ON A MEAN VALUE THEOREM CONNECTED WITH HERMITE-HADAMARD'S INEQUALITY

OVIDIU T. POP*

Abstract

In this paper we prove a mean-value theorem for integral calculus, then we demonstrate properties of the mean point. In the end we give an extension of Hermite-Hadamard's inequality.

MSC 2000. 26A24, 26A51.
Keywords. Convex function, mean-value theorem, intermediate point.

1. INTRODUCTION

In this article, we will give two interpolations of the Hermite-Hadamard's inequality. We start from:

Theorem 1 (Hermite-Hadamard). Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{b}^{a} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

For the proofs we refer to [3] or [8].

2. PRELIMINARIES

It is known that if $a<b$, then $x \in[a, b]$ iff there exists $t \in[0,1]$ such that $x=(1-t) a+t b$, and if $x_{1}, x_{2} \in[a, b], x_{1} \leq x_{2}$ are symmetrical with respect to the middle point of the interval $[a, b]$ iff there exists $c \in\left[0, \frac{b-a}{2}\right]$ such that $x_{1}=\frac{a+b}{2}-c$ and $x_{2}=\frac{a+b}{2}+c$.

Lemma 2. Let $[a, b], a<b$, be an interval. The points $x_{1}, x_{2} \in[a, b]$, $x_{1} \leq x_{2}$ are symmetrical with respect to the middle point of the interval $[a, b]$ iff there exists $t \in\left[0, \frac{1}{2}\right]$, such that $x_{1}=(1-t) a+t b$, and $x_{2}=(1-t) b+t a$.

Proof. Let $t=\frac{\frac{b-a}{2}-c}{b-a}=\frac{1}{2}-\frac{c}{b-a}$. It can be checked that $t \in\left[0, \frac{1}{2}\right]$, and that $x_{1}=(1-t) a+t b, x_{2}=(1-t) b+t a$. Reciprocally, it is proved that $\frac{x_{1}+x_{2}}{2}=\frac{a+b}{2}$.

[^0]
3. MAIN RESULTS

Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Then the function

$$
g:\left[0, \frac{b-a}{2}\right] \rightarrow \mathbb{R}, g(x)=f\left(\frac{a+b}{2}-x\right)+f\left(\frac{a+b}{2}+x\right), \forall x \in\left[0, \frac{b-a}{2}\right]
$$

is increasing on $\left[0, \frac{b-a}{2}\right]$.
Proof. Let $0 \leq x_{1}<x_{2} \leq \frac{b-a}{2}$. Then

$$
a \leq \frac{a+b}{2}-x_{2}<\frac{a+b}{2}-x_{1} \leq \frac{a+b}{2}+x_{1}<\frac{a+b}{2}+x_{2} \leq b,
$$

and considering Lemma 2, we find that there exists $t \in\left(0, \frac{1}{2}\right)$ so that $\frac{a+b}{2}-$ $x_{1}=(1-t)\left(\frac{a+b}{2}-x_{2}\right)+t\left(\frac{a+b}{2}+x_{2}\right)$, and $\frac{a+b}{2}+x_{1}=(1-t)\left(\frac{a+b}{2}+x_{2}\right)+$ $t\left(\frac{a+b}{2}-x_{2}\right)$.

Considering these relations and by use of the fact that function f is convex, we obtain

$$
\begin{aligned}
f\left(\frac{a+b}{2}-x_{1}\right) & =f\left((1-t)\left(\frac{a+b}{2}-x_{2}\right)+t\left(\frac{a+b}{2}+x_{2}\right)\right) \\
& \leq(1-t) f\left(\frac{a+b}{2}-x_{2}\right)+t f\left(\frac{a+b}{2}+x_{2}\right),
\end{aligned}
$$

so

$$
f\left(\frac{a+b}{2}-x_{1}\right) \leq(1-t) f\left(\frac{a+b}{2}-x_{2}\right)+t f\left(\frac{a+b}{2}+x_{2}\right) .
$$

Analogously,

$$
f\left(\frac{a+b}{2}+x_{1}\right) \leq(1-t) f\left(\frac{a+b}{2}+x_{2}\right)+t f\left(\frac{a+b}{2}-x_{2}\right) .
$$

