REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 33 (2004) no. 2, pp. 215-219 ictp.acad.ro/jnaat

ITERATED FUNCTION SYSTEM OF LOCALLY CONTRACTIVE OPERATORS

ADRIAN PETRUŞEL*

Dedicated to Professor Elena Popoviciu on the occasion of her 80th birthday.

Abstract. The aim of this paper is to study the properties of the fractal and the multi-fractal operator generated by some iterated function system satisfying to a locally contractive type condition.

MSC 2000. 47H10, 58F13.

Keywords. Fixed point, self-similar set, locally contractive type operator.

1. BASIC NOTIONS AND RESULTS

For the convenience of the reader, some notations and basic notions are first presented.

Let (X, d) be a metric space. We consider the following spaces of subsets of a metric space (X, d):

$$\mathcal{P}(X) = \{Y | Y \subset X\},\$$

$$P(X) = \{Y \in \mathcal{P}(X) | Y \neq \emptyset\},\$$

$$P_{cl}(X) = \{Y \in P(X) | Y \text{closed}\},\$$

$$P_{cp}(X) = \{Y \in P(X) | Y \text{compact}\}$$

Let us consider now some (generalized) functionals on $\mathcal{P}(X)$: (1) The gap functional $D: \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\}$

$$D(A,B) = \begin{cases} \inf\{d(a,b) \mid a \in A, \ b \in B\}, & \text{if } A \neq \emptyset \neq B, \\ 0, & \text{if } A = \emptyset = B, \\ +\infty, & \text{if } A = \emptyset \neq B \text{ or } A \neq \emptyset = B. \end{cases}$$

(2) The excess functional $\rho : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\},\$

$$\rho(A,B) = \begin{cases} \sup\{D(a,B) \mid a \in A\}, & \text{if } A \neq \emptyset \neq B, \\ 0, & \text{if } A = \emptyset, \\ +\infty, & \text{if } B = \emptyset \neq A \end{cases}$$

^{*&}quot;Babeş-Bolyai" University Cluj-Napoca, Department of Applied Mathematics, Kogălniceanu 1, 400084 Cluj-Napoca, Romania, e-mail: petrusel@math.ubbcluj.ro.

(3) Pompeiu-Hausdorff generalized functional $H : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathbb{R}_+ \cup \{+\infty\},\$

$$H(A,B) = \begin{cases} \max\{\rho(A,B), \rho(B,A)\}, & \text{if } A \neq \emptyset \neq B, \\ 0, & \text{if } A = \emptyset = B, \\ +\infty, & \text{if } A = \emptyset \neq B \text{ or } A \neq \emptyset = B. \end{cases}$$

It is known the fact that H is a generalized metric on the space of all nonempty closed subsets of a metric space and the space $(P_{cl}(X), H)$ is complete provided that the metric space (X, d) is complete.

A metric space (X, d) is said to be ε -chainable (where $\varepsilon > 0$ is fixed) if and only if, given $a, b \in X$, there is an ε -chain from a to b, that is a finite set of points x_0, x_1, \ldots, x_n in X such that $x_0 = a, x_n = b$ and $d(x_{i-1}, x_i) < \varepsilon$, for all $i \in \{1, 2, \ldots, n\}$.

If $f: X \to X$ is a single-valued operator, then $x^* \in X$ is a fixed point for f if $x^* = f(x^*)$. We will denote by Fixf the fixed points set of f.

If $F: X \to P(X)$ is a multi-valued operator then $x^* \in X$ is a fixed point for F if $x^* \in F(x^*)$. We will denote by FixF the fixed points set of F.

The following notion is important for our main results.

DEFINITION 1. Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be two mappings. Then ψ is said to be strong φ -summable if:

- i) φ is monotone increasing
- ii) $\psi \circ \varphi$ is monotone increasing
- iii) for each $t \in \mathbb{R}_+$ the sequence $(\varphi^n(t))_{n \in \mathbb{N}}$ converges to 0, as $n \to \infty$ and $\sum_{n \ge 1} (\psi \circ \varphi)^n(t) < \infty$
- iv) ψ is an expansion function, i.e. $\psi(0) = 0$ and $\psi(t) > t$, for each t > 0.

