences have the same symbols on the first qk + k + t− 1 positions.

It follows that, for q ≥ 3, there exist infinite sequences whose prefixes of
length N satisfy (14) for each N ∈ N. Such sequences were called in [13] and
[20] supercomplex; similarly, a word of length M was called supercomplex if
all its prefixes of length N ≤ M satisfied (14). In [13] and [20] it was shown
that supercomplex sequences do not exist for binary alphabets, more precisely
it was verified that a binary supercomplex word has the length at most 9.
This means that no de Bruijn sequence of order 2 can be embedded in a de
Bruijn sequence of order 3. In [5] a general negative result is given for binary
alphabets: in this case no de Bruijn sequence of order k ≥ 2 ever embeds in a
de Bruijn sequence of order k+ 1 (even if we ask the coincidence to take place
only for the first 2k + k − 1 positions, hence a weak embedding). It follows
that for a binary alphabet we cannot obtain a word as that in the sufficient
condition in Remark 5, unless k = 1. Nevertheless we can construct in this
case a de Bruijn word of order k+1 from which the sequences in Lemma 9 can
be obtained, even if this word has not as a prefix a de Bruijn word of order k.

Lemma 11. A finite number of cycles can be appended to any de Bruijn
cycle of order k over a binary alphabet in order to make it a de Bruijn cycle
of order k + 1.

Proof. Let w = (x1...x2k) be a de Bruijn cycle of order k. It will be also a
Hamiltonian circuit in the de Bruijn graph Bk. The graph G, formed by all
the vertices in Ak and the arcs in Bk which are not in the Hamiltonian circuit
determined by w, has each vertex of degree 2 (one outward and one inward
arc). It follows that G will be a union of vertex disjoint cycles, and w and
G are arc disjoint. Each of these cycles will have common vertices with the
Hamiltonian circuit determined by w, hence they can be appended one by one
to it to form finally an Eulerian circuit in Bk, that is a de Bruijn cycle of order
k + 1. �

Now we can state
Theorem 12. For each alphabet A with cardA = q ≥ 1 and for each N ∈ N

there exists a word of length N whose complexity function coincides with the
function h.



13 Properties of the complexity function for finite words 135

Proof. For q = 1, or q ≥ 2 and N ≤ q, the result was already proved in
Remark 1.

Let q = 2 and k ≥ 1 so that N ∈
{

2k + k, ..., 2k+1 + k
}
. Consider a de

Bruijn cycle of order k (constructed for example using Martin’s algorithm)
and extend it as in Lemma 11, by adding vertex disjoint cycles, to a de Bruijn
cycle of order k + 1. Write it as a de Bruijn word such that it ends with the
letters of one of the appended cycles. When we remove one by one all the
symbols in that cycle, the number of subwords of length k + 1 will decrease
at each step by one, but the number of subwords of length k will remain the
same (all these subwords are included in the initial de Bruijn cycle). Write
again the obtained cycle as a word which ends with another appended cycle
and delete in turn the last symbol until the cycle disappears. Finally we are
left with a word of length 2k + k obtained from the initial de Bruijn cycle of
order k, which contains 2k words of length k + 1 and 2k words of length k.

If we are not interested to obtain all the words of length N ∈ {qk + k, ...,
qk+1 + k}, but only a specific one, we can apply a result of Shallit [19]: For
each i ∈

{
1, ..., 2k

}
the graph Bk contains a cycle of length i that can be used

to construct a closed chain of length 2k + i which visits every vertex at least
once.