Adding the above relations, we obtain

$$
f\left(\frac{a+b}{2}-x_{1}\right)+f\left(\frac{a+b}{2}+x_{1}\right) \leq f\left(\frac{a+b}{2}-x_{2}\right)+f\left(\frac{a+b}{2}+x_{2}\right),
$$

that is $g\left(x_{1}\right) \leq g\left(x_{2}\right)$. So, the function g is increasing on $\left[0, \frac{b-a}{2}\right]$.
Lemma 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$ with the property that $\int_{a}^{b} f(x) \mathrm{d} x=0$. Then there exists $\alpha \in\left(0, \frac{b-a}{2}\right)$, such that

$$
\begin{equation*}
f\left(\frac{a+b}{2}-\alpha\right)+f\left(\frac{a+b}{2}+\alpha\right)=0 . \tag{2}
\end{equation*}
$$

Proof. Let $F:[0,1] \rightarrow \mathbb{R}$ be the function defined by $F(t)=\int_{(1-t) a+t b}^{t a+(1-t) b} f(x) \mathrm{d} x$.
We have $F(0)=F\left(\frac{1}{2}\right)=F(1)=0$. Since f is a continuous function, it results that F is a Rolle function.
Applying Rolle's theorem to function F on the intervals $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, we obtain that there exists $c_{1} \in\left(0, \frac{1}{2}\right), c_{2} \in\left(\frac{1}{2}, 1\right)$ such that

$$
\begin{equation*}
F^{\prime}\left(c_{1}\right)=F^{\prime}\left(c_{2}\right)=0 \tag{3}
\end{equation*}
$$

We have $F^{\prime}(t)=f(t a+(1-t) b)(a-b)-f((1-t) a+t b)(b-a)$, and so we have that $F^{\prime}(t)=(a-b)[f(t a+(1-t) b)+f((1-t) a+t b)]$. Then from (3) we have

$$
\begin{equation*}
f\left(c_{k} a+\left(1-c_{k}\right) b\right)+f\left(\left(1-c_{k}\right) a+c_{k} b\right)=0, \quad k \in\{1,2\} . \tag{4}
\end{equation*}
$$

Since $c_{k} \neq \frac{1}{2}, k \in\{1,2\}$, it follows that $c_{k} a+\left(1-c_{k}\right) b \neq \frac{a+b}{2}, k \in\{1,2\}$. As an observation, it is possible that $c_{2}=1-c_{1}$. Consequently, from (4) we have that there exists $c \in\left(0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
f(c a+(1-c) b)+f((1-c) a+c b)=0 . \tag{5}
\end{equation*}
$$

We have $(1-c) a+c b<c a+(1-c) b$, since this inequality is equivalent to $0<(b-a)(1-2 c)$, where $0<c<\frac{1}{2}$.

Let $\alpha=\frac{(b-a)(1-2 c)}{2}=\frac{b-a}{2}-c(b-a)$. Since $0<c<\frac{1}{2}$, it can be immediately checked that $0<\alpha<\frac{b-a}{2}$ and that $\frac{a+b}{2}-\alpha=(1-c) a+c b, \frac{a+b}{2}+\alpha=$ $c a+(1-c) b$.

Then, considering (5), we have that there exists $\alpha \in\left(0, \frac{b-a}{2}\right)$ such that 2 holds.

Theorem 5. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function on interval $[a, b]$, then there exists $\alpha \in\left(0, \frac{b-a}{2}\right)$ so that

$$
\begin{equation*}
\frac{1}{2}\left[f\left(\frac{a+b}{2}-\alpha\right)+f\left(\frac{a+b}{2}+\alpha\right)\right]=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x . \tag{6}
\end{equation*}
$$

Proof. Let $g:[a, b] \rightarrow \mathbb{R}$ be the function $g(x)=f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t$, $\forall x \in[a, b]$.

Since the function g is continuous on interval $[a, b]$, and

$$
\int_{a}^{b} g(x) \mathrm{d} x=\int_{a}^{b}\left[f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right] \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} f(t) \mathrm{d} t=0,
$$

are among the conditions of Lemma 4 , there exists $\alpha \in\left(0, \frac{b-a}{2}\right)$, such that $g\left(\frac{a+b}{2}-\alpha\right)+g\left(\frac{a+b}{2}+\alpha\right)=0$. Replacing the function g, we obtain that

$$
\left[f\left(\frac{a+b}{2}-\alpha\right)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right]+\left[f\left(\frac{a+b}{2}+\alpha\right)-\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right]=0,
$$

and there from comes (6).
Lemma 6. Let $n \in \mathbb{N}, n \geq 2$. The equation $\left(\frac{1}{2}-x\right)^{n}+\left(\frac{1}{2}+x\right)^{n}=\frac{2}{n+1}$ has one and only one solution on the interval $\left(0, \frac{1}{2}\right)$.

