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Abstract. The aim of this paper is to study the properties of the fractal and
the multi-fractal operator generated by some iterated function system satisfying
to a locally contractive type condition.
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1. BASIC NOTIONS AND RESULTS

For the convenience of the reader, some notations and basic notions are first
presented.
Let (X, d) be a metric space. We consider the following spaces of subsets of
a metric space (X, d):
P(X) = {Y]Y € X},
P(X) ={Y e P(X)| Y # 0},
Py(X)={Y € P(X)| Yclosed},
Pp(X) ={Y € P(X)| Ycompact}.
Let us consider now some (generalized) functionals on P(X):
(1) The gap functional D : P(X) x P(X) — Ry U {+o0}

inf{d(a,b)| a € A, be BY, if A#0#B,
D(A,B)={ 0, ifA=()=B,
+o0, ifA=0#Bor A#()=B.

(2) The excess functional p : P(X) x P(X) — R4 U {400},

sup{D(a,B)| a € A}, if A# () +# B,
p(A,B)={ 0, if A=,
+00, ifB=0+#A
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(3) Pompeiu-Hausdorff generalized functional H : P(X) x P(X) — Ry U
{+oo},
max{p(A, B), p(B, A)}, if A#0# B,
H(A,B)=1{ 0, ifA=0=B,
+o0, ifA=0#Bor A+()=B.

It is known the fact that H is a generalized metric on the space of all
nonempty closed subsets of a metric space and the space (P, (X), H) is com-
plete provided that the metric space (X, d) is complete.

A metric space (X, d) is said to be e-chainable (where ¢ > 0 is fixed) if and
only if, given a,b € X, there is an e-chain from a to b, that is a finite set of
points xg, z1, ..., %, in X such that o = a, x,, = b and d(z;_1,2;) < €, for all
i€{l,2,...,n}.

If f: X — X is a single-valued operator, then z* € X is a fixed point for f
if 2* = f(z*). We will denote by Fizf the fixed points set of f.

If F: X — P(X) is a multi-valued operator then z* € X is a fixed point
for Fif z* € F(z*). We will denote by FixF the fixed points set of F.

The following notion is important for our main results.

DEFINITION 1. Let o, v : Ry — Ry be two mappings. Then 1 is said to be
strong @-summable if:
i) ¢ is monotone increasing
ii) ¥ o ¢ is monotone increasing
iii) for each t € Ry the sequence (¢"(t))nen converges to 0, as n — oo

and 32,1 (¢ 0 )" (t) < o0
iv) 1 is an expansion function, i.e. (0) =0 and ¢ (t) > t, for each t > 0.

EXAMPLE. Let ¢,9 : Ry — Ry, defined by ¢(t) = at (where a € [0,1])

and 9(t) = bt (with b €]1,1[), for each t € R;. Then ¢ is said to be strong
p-summable. O

If f;, i € {1,...,m} are continuous operators of X into itself, then a
nonempty compact set Y in X is said to be self-similar if it satisfies the
condition Y = J%; fi(Y). The above relation can be considered also as a
fixed point problem for a suitable operator.

DEFINITION 2. Let f; : X — X, i € {1,...,m} be a finite family of contin-
uous operators. Let us define

Ty : (Po(X), H) = (Py(X),H),  T(Y) = [J fi(Y).
=1

Then, T} is the fractal operator generated by the iterated function system f =
(fla f27 (XX} fm)

The Hausdorff dimension of a self-similar set Y is not, in general, an integer.
For this reason, Y is a fractal and P,,(X) is called the space of fractals.
Let consider now the case of multi-valued operators.
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DEFINITION 3. Let Fy,...,Fy + X — Pp(X) be a finite family of up-
per semi-continuous (briefly u.s.c.) multi-valued operators. We define the
multi-fractal operator Tr generated by the iterated multi-functions system F =
(Fy, Fy, ..., Fy), by the following relation:

Tr : Pop(X) = Pop(X), Tp(Y) = G F(Y).
=1

A nonempty compact subset A* of X is said to be a multi-self-similar set
for the iterated multi-functions system F = (F1, Fy, ..., Fy,) if and only if it
s a fixed point for the associated multi-fractal operator.

If F = (F1, Fs, ..., Fy) is a finite family of continuous single-valued opera-
tors then a fized point of the corresponding fractal operator Tr will be called
a self-similar set.

We consider now some contractive type conditions for a single-valued oper-
ator f: X — X.

DEFINITION 4. The single-valued operator f : X — X satisfies

i) e-locally contractive condition (where ¢ > 0) if there is o € [0,1]
such that for x,y € X, d(z,y) < € we have d(f(z), f(y)) < ad(zx,y)

ii) e-locally Meir-Keeler type condition (where ¢ > 0) if for each
0 < n < e there is 6 > 0 such that x,y € X, n < d(z,y) < n+
d we have d(f(z), f(y)) <n.

iii) e-locally Boyd-Wong type condition (where ¢ > 0) if for each
z,y € X with 0 < d(z,y) < € we have d(f(x), f(y)) < k(d(x,y)),
where k : [0,00) — [0, 1] is a upper semi-continuous function with the
property k(t) < t, for each t €]0, €.

iv) (e,¢)-locally contractive condition (where ¢ > 0 and ¢ : Ry —
Ry ) if for each x,y € X and 0 < a < € with d(z,y) < « implies

d(f(x), f(y) < ¢(a).

