SELF-SIMILAR SETS IN CONVEX METRIC SPACES

GHIOCEL MOT

Dedicated to Professor Elena Popoviciu on the occasion of her 80th birthday.

Abstract. The purpose of this paper is to present some existence and uniqueness results for self-similar sets in convex complete metric spaces.

Keywords. Self-similar set, generalized contraction, convex metric space.

1. INTRODUCTION

Let (X,d) be a complete metric space and f_i, $i \in \{1, \ldots, m\}$ be single-valued mappings of X into itself. Let $P_{cp}(X)$ be the space of all nonempty compact subsets of X and denote by H the Hausdorff-Pompeiu metric on $P_{cp}(X)$. If we define the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ by the formula $T(Y) = \bigcup_{i=1}^{m} f_i(Y)$, then T is called the fractal operator generated by the so-called iterated functions system $f = \{f_1, f_2, \ldots, f_m\}$. Any fixed point of T is, by definition, a self-similar set for the iterated functions system $f = \{f_1, f_2, \ldots, f_m\}$. It is known that, in many cases, the Hausdorff dimension of a self-similar is not an integer. For this reason, in all these cases self-similar sets are fractals and $P_{cp}(X)$ is the space of fractals. Moreover, self-similar sets among the fractals form an important class, since many of them have computable Hausdorff dimensions. Regarding the existence of self-similar sets, if f_i are α_i-contractions for $i \in \{1, \ldots, m\}$ then the operator T is a $\max(\alpha_i \mid i \in \{1, \ldots, m\})$-contraction having a unique fixed point. Hence the iterated functions system $f = \{f_1, f_2, \ldots, f_m\}$ has a unique self-similar set (this is a result of Hutchinson and Barnsley, see for example Petrușel [9], Yamaguti, Hata, Kigami [10]). Same conclusion holds, one hand when f_i, $i \in \{1, \ldots, m\}$ are φ-contractions (see I.A.Rus [11]) and on the other hand when f_i, $i \in \{1, \ldots, m\}$ are Meir-Keeler type operators (see Petrușel [7], [10]).

The purpose of this paper is to study the existence and uniqueness of self-similar sets for iterated functions systems on convex complete metric spaces. The multi-valued case is also considered.

∗∗“Aurel Vlaicu” University, Department of Mathematics and Computer Science, Arad, Romania, e-mail: ghiocelmot@yahoo.com.
2. MAIN RESULTS

Let \((X,d)\) be a metric space and \(f : X \to X\) be a single-valued operator. We will consider first some contraction-type conditions for the operator \(f\).

Definition 1. The operator \(f : X \to X\) is said to be:

i) \(\alpha\)-contraction if \(\alpha \in [0,1]\) and \(d(f(x), f(y)) \leq \alpha d(x,y)\), for each \(x, y \in X\).

ii) strict contraction if \(d(f(x), f(y)) < d(x,y)\), for each \(x, y \in X\), with \(x \neq y\).

iii) Meir-Keeler type operator if for each \(\eta > 0\) there exists \(\delta > 0\) such that for each \(x, y \in X\) with \(\eta \leq d(x,y) < \eta + \delta\) it follows \(d(f(x), f(y)) < \eta\).

(iv) Matkowski-Wegrzyk type operator if for each \(\eta > 0\) there is \(\delta > 0\) such that for each \(x, y \in X\) with \(\eta < d(x,y) < \eta + \delta\) it follows \(d(f(x), f(y)) \leq \eta\).

(v) Boyd-Wong type operator if for each \(x, y \in X\) we have \(d(f(x), f(y)) \leq k(d(x,y))\), where \(k : [0, \infty) \to [0, \infty)\) is a function satisfying the property \(k(t) < t\), for each \(t > 0\).

(vi) Rakotch type operator if \(d(f(x), f(y)) \leq k(d(x,y))d(x,y)\), for each \(x, y \in X\), where \(k : [0, \infty) \to [0, 1)\) is a nonincreasing function with the property \(k(t) < t\), for each \(t > 0\).