Finally, let q ≥ 3 and k ≥ 1 so that N ∈
{
qk + k, ..., qk+1 + k

}
. Applying

Lemma 10 for t = 1, we obtain the existence of a de Bruijn word of order
k + 1 which has as prefix a de Bruijn word of order k, hence it satisfies the
conditions in Lemma 9. It follows that for each N ∈ {qk + k, ..., qk+1 + k}
there exists a word of length N (obtained by successively deleting a symbol
from the end of the de Bruijn word of order k+ 1) whose complexity function
is the function h corresponding to that N. �

Example 5. Let us first consider the case of a binary alphabet A = {a, b}.
We shall construct, as in the proof of Theorem 12, words uN with N ∈
{1, 2, ..., 10}∪{37, ..., 69} for which puN = h. We can obviously consider u1 = a
and u2 = ab. We have a weak embedding, marked by a gap, of the de Bruijn
word of order 1, ab, in the de Bruijn word of order 2, ab baa (situation which
is no longer possible for words of order k, respectively k + 1 for k ≥ 2). We
obtain in turn u5 = abbaa, u4 = abba and u3 = abb. Let us now consider for
k = 2 the Martin cycle w = (abba), which corresponds to the word u5 = abbaa.
The graph G obtained from B2 by removing all the arcs of w is the union of
the cycles (a), (b) and (ab), i.e., aa→ aa, bb→ bb, respectively ab→ ba→ ab.
Appending these to the cycle w we obtain for instance the de Bruijn cycle of
order 3 u = (aababbba), where we underlined the appended cycles; we write it
as

u10 = abbbaaabab;
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deleting the symbols of (ab) from the end, and then those in the loops (a) and
(b) (which can be deleted without shifting the cycle) we obtain in turn

u9 = abbbaaaba, u8 = abbbaaab, u7 = abbbaab, u6 = abbaab.

For all these words obtained from u we have puN (2) = 4 and puN (3) = N − 2,
N ∈ {6, ..., 10}.

In general, besides the loops (a) and (b), for greater values of k we can
have in G more than one cycle. We shall consider now k = 5 and we shall
construct the words of length N ∈ {37, ..., 69}. To avoid too lengthy words
we shall write xi for the concatenation of i letters x. For k = 5, the Martin
cycle is w = (a4b5ab3a2b2abab2a3baba2ba). The graph G obtained from B5 by
removing the arcs of w is the union of the cycles
(15) (a), (b), (ab), (ab2), (a4ba2b3aba3b2a2bab4),
where, for example, (a) represents a5 → a5, and (ab2) is ab2ab → b2ab2 →
bab2a → ab2ab. A de Bruijn cycle of order 6 obtained by appending the five
cycles (which will be underlined) is

u = (a4ab4a4ba2b3aba3b2a2bab4bbab2ab2ba2b2abababba3baba2ba)
and we can write

u69 = ab5bab2ab2ba2b2abababba3baba2ba5ab4a4ba2b3aba3b2a2bab4

u68 = ab5bab2ab2ba2b2abababba3baba2ba5ab4a4ba2b3aba3b2a2bab3

...
u44 = ab5bab2ab2ba2b2abababba3baba2ba5ab4,

the last one corresponding to the cycle (ab5bab2ab2ba2b2abababba3baba2ba5).
We write it as a word ending with the next cycle, (ab2), in the union (15)

u′44 = b2ab3a2b2abababba3baba2ba5ab5bab2ab2,

and we obtain
u43 = b2ab3a2b2abababba3baba2ba5ab5bab2ab
u42 = b2ab3a2b2abababba3baba2ba5ab5bab2a
u41 = b2ab3a2b2abababba3baba2ba5ab5bab2.

We write now the corresponding word ending with the cycle (ab)
u′41 = babab2a3baba2ba5ab5bab3a2b2ababab

and from this we get
u40 = babab2a3baba2ba5ab5bab3a2b2ababa
u39 = babab2a3baba2ba5ab5bab3a2b2abab.

Deleting the loop (b) and then the loop (a) we obtain at last
u38 = babab2a3baba2ba5ab5ab3a2b2abab
u37 = babab2a3baba2ba5b5ab3a2b2abab.