Proof. Let $f:\left(0, \frac{1}{2}\right) \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=\left(\frac{1}{2}-x\right)^{n}+\left(\frac{1}{2}+x\right)^{n}-\frac{2}{n+1} .
$$

Then

$$
f^{\prime}(x)=n\left[\left(\frac{1}{2}+x\right)^{n-1}-\left(\frac{1}{2}-x\right)^{n-1}\right]
$$

and from the variation of function f, it results that the function f has only one zero on the interval $\left(0, \frac{1}{2}\right)$.

Theorem 7. If the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on the interval $[a, b]$, then $\forall x \in(a, b], \exists c(x) \in\left(0, \frac{x-a}{2}\right)$, such that

$$
\begin{equation*}
\frac{1}{2}\left[f\left(\frac{a+x}{2}-c(x)\right)+f\left(\frac{a+x}{2}+c(x)\right)\right]=\frac{1}{x-a} \int_{a}^{x} f(t) \mathrm{d} t . \tag{7}
\end{equation*}
$$

Proof. We apply now Theorem 5 to the restriction of the function f on the interval $[a, x]$.

Theorem 8. We have the function $f:[a, b] \rightarrow \mathbb{R}$ which verifies the conditions:
(i) there exists a neighborhood V of the point a so that the function f is $n+1$ times derivable on $V \cap[a, b]$, and $f^{(n+1)}$ is bounded on $V \cap[a, b]$, where $n \in \mathbb{N}, n \geq 2$ is fixed;
(ii) $f^{\prime \prime}(a)=f^{\prime \prime \prime}(a)=\cdots=f^{(n-1)}(a)=0, n \geq 3$;
(iii) $f^{(n)}(a) \neq 0$.

Then, for every $x \in V \cap(a, b]$, the number $c(x) \in\left(a, \frac{x-a}{2}\right)$ given by Theorem 7 has the property that there exists $\lim _{x \searrow a} \frac{c(x)}{x-a}=l, l \in\left(0, \frac{1}{2}\right)$, and l is the unique solution of the equation

$$
\begin{equation*}
\left(\frac{1}{2}-l\right)^{n}+\left(\frac{1}{2}+l\right)^{n}=\frac{2}{n+1} . \tag{8}
\end{equation*}
$$

Proof. We consider the function $F: V \cap[a, b] \rightarrow \mathbb{R}$ defined by

$$
F(x)=\int_{a}^{x} f(t) \mathrm{d} t-(x-a) f(a)-\frac{(x-a)^{2}}{2} f^{\prime}(a), \quad \forall x \in V \cap[a, b] .
$$

We calculate the limit

$$
\begin{aligned}
L & =\lim _{\substack{x \rightarrow a \\
x>a}} \frac{F(x)}{(x-a)^{n+1}} \\
& =\lim _{\substack{x \rightarrow a \\
x>a}} \frac{f(x)-f(a)-(x-a))^{\prime}(a)}{(n+1)(x-a)^{n}} \\
& =\frac{1}{n+1} \lim _{\substack{x \rightarrow a \\
x>a}} \frac{f^{\prime}(x)-f^{\prime}(a)}{n(x-a)^{n-1}}=\cdots \\
& =\frac{1}{(n+1) \cdot n \cdot \cdots \cdot \cdot 2} \lim _{\substack{x \rightarrow a \\
x>a}} \frac{f^{(n-1)}(x)-f^{(n-1)}(a)}{x-a},
\end{aligned}
$$

so

$$
\begin{equation*}
L=\lim _{\substack{x \rightarrow a \\ x>a}} \frac{F(x)}{(x-a)^{n+1}}=\frac{1}{(n+1)!} f^{(n)}(a) . \tag{9}
\end{equation*}
$$