Let us observe that, the condition (i) implies (ii), (i) implies (iii), (iii) implies each of the conditions (ii) (iv), (v) and (vi). Jachymski (see [2]) proved that the reverse implications, i.e. (iv) implies (iii) and (iv) implies (ii), are, in general, not true.

Definition 2. A metric space is said to be metrically convex if for every distinct points \(x, y \in X\) there exists \(z \in X\) such that \(d(x,y) = d(x,z) + d(z,y)\) and \(x \neq z \neq y\).

For example, every normalized space and any of its convex subsets is metrically convex. An important property of such spaces is:

Theorem 3. If \((X,d)\) is a complete and metrically convex metric space, then for every distinct points \(x, y \in X\) and for each \(\lambda \in [0,1]\) there exists \(z \in X\) such that \(d(z,x) = \lambda d(x,y)\) and \(d(z,y) = (1-\lambda)d(x,y)\).

In what follows we use the terminology “convex metric space” for a metrically convex metric space.

The following result is proved by Petruşel [7].

Theorem 4. Let \((X,d)\) be a complete metric space and \(f_i : X \to X, i \in \{1,2, \ldots, m\}\) be a finite family of Meir-Keeler type operators. Then:

a) the fractal operator \(T : (P_{cp}(X), H) \to (P_{cp}(X), H)\) generated by the iterated functions system \(f = \{f_1, f_2, \ldots, f_m\}\) is a Meir-Keller type operator.
b) the iterated function system $f = \{f_1, f_2, ..., f_m\}$ has a unique self-similar set A^*, having the property that for each compact subset A_0 of X the sequence of successive approximations $(T^n(A_0))_{n \in \mathbb{N}}$ converges to A^*.

The following theorem gives us the equivalence of some generalized contractive conditions (see Matkowski and Wegrzyk [4]):

Theorem 5. Let (X, d) be a convex complete metric space and (Y, ρ) be a metric space. Let $f : X \to Y$ be an arbitrary function. Then the following assertions are equivalent:

(i) f is a Meir-Keeler type operator;

(ii) f is a Rakotch type operator;

(iii) f is a Boyd-Wong type operator;

(iv) f is a Matkowski-Wegrzyk type operator.

Moreover, if f fulfills one of the above conditions, then the function k in (iii) is strictly increasing, concave and continuously differentiable in $[0, \infty]$ and the function k in (ii) is continuous.

Using the above result, we obtain the first main result of this paper:

Theorem 6. Let (X, d) be a convex complete metric space and $f_i : X \to X$, $i \in \{1, 2, ..., m\}$ be a finite family of Matkowski-Wegrzyk type operators. Then the iterated functions system $f = \{f_1, f_2, ..., f_m\}$ has a unique self-similar set A^*. Moreover, for each compact subset A_0 of X the sequence of successive approximations $(T^n(A_0))_{n \in \mathbb{N}}$ converges to A^*.

Proof. From Theorem 5 we have that $f = \{f_1, f_2, ..., f_m\}$ is an iterated function system having the property that each function f_i satisfies to a contraction type condition. From the classical result of Hutchinson and Barnsley we obtain that the fractal operator T is a contraction too from $P_{cp}(X)$ to itself. Hence, by Banach contraction principle we get the desired conclusion. The proof is complete.

Let us remark that the above theorem can be proved, via Theorem 5, using Theorem 4 instead of Banach contraction principle.

Remark. The similarity dimension d of a self-similar set A^* corresponding to an iterated functions system $f = \{f_1, f_2, ..., f_m\}$, where f_i is an α_i-contraction, for each $i \in \{1, 2, ..., m\}$, is defined as the unique positive root of the equation $\sum_{i=1}^{m} \alpha_i^d = 1$. It is easy to see now that the similarity dimension of a self-similar set generated by a finite family of Matkowski-Wegrzyk type operators on a convex complete metric space can be calculated in the same way.

Let us consider now the multi-valued case. Let $F_1, \ldots, F_m : X \to P_{cp}(X)$ be a finite family of upper semi-continuous (briefly u.s.c.) multi-valued operators. We define the multi-fractal operator T_F generated by the following iterated...
multi-functions system \(F = (F_1, F_2, \ldots, F_m) \), by the following relation: \(T_F : P_{cp}(X) \to P_{cp}(X) \), \(T_F(Y) = \bigcup_{i=1}^{m} F_i(Y) \). In this framework, a nonempty compact subset \(A^* \) of \(X \) is said to be a self-similar set for the iterated multi-functions system \(F = (F_1, F_2, \ldots, F_m) \) if and only if it is a fixed point for the associated multi-fractal operator. The following notions are needed in the sequel.