EXAMPLE. Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$, defined by $\varphi(t) = at$ (where $a \in [0, 1[)$ and $\psi(t) = bt$ (with $b \in]1, \frac{1}{a}[$), for each $t \in \mathbb{R}_+$. Then ψ is said to be strong φ -summable.

If f_i , $i \in \{1, \ldots, m\}$ are continuous operators of X into itself, then a nonempty compact set Y in X is said to be **self-similar** if it satisfies the condition $Y = \bigcup_{i=1}^{m} f_i(Y)$. The above relation can be considered also as a fixed point problem for a suitable operator.

DEFINITION 2. Let $f_i : X \to X$, $i \in \{1, ..., m\}$ be a finite family of continuous operators. Let us define

$$T_f: (P_{cp}(X), H) \to (P_{cp}(X), H), \qquad T_f(Y) = \bigcup_{i=1}^m f_i(Y).$$

Then, T_f is the fractal operator generated by the iterated function system $f = (f_1, f_2, ..., f_m)$.

The Hausdorff dimension of a self-similar set Y is not, in general, an integer. For this reason, Y is a fractal and $P_{cp}(X)$ is called the space of fractals.

Let consider now the case of multi-valued operators.

DEFINITION 3. Let $F_1, \ldots, F_m : X \to P_{cp}(X)$ be a finite family of upper semi-continuous (briefly u.s.c.) multi-valued operators. We define the multi-fractal operator T_F generated by the iterated multi-functions system $F = (F_1, F_2, \ldots, F_m)$, by the following relation:

$$T_F: P_{cp}(X) \to P_{cp}(X), \quad T_F(Y) = \bigcup_{i=1}^m F_i(Y).$$

A nonempty compact subset A^* of X is said to be a **multi-self-similar set** for the iterated multi-functions system $F = (F_1, F_2, \ldots, F_m)$ if and only if it is a fixed point for the associated multi-fractal operator.

If $F = (F_1, F_2, \ldots, F_m)$ is a finite family of continuous single-valued operators then a fixed point of the corresponding fractal operator T_F will be called a self-similar set.

We consider now some contractive type conditions for a single-valued operator $f: X \to X$.

DEFINITION 4. The single-valued operator $f: X \to X$ satisfies

- i) ϵ -locally contractive condition (where $\epsilon > 0$) if there is $\alpha \in [0, 1[$ such that for $x, y \in X$, $d(x, y) < \epsilon$ we have $d(f(x), f(y)) \le \alpha d(x, y)$
- ii) ϵ -locally Meir-Keeler type condition (where $\epsilon > 0$) if for each $0 < \eta < \epsilon$ there is $\delta > 0$ such that $x, y \in X$, $\eta \leq d(x, y) < \eta + \delta$ we have $d(f(x), f(y)) < \eta$.
- iii) ϵ -locally Boyd-Wong type condition (where $\epsilon > 0$) if for each $x, y \in X$ with $0 < d(x, y) < \epsilon$ we have $d(f(x), f(y)) \leq k(d(x, y))$, where $k : [0, \infty) \rightarrow [0, 1[$ is a upper semi-continuous function with the property k(t) < t, for each $t \in]0, \epsilon[$.
- iv) (ϵ, φ) -locally contractive condition (where $\epsilon > 0$ and $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$) if for each $x, y \in X$ and $0 < \alpha \leq \epsilon$ with $d(x, y) < \alpha$ implies $d(f(x), f(y)) \leq \varphi(\alpha)$.

Let us observe that (i) implies (ii). Indeed, for each $0 < \eta < \epsilon$ we can choose $\delta := \min\{\frac{\eta(1-k)}{k}, \epsilon - \eta\}$. Then, if $x, y \in X$ with $\eta \leq d(x, y) < \eta + \delta$ we obtain $d(f(x), f(y)) \leq kd(x, y) < k\frac{\eta}{k} < \eta$.