According to Taylor's formula with the rest of Lagrange, for each $x \in V \cap(a, b]$ there exists ξ_{1}, ξ_{2},

$$
a<\xi_{1}<\frac{a+x}{2}-c(x)<x, \quad a<\xi_{2}<\frac{a+x}{2}+c(x)<x,
$$

so that

$$
f\left(\frac{a+x}{2}-c(x)\right)=f(a)+\sum_{k=1}^{n} \frac{\left(\frac{x-a}{2}-c(x)\right)^{k}}{k!} f^{(k)}(a)+\frac{\left(\frac{x-a}{2}-c(x)\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{1}\right)
$$

and

$$
f\left(\frac{a+x}{2}+c(x)\right)=f(a)+\sum_{k=1}^{n} \frac{\left(\frac{x-a}{2}+c(x)\right)^{k}}{k!} f^{(k)}(a)+\frac{\left(\frac{x-a}{2}+c(x)\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{2}\right),
$$

from where, considering (ii) it results that

$$
\begin{align*}
& \frac{1}{2}\left[f\left(\frac{a+x}{2}-c(x)\right)+f\left(\frac{a+x}{2}+c(x)\right)\right]= \tag{10}\\
& =f(a)+\frac{x-a}{2} f^{\prime}(a)+\frac{1}{2} \frac{\left(\frac{x-a}{2}-c(x)\right)^{n}+\left(\frac{x-a}{2}+c(x)\right)^{n}}{n!} f^{(n)}(a)+ \\
& \quad+\frac{1}{2} \frac{\left(\frac{x-a}{2}-c(x)\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{1}\right)+\frac{1}{2} \frac{\left(\frac{x-a}{2}+c(x)\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{2}\right) .
\end{align*}
$$

From relation $0<c(x)<\frac{x-a}{2}$, it results that $\lim _{\substack{x \rightarrow a \\ x>a}} c(x)=0$, so

$$
\begin{equation*}
\lim _{\substack{x \rightarrow a \\ x>a}}\left(\frac{x-a}{2}-c(x)\right)=0, \quad \lim _{\substack{x>a \\ x>a}}\left(\frac{x-a}{2}+c(x)\right)=0, \tag{11}
\end{equation*}
$$

and $0<\frac{c(x)}{x-a}<\frac{1}{2}, \forall x \in V \cap(a, b]$, from where we obtain that $\frac{1}{2}<\frac{1}{2}+\frac{c(x)}{x-a}<1,0<\frac{1}{2}-\frac{c(x)}{x-a}<\frac{1}{2}, \forall x \in V \cap(a, b]$.

So the functions $x \rightarrow \frac{1}{2}-\frac{c(x)}{x-a}, \frac{1}{2}+\frac{c(x)}{x-a}$ are bounded on $V \cap(a, b]$ and considering the condition (i), it results that the functions $\left(\frac{1}{2}-\frac{c(x)}{x-a}\right)^{n} f^{(n+1)}\left(\xi_{1}\right)$, $\left(\frac{1}{2}+\frac{c(x)}{x-a}\right)^{n} f^{(n+1)}\left(\xi_{2}\right)$ are also bounded on $V \cap(a, b]$. From these observation and from (11), it results that

$$
\begin{equation*}
\left.\lim _{\substack{x \rightarrow a \\ x>a}}\left(\frac{x-a}{2}-c(x)\right)\left(\frac{1}{2}-\frac{c(x)}{x-a}\right)^{n} f^{(n+1)} \xi_{1}\right)=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\substack{x \rightarrow a \\ x>a}}\left(\frac{x-a}{2}+c(x)\right)\left(\frac{1}{2}+\frac{c(x)}{x-a}\right)^{n} f^{(n+1)}\left(\xi_{2}\right)=0 . \tag{13}
\end{equation*}
$$

Considering (7) and (10), we have

$$
\begin{aligned}
& L= \lim _{\substack{x \rightarrow a \\
x>a}} \frac{F(x)}{(x-a)^{n+1}} \\
&= \frac{1}{2} \lim _{\substack{x \rightarrow a \\
x>a}} \frac{\left(\frac{x-a}{2}-c(x)\right)^{n}+\left(\frac{x-a}{2}+c(x)\right)^{n}}{n!} f^{(n)}(a)+ \\
&(x-a)^{n}
\end{aligned} \quad \begin{aligned}
&=\frac{1}{2} \lim _{\substack{x \rightarrow a \\
x>a}}\left[\frac{\left(\frac{1}{2}-\frac{c(x)}{x-a}\right)^{n}+\left(\frac{1}{2}+\frac{c(x)}{x-a}\right)^{n}}{n!} f^{(n)(a))^{n+1}(a)} f^{(n+1)}\left(\xi_{1}\right)+\frac{\left(\frac{x-a}{2}+c(x)\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{2}\right)\right. \\
&+\frac{1}{(n+1)!}\left(\frac{x-a}{2}-c(x)\right)\left(\frac{1}{2}-\frac{c(x)}{x-a}\right)^{n} f^{(n+1)}\left(\xi_{1}\right) \\
&\left.+\frac{1}{(n+1)!}\left(\frac{x-a}{2}+c(x)\right)\left(\frac{1}{2}+\frac{c(x)}{x-a}\right)^{n} f^{(n+1)}\left(\xi_{2}\right)\right]
\end{aligned}
$$