Let us observe that (i) implies (ii). Indeed, for each 0 < 7 < € we can
choose ¢ := min{w,e —n}. Then, if z,y € X with n < d(z,y) < n+
d we obtain d(f(x), f(y)) < kd(z,y) < ki <n.
Also (iii) implies (ii), while (ii) implies (iv). For other contractive type con-
ditions and the relations between them we refer to [5] (see also [1],[6],[8],[9],[11]).
Some contractive type conditions for multi-valued operators on a metric

space (X, d) are contained in the following definition.

DEFINITION 5. The multi-valued operator F : X — Py(X) is said to be:

i) multi-valued e-locally contractive condition (where ¢ > 0) if
there is a € [0,1] such that for z,y € X, d(z,y) < € we have
H(F(2), F(y)) < ad(z,y)

(ii) multi-valued e-locally Meir-Keeler type operator (where ¢ >0)
if for each 0 < n < € there is § > 0 such that x,y € X, n < d(z,y) <
n+ 9 we have H(F(x), F(y)) <n.
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(iii) multi-valued e-locally Boyd-Wong type operator (where e >0)
if for each x,y € X with 0 < d(x,y) < € we have H(F(x), F(y)) <
k(d(z,y)), where k : [0,00) — [0, 1] is an upper semi-continuous func-
tion with the property k(t) < t, for each t €]0,¢€[.

(iv) multi-valued (¢, ¢)-locally contractive operator (where ¢ > 0 and
v: Ry - Ry)ifz,y € X and 0 < a < € with d(z,y) < « implies
H(F(z), F(y)) < ¢(a).

We have to remark that (i) implies (ii), (iii) implies (ii), while (ii) implies

(iv). For other conditions of this type and several results see [2], [3], [4],
[91,10], [12], [13].

2. SELF-SIMILAR AND MULTI-SELF-SIMILAR SETS

We start this section by recalling the following fixed point result:

THEOREM 6 (Petrusel [7]). Let (X,d) be an e-chainable complete metric
space (where e > 0), ¥ : Ry — Ry a strong p-summable function and f : X —
X a single-valued operator satisfying to a (e, ¢)-locally contractive condition.

Then Fixf # (.

The existence result for a self-similar set of a iterated function system sat-
isfying to a locally contractive type condition is:

THEOREM 7. Let (X,d) be an e-chainable complete metric space (where
e >0), Y : Ry — Ry a strong p-summable function and Fi, Fo, ..., Fy, :
X — X be a finite family of single-valued operators satisfying to an (e, p)-
locally contractive condition. Then the fractal operator Ty is an (e, p)-locally
contractive type operator, having at least a fixed point.

Proof. We will prove that for each A,B € P.(X) and 0 < a < e with
H(A,B) < a we have H(Tf(A),Tf(B)) < ¢(«). For this purpose let A, B €
P.p(X) such that 0 < a < e with H(A, B) < a. We intend to prove that for
each u € Tf(A) there is v € T¢(B) such that d(u,v) < ¢(a). For u € Tt(A)
there exists j € {1,2,...,m} such that v € f;(A). Then we can find a € A such
that v = f;(a). Since A, B are compact sets, for a € A there exists b € B such
that d(a,b) < H(A,B) < a. Hence d(f;(a), fj(b)) < ¢(a). So, if we define
v := f;(b) we got that d(u,v) < ¢(a). By interchanging the roles of u and v
we obtain the desired conclusion.

The final conclusion follows now from Theorem 6. O

An existence result for a self-similar set of a iterated multi-function system
satisfying to a locally contractive type condition is:

THEOREM 8. Let (X,d) be an e-chainable complete metric space (where
e>0),v: Ry — Ry a strong p-summable function and Fy, Fo, ..., Fy, : X —
P.,(X) be a finite family of multi-valued operators satisfying to a multi-valued
(e, p)-locally contractive condition. Then the fractal operator Tr is an (€, ¢)-
locally contractive type operator, having at least a fized point.
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Proof. There are only minor modifications of the previous proof. More
precisely, we will show that for A, B € P,,(X) and 0 < a < e with H(A, B) <
a we have that H(Tr(A), Tr(B)) < ¢(a). In this respect, let A, B € P, (X)
such that 0 < o < e with H(A, B) < a. We intend to prove that for each
u € Tr(A) there is v € Tr(B) such that d(u,v) < ¢(a). For u € Tr(A) there
exists j € {1,2,...,m} such that u € F;(A). Then we can find a € A such that
u € Fj(a). Since A, B are compact sets, for a € A there exists b € B such that
d(a,b) < H(A,B) < o. Hence H(Fj(a), Fj(b)) < ¢(a). So, we can choose
v € Fj(b) such that d(u,v) < ¢(«). By interchanging the roles of u and v we
obtain that H(Tr(A),Tr(B)) < ().

The conclusion is again an immediate application of Theorem 6. g
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