We have puN (5) = 32 and puN (6) = N − 5 for N ∈ {37, ..., 69}.
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Let now a 3-letter alphabet A = {a, b, c} be given (the situation is similar
for any q > 3). We have obviously w1 = a, w2 = ab, w3 = abc. From a de
Bruijn word of order 2 which contains a strongly embedded de Bruijn word of
order 1

abca accbba,

the gap marking the end of the overlapping, we can obtain the words
w10 = abcaaccbba
...
w4 = abca.

Similarly, from the de Bruijn word of order 3 which contains a strongly em-
bedded de Bruijn word of order 2

aabbacbccaa cababcacccbbbcbaaa,

we can obtain successively the words
w29 = aabbacbccaacababcacccbbbcbaaa
...
w11 = aabbacbccaa,

which satisfy pwN (2) = 9 and pwN (3) = N − 2 for N ∈ {11, ..., 29}. �

Remark 6. It is clear now that Theorem 8 is a consequence of the stronger
result from Theorem 12. However, if one is interested only in obtaining words
w with max {pw(n) : 1, ..., N} = hmax, the constructive methods in the proof
of Theorem 8 are simpler and faster. �

6. OTHER COMPLEXITY MEASURES FOR FINITE WORDS

The complexity function pw which was used throughout the paper has the
advantage that it can be defined in the same way both for infinite sequences
and for finite words, as it was stated in the introduction. As far as finite words
are concerned, the first measure of subword complexity seems to have been
introduced by Heinz [11] as the total number of factors of w,

K(w) =
N∑

n=0
pw(n).

The problem of studying the maximum of K(w) over all the words of length
N over a finite alphabet with q elements was a central one. It is easy to see
that the maximum of K(w) over the words in AN is attained at w0 if for each
n ∈ {0, ..., N} the maximum of pw(n) is attained at pw0(n). One has then the
delimitation (obtained in [20])

K(w) ≤
N∑

n=0
h(n),
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with h defined in (4), and, having in mind the explicit form of h in (5),

(16) K(w) ≤ qk+1−1
q−1 + (N−k)(N−k+1)

2 ,

where k is the unique natural number for which qk + k ≤ N ≤ qk+1 + k. The
bound in (16) appeared in [12] and [19]. In view of Theorem 12, there are
words of length N whose total complexity K(w) equals the value in the right
hand side of (16). The existence of such words, as it was already mentioned
in the proof of Theorem 12, was established for binary alphabets in [19].

There are also other notions of complexity for finite words. The maximal
complexity of a word w ∈ AN , defined by Rauzy, is

C(w) = max{pw(n) : n ∈ {0, 1, ..., N}}.

A notion of global complexity for finite words is given in [1], namely the global
maximal complexity in AN

K(N) = max{C(w) : w ∈ AN}.

By R(N) it is denoted the set of the values i for which there exists a word
w ∈ AN such that pw(i) = K(N) :

R(n) =
{
i ∈ {0, 1, ..., N} : there exists w ∈ AN , pw(i) = K(n)

}
.

With these notations we obtain from Theorem 12

Corollary 13. For each N ∈ N, the global maximal complexity is given by
K(N) = max {h(n) : n ∈ {0, 1, ..., N}} , the function h being defined by (4).

Proof. We have

K(N) = max
{

max {pw(n) : n ∈ {0, 1, ..., N}} : w ∈ AN
}

= max
{

max
{
pw(n) : w ∈ AN

}
: n ∈ {0, 1, ..., N}

}
= max

{
h(n) : n ∈ {0, 1, ..., N}

}
,

the last equality following from the fact that h coincides with the complexity
function pw for at least one word of length N. �

Applying the result in Proposition 2, the values for K(N) and R(N) given
in [1] can be easily obtained.

Corollary 14. For qk + k ≤ N < qk+1 + k + 1, we have K(N) = N − k.
If N = qk + k, then R(N) = {k, k + 1}; if qk + k < N < qk+1 + k + 1, then
R(N) = {k + 1}.
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