and using (12) and (13), we obtain

$$
\begin{equation*}
L=\lim _{\substack{x \rightarrow a \\ x>a}} \frac{F(x)}{(x-a)^{n+1}}=\frac{f^{(n)}(a)}{2 n!} \lim _{\substack{x \rightarrow a \\ x>a}}\left[\left(\frac{1}{2}-\frac{c(x)}{x-a}\right)^{n}+\left(\frac{1}{2}+\frac{c(x)}{x-a}\right)^{n}\right] . \tag{14}
\end{equation*}
$$

We shall prove that there exists $\lim _{x \backslash a} \frac{c(x)}{x-a}$. Assuming the contrary that this limit does not exist, then there exist two sequences $\left(x_{m}\right)_{m \geq 0},\left(y_{m}\right)_{m \geq 0}$, $x_{m}, y_{m} \in V \cap(a, b], \forall m \in \mathbb{N}$, so that $\lim _{m \rightarrow \infty} x_{m}=\lim _{m \rightarrow \infty} y_{m}=a$, $\lim _{m \rightarrow \infty} \frac{c\left(x_{m}\right)}{x_{m}-a}=l_{1} \in\left(0, \frac{1}{2}\right), \lim _{m \rightarrow \infty} \frac{c\left(y_{m}\right)}{y_{m}-a}=l_{2} \in\left(0, \frac{1}{2}\right)$ and $l_{1} \neq l_{2}$.

From (iii), (9) and (14) it results that

$$
\left(\frac{1}{2}-l_{1}\right)^{n}+\left(\frac{1}{2}+l_{1}\right)^{n}=\left(\frac{1}{2}-l_{2}\right)^{n}+\left(\frac{1}{2}+l_{2}\right)^{n}=\frac{2}{n+1}
$$

and considering Lemma 6 , we have $l_{1}=l_{2}$, which is a contradiction.
Since we proved that there exists $\lim _{x \searrow a} \frac{c(x)}{x-a}$, from (iii), $\sqrt{9}$ and $\sqrt{14}$, we obtain that l verifies (8). Also considering Lemma 6, Theorem 8 is proved.

Corollary 9. In the conditions of Theorem 8 , for $n=2$, we obtain that $l=\lim _{x \searrow a} \frac{c(x)}{x-a}=\frac{1}{2 \sqrt{3}}$, and for $n=4$, we obtain that $l=\lim _{x \searrow a} \frac{c(x)}{x-a}=$ $\sqrt{\frac{2 \sqrt{70}-15}{20}}$.

Example. Let $0<a$ and $f:[a, b] \rightarrow \mathbb{R}$ be the function $f(x)=\frac{1}{x}$. According to Theorem $7, \forall x \in(a, b], \exists c(x) \in\left(0, \frac{x-a}{2}\right)$ which verifies (7), and from this we obtain that

$$
c(x)=\sqrt{\left(\frac{x+a}{2}\right)^{2}-\frac{x^{2}-a^{2}}{2 \ln \frac{x}{a}}} .
$$

According to Corollary $9, \lim _{x \backslash a} \frac{c(x)}{x-a}=\frac{1}{2 \sqrt{3}}$.

Theorem 10. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function, f is continuous on the right at a and continuous on the left at b. Then there exists $\alpha \in\left(0, \frac{b-a}{2}\right)$ so that $\forall x \in[0, \alpha], \forall y \in\left[\alpha, \frac{b-a}{2}\right]$, we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}-x\right)+f\left(\frac{a+b}{2}+x\right)\right] \tag{15}\\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}-\alpha\right)+f\left(\frac{a+b}{2}+\alpha\right)\right] \\
& =\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t \\
& \leq \frac{1}{2}\left[f\left(\frac{a+b}{2}-y\right)+f\left(\frac{a+b}{2}+y\right)\right] \\
& \leq \frac{1}{2}[f(a)+f(b)] .
\end{align*}
$$

Proof. Since f is a convex function on interval $[a, b]$, it results that f is continuous on (a, b), and since f is continuous on the right at a and continuous on the left at b, we know that f is continuous on interval $[a, b]$. Next Theorem 3 and Theorem 5 are to be applied.