Also (iii) implies (ii), while (ii) implies (iv). For other contractive type conditions and the relations between them we refer to [5] (see also [1],[6],[8],[9],[11]).

Some contractive type conditions for multi-valued operators on a metric space (X, d) are contained in the following definition.

DEFINITION 5. The multi-valued operator $F: X \to P_{cl}(X)$ is said to be:

- i) multi-valued ϵ -locally contractive condition (where $\epsilon > 0$) if there is $\alpha \in [0,1[$ such that for $x, y \in X$, $d(x,y) < \epsilon$ we have $H(F(x), F(y)) \leq \alpha d(x, y)$
- (ii) multi-valued ϵ -locally Meir-Keeler type operator (where $\epsilon > 0$) if for each $0 < \eta < \epsilon$ there is $\delta > 0$ such that $x, y \in X$, $\eta \le d(x, y) < \eta + \delta$ we have $H(F(x), F(y)) < \eta$.

- (iii) multi-valued ϵ -locally Boyd-Wong type operator (where $\epsilon > 0$) if for each $x, y \in X$ with $0 < d(x, y) < \epsilon$ we have $H(F(x), F(y)) \le k(d(x, y))$, where $k : [0, \infty) \to [0, 1]$ is an upper semi-continuous function with the property k(t) < t, for each $t \in]0, \epsilon[$.
- (iv) **multi-valued** (ϵ, φ) -locally contractive operator (where $\epsilon > 0$ and $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$) if $x, y \in X$ and $0 < \alpha \leq \epsilon$ with $d(x, y) < \alpha$ implies $H(F(x), F(y)) \leq \varphi(\alpha)$.

We have to remark that (i) implies (ii), (iii) implies (ii), while (ii) implies (iv). For other conditions of this type and several results see [2], [3], [4], [9], [10], [12], [13].

2. SELF-SIMILAR AND MULTI-SELF-SIMILAR SETS

We start this section by recalling the following fixed point result:

THEOREM 6 (Petruşel [7]). Let (X, d) be an ϵ -chainable complete metric space (where $\epsilon > 0$), $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ a strong φ -summable function and $f : X \to X$ a single-valued operator satisfying to a (ϵ, φ) -locally contractive condition. Then Fix $f \neq \emptyset$.

The existence result for a self-similar set of a iterated function system satisfying to a locally contractive type condition is:

THEOREM 7. Let (X, d) be an ϵ -chainable complete metric space (where $\epsilon > 0$), $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ a strong φ -summable function and $F_1, F_2, \ldots, F_m : X \to X$ be a finite family of single-valued operators satisfying to an (ϵ, φ) -locally contractive condition. Then the fractal operator T_f is an (ϵ, φ) -locally contractive type operator, having at least a fixed point.

Proof. We will prove that for each $A, B \in P_{cp}(X)$ and $0 < \alpha \leq \epsilon$ with $H(A, B) < \alpha$ we have $H(T_f(A), T_f(B)) \leq \varphi(\alpha)$. For this purpose let $A, B \in P_{cp}(X)$ such that $0 < \alpha \leq \epsilon$ with $H(A, B) < \alpha$. We intend to prove that for each $u \in T_f(A)$ there is $v \in T_f(B)$ such that $d(u, v) \leq \varphi(\alpha)$. For $u \in T_f(A)$ there exists $j \in \{1, 2, ..., m\}$ such that $u \in f_j(A)$. Then we can find $a \in A$ such that $u = f_j(a)$. Since A, B are compact sets, for $a \in A$ there exists $b \in B$ such that $d(a, b) \leq H(A, B) < \alpha$. Hence $d(f_j(a), f_j(b)) \leq \varphi(\alpha)$. So, if we define $v := f_j(b)$ we got that $d(u, v) \leq \varphi(\alpha)$. By interchanging the roles of u and v we obtain the desired conclusion.

The final conclusion follows now from Theorem 6.