Definition 7. The multi-valued operator \(F : X \to P_{cp}(X) \) is said to be:

i) **multi-valued \(\alpha \)-contraction** if \(\alpha \in [0, 1[\) and for each \(x, y \in X \) we have \(wH(F(x), F(y)) \leq \alpha d(x, y) \).

ii) **multi-valued strict contraction** if \(H(F(x), F(y)) < d(x, y) \), for each \(x, y \in X \), with \(x \neq y \).

iii) **multi-valued Meir-Keeler type operator** if for each \(\eta > 0 \) there exists \(\delta > 0 \) such that for each \(x, y \in X \) with \(\eta \leq d(x, y) < \eta + \delta \) it follows \(H(F(x), F(y)) < \eta \).

iv) **multi-valued Matkowski-Wegrzyk type operator** if for each \(\eta > 0 \) there is \(\delta > 0 \) such that for \(x, y \in X \) with \(\eta < d(x, y) < \eta + \delta \) it follows \(H(F(x), F(y)) < \eta \).

v) **multi-valued Rakotch type operator** if for each \(x, y \in X \) we have \(H(F(x), F(y)) \leq k(d(x, y)) \), where \(k : [0, \infty) \to [0, \infty) \) is a function satisfying the property \(k(t) < t \), for each \(t > 0 \).

vi) **multi-valued Boyd-Wong type operator** if for each \(x, y \in X \) we have \(H(F(x), F(y)) \leq k(d(x, y))d(x, y) \), where \(k : [0, \infty) \to [0, 1) \) is a function with the property \(k(t) < t \), for each \(t > 0 \).

A similar discussion with the single-valued case can be done also for the multi-valued setting.

Regarding the existence and uniqueness of self-similar sets for iterated multi-functions systems, it is well-known that a finite family of multi-valued contractions has an unique self-similar set. Moreover, for the case of multi-valued Meir-Keeler operators the following result holds (see Petrușel [7]):

Theorem 8. Let \((X, d) \) be a complete metric space and \(F_i : X \to P_{cp}(X) \), \(i \in \{1, \ldots, m\} \) be a finite family of multi-valued Meir-Keeler type operators. Then:

a) the multi-fractal operator \(T_F : P_{cp}(X) \to P_{cp}(X) \) is a Meir-Keeler type operator.

b) the iterated multi-functions system \(F = (F_1, F_2, \ldots, F_m) \) has a unique self-similar set \(A^* \). Moreover, for each compact subset \(A_0 \) of \(X \) the sequence of successive approximations \((T_F^n(A_0))_{n \in \mathbb{N}} \) converges to \(A^* \).

The equivalence between the following generalized contractions conditions is proved in Moț [5]:

Theorem 9. Let \((X, d) \) be a convex complete metric space and \((Y, \rho) \) be a metric space. Let \(F : X \to P_{cp}(Y) \) be multi-function. Then the following assertions are equivalent:
(i) F is a multi-valued Meir-Keeler type operator;
(ii) F is a multi-valued Rakotch type operator;
(iii) F is a multi-valued Boyd-Wong type operator;
(iv) F is a multi-valued Matkowski-Wegrzyk type operator.

From Theorem 8 and Theorem 9 we obtain:

Theorem 10. Let (X,d) be a convex complete metric space and $F_i : X \rightarrow P_{cp}(X), i \in \{1,2,\ldots,m\}$ be a finite family of multi-valued Matkowski-Wegrzyk type operators. Then the iterated multi-functions system $F = \{F_1,F_2,\ldots,F_m\}$ has a unique self-similar set A^*. Moreover, for each compact subset A_0 of X the sequence of successive approximations $(T^n(A_0))_{n \in \mathbb{N}}$ converges to A^*.

REFERENCES

Received by the editors: July 3, 2004.