Remarks. Theorem 10 is an extension and refinement of Hermite-Hadamard's inequality.

Next, we will show that the maximal value of α with the property from Theorem 5, is $\alpha_{\text {max }}=\frac{b-a}{2}$.

Example. Let $f:[-1,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f_{c}(x)= \begin{cases}-\frac{1}{1-c} x-\frac{c}{1-c}, & x \in[-1,-c) \\ 0, & x \in[-c, c] \\ \frac{1}{1-c} x-\frac{c}{1-c}, & x \in(c, 1],\end{cases}
$$

where $c \in[0,1)$.
We have that $\frac{1}{2} \int_{-1}^{1} f_{c}(x) \mathrm{d} x=\frac{1-c}{2}$, and $\frac{1}{2}\left[f_{c}(-x)+f_{c}(x)\right]=0, \forall x \in[0, c]$.
We determine α on interval $(c, 1)$. We have $\frac{1}{2}\left[f_{c}(-\alpha)+f_{c}(\alpha)\right]=\int_{-1}^{1} f_{c}(t) \mathrm{d} t$, equivalent to $\frac{\alpha}{1-c}-\frac{c}{1-c}=\frac{1-c}{2}$, from which we have $\alpha=\frac{1+c^{2}}{2}$.

If c tended towards 1 , than α would tend 1 (that is $\frac{b-a}{2}$, where $a=-1$ and $b=1$), so the maximal value of α with the property from Theorem 10 is $\alpha=\frac{b-a}{2}$.

REFERENCES

[1] Beckenbach, E. F. and Bellman, R., Inequalities, Springer-Verlag, Berlin-GötingenHeidelberg, 1961.
[2] Berinde, V., Despre proprietatea punctului intermediar în teoremele de medie pentru integrala Riemann, Lucrările Seminarului de Creativitate Matematică, Universitatea de Nord Baia Mare, 9, pp. 51-58, 2000 (in Romanian).
[3] Florea, A. and Niculescu, C.P., Extensii ale inegalităţii Hermite-Hadamard, Lucrările Seminarului de Creativitate Matematică, Universitatea de Nord Baia Mare, 10, pp. 97-106, 2001 (in Romanian).
[4] Hadamard, J., Étude sur les propriétés des functions entières et en particulier d'une function considérée par Riemann, J. Math. Pures Appl., 58, pp. 171-215, 1893.
[5] Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, Cambridge University Press, 1934.
[6] Jacobson, B., On the mean value theorem for integrals, Amer. Math. Monthly, 89, pp. 300-301, 1982.
[7] Mitrinovič, D. S., Analytic inequalities, Springer Berlin-Heidelberg-New York, 1970
[8] Mitrinovič, D. S. and Lackovič, I. B., Hermite and converxity, Aequationes Mathematicae, 28, pp. 229-232, 1985.
[9] Nicolescu, M., Mathematical Analysis, II, Editura Tehnică, Bucureşti, 1958 (in Romanian).
[10] Niculescu, C. P., Asupra inegalităţ̧ilor de convexitate în absenţa derivabilităţii, Gazeta Matematică, CIII, no. 9, pp. 329-337, 1998 (in Romanian).
[11] Pop, I., O caracterizare a funç̧iilor convexe, Gazeta matematică, IC, no.7, pp. 313-314, 1994 (in Romanian).
[12] Rockafellar, R.T., Convex analysis, Princeton University Press, 1970.
[13] Sireţchi, Gh., Calcul diferenţial şi integral, Editura Ştiinţifică şi Enciclopedică, Bucureşti, I, 1985 (in Romanian).
[14] Udrişte, C., TĂNĂSescu, E., Minime şi maxime ale funcţilor reale de variabile reale, Editura Tehnică, Bucureşti, 1980 (in Romanian).
[15] Zhang Bao-lin, A note on the mean value theorem for integrals, Amer. Math. Monthly 104, pp. 561-562, 1997.

Received by the editors: September 25, 2002.

[^0]: *"Mihai Eminescu" National College, 5 Mihai Eminescu Street, 440014, Satu Mare, Romania, e-mail: ovidiutiberiu@yahoo.com.