An existence result for a self-similar set of a iterated multi-function system satisfying to a locally contractive type condition is:

THEOREM 8. Let (X, d) be an ϵ -chainable complete metric space (where $\epsilon > 0$), $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ a strong φ -summable function and $F_1, F_2, ..., F_m : X \to P_{cp}(X)$ be a finite family of multi-valued operators satisfying to a multi-valued (ϵ, φ) -locally contractive condition. Then the fractal operator T_F is an (ϵ, φ) -locally contractive type operator, having at least a fixed point.

Proof. There are only minor modifications of the previous proof. More precisely, we will show that for $A, B \in P_{cp}(X)$ and $0 < \alpha \leq \epsilon$ with $H(A, B) < \alpha$ we have that $H(T_F(A), T_F(B)) \leq \varphi(\alpha)$. In this respect, let $A, B \in P_{cp}(X)$ such that $0 < \alpha \leq \epsilon$ with $H(A, B) < \alpha$. We intend to prove that for each $u \in T_F(A)$ there is $v \in T_F(B)$ such that $d(u, v) \leq \varphi(\alpha)$. For $u \in T_F(A)$ there exists $j \in \{1, 2, ..., m\}$ such that $u \in F_j(A)$. Then we can find $a \in A$ such that $u \in F_j(a)$. Since A, B are compact sets, for $a \in A$ there exists $b \in B$ such that $d(a, b) \leq H(A, B) < \alpha$. Hence $H(F_j(a), F_j(b)) \leq \varphi(\alpha)$. So, we can choose $v \in F_j(b)$ such that $d(u, v) \leq \varphi(\alpha)$. By interchanging the roles of u and v we obtain that $H(T_F(A), T_F(B)) \leq \varphi(\alpha)$.

The conclusion is again an immediate application of Theorem 6.

REFERENCES

- ANDRES, J., Some standard fixed-point theorems revisited, Atti Sem. Mat. Fis. Univ. Modena, 49, pp. 455–471, 2001.
- [2] ANDRES, J. and FIŠER, J., Metric and topological fractals, Int. J. Bifurc. Chaos, 14, 2004, pp. 1277–1289.
- [3] ANDRES, J. and FIŠER, J., Fractals generated by differial equations, Dynam. Systems Appl., 11, pp. 471–479, 2002.
- [4] ANDRES J. and GÓRNIEWICZ, L., On the Banach contraction principle for multivalued mappings, Approximation, Optimization and Mathematical Economics (Pointe-à-Pitre, 1999), 1–23, Physica, Heidelberg, 2001.
- [5] JACHYMSKI, J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194, pp. 293–303, 1995.
- [6] MEIR, A. and KEELER, E., A theorem on contraction mappings, J. Math. Anal. Appl., 28, pp. 326–329, 1969.
- [7] PETRUŞEL, A., (ε, φ)-locally contractive multivalued mappings and applications, Studia Univ. Babeş-Bolyai Math., 36, pp. 101–110, 1991.
- [8] PETRUŞEL, A., Single-valued and multi-valued Meir-Keeler type operators, Rev. Anal. Numér. Théor. Approx., 30, pp. 75–80, 2001.
- [9] PETRUŞEL, A., Operatorial inclusions, House of the Book of Science, 2002.
- [10] PETRUŞEL, A. and RUS, I. A., Dynamics on $(P_{cl}(X), H_d)$ generated by a finite family of multivalued operators on (X, d), Math. Moravica, 5, pp. 103–110, 2001.
- [11] RUS, I. A., *Generalized contractions*, Cluj University Press, Cluj-Napoca, 2001.
- [12] RUS, I. A. and RUS, B., Dynamics on $(P_{cp}(X), H_d)$ generated by a set of dynamics on (X, d), Studia Univ. Babeş-Bolyai Math., **46**, pp. 95–103, 2001.
- [13] XU, H.-K., ε-chainability and fixed points of set-valued mappings in metric spaces, Math. Japonica, 39, pp. 353–356, 1994.
- [14] YAMAGUTI, M., HATA, M. and KIGANI, J., *Mathematics of Fractals*, Translations Math. Monograph, vol. 167, AMS Providence, Rhode Island, 1997.

Received by the editors: July 12, 2004.