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ON A MEAN VALUE THEOREM CONNECTED WITH
HERMITE-HADAMARD’S INEQUALITY

OVIDIU T. POP*

Abstract. In this paper we prove a mean-value theorem for integral calculus,
then we demonstrate properties of the mean point. In the end we give an exten-
sion of Hermite-Hadamard’s inequality.
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1. INTRODUCTION

In this article, we will give two interpolations of the Hermite-Hadamard’s
inequality. We start from:

THEOREM 1 (Hermite-Hadamard). Let f : [a,b] — R be a convex function.
Then

0 o) ot [ oo 20

For the proofs we refer to [3] or [8].

2. PRELIMINARIES

It is known that if a < b, then = € [a, ] iff there exists t € [0,1] such that
x = (1—1t)a+tb, and if z1,x9 € [a,b], z1 < z2 are symmetrical with respect
to the middle point of the interval [a, ] iff there exists ¢ € {0, I’_Ta} such that
:rlzaT*b—candxg:aTH’—i-c.

LEMMA 2. Let [a,b], a < b, be an interval. The points x1,x2 € [a,b],
x1 < x9 are symmetrical with respect to the middle point of the interval |a, b]
iff there exists t € [0, %} , such that z1 = (1 —t)a +tb, and xo = (1 —t)b + ta.

b—a
Proof. Let t = g_ac = % — 5= - It can be checked that t € {0, %}, and
that 1 = (1 —t)a + tb, xzo = (1 — t)b + ta. Reciprocally, it is proved that
g = ot -
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3. MAIN RESULTS
THEOREM 3. Let f : [a,b] — R be a convex function. Then the function
g:[0.%5% >R, g(a) = f (gt —2) + F (42 +2), ¥z e 0,552

18 increasing on {O, Z’_Ta} .

Proof. Let0§x1<aﬁ2§b_—“.Then
ag‘”b x<“+b xlgaTer—f-x1<“T+b+x2§b,

and considering Lemma 2, we find that there exists ¢ € (0,1) so that 23> —
x1 = (1—1) (QTH’ —:1;2) —|—t<“T+b+a;2), and %42 + 21 = (1 —1¢) (“TH’—HCQ) +
t (%H) — .%'2) .

Considering these relations and by use of the fact that function f is convex,
we obtain

() =008 o)

E(lft)f( ath $2)+tf(

w\+ w\+

N f(aTer*l‘l)S(lft)f(aT%*@)thf(%rbwL@)~
Analogously,
f(aTer+CC1) <(1-=-tf (aTH)+$2) —i—tf(%rb—xg) )
Adding the above relations, we obtain
f (“+b 561) +f (Hb +1‘1) <f (‘Hb 332) +f (aTH’ +962) ;

that is g(x1) < g(z2). So, the function g is increasing on [0, Z’_T“} O

LEMMA 4. Let f : [a,b] = R be a continuous function on [a,b] with the
property that ff f(x)dz = 0. Then there exists o € (0, bfT“), such that

(2) f(#—a)%—f(%rb—l—a)zo.

Proof. Let F' : [0,1] — R be the function defined by F'(t) = f(taJr ZJ:tb f(z)d.

We have F(0) = F (5) = F(1) = 0. Since f is a continuous function, it
results that £ is a Rolle function.

Applying Rolle’s theorem to function F' on the intervals { , 2} and [% , 1},

we obtain that there exists ¢; € (O, 5), co € (5 , 1) such that

(3) F'(c1) = F'(c2) = 0.
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We have F'(t) = f(ta+ (1 —t)b)(a—b) — f((1 —t)a+tb)(b— a), and so we
have that F'(t) = (a — b)[f(ta+ (1 —t)b) + f((1 — t)a + tb)].
Then from we have
(4) flexa+ (1 —cp)b) + f((1—cp)a+cxb) =0, ke {l,2}.

Since ¢ # 1, k € {1,2}, it follows that cya + (1 — cx)b # %2, k € {1,2}.
As an observation, it is possible that co = 1 — ¢;. Consequently, from we
have that there exists ¢ € (O, 2) such that

(5) flea+(1—c)b) + f((1 —c)a+cb) =0.
We have (1 — ¢)a+ ¢b < ca + (1 — ¢)b, since this inequality is equivalent to
0<(b—a)(l—2c), where 0 <c< 3.

Let o = W =28 _¢(b—a). Since 0 < ¢ < 3, it can be immediately
checked that 0 < a < b_Ta and that ‘%"b—a = (1 —c)a + cb, aTer—l-oz =
ca+ (1 —c)b.

Then, considering , we have that there exists a € (O, b_Ta) such that
holds. U

THEOREM 5. If f : [a,b] — R is a continuous function on interval [a, ],
then there exists o € (O “) so that
©) (st - a) o (24 0)] = s [ s

Proof. Let g : [a,b] — R be the function g(z) = f(z) — ﬁf: f(t)de,
V€ la,b].
Since the function g is continuous on interval [a, b], and

Lb9<x>dxzél ) -k [ s dt]dx_/f - [ sy

are among the conditions of Lemma 4, there exists a € (0, b*T“>, such that

g (QTH’ — a) +g (aT“’ + a) = 0. Replacing the function g, we obtain that

[f(“;b—a)—bia/abf(t)dt + (“+b+a /f dt]_o

and there from comes @ O

LEMMA 6. Let n € N, n > 2. The equation (% — ac)n + (% —i—:c)n =2

has one and only one solution on the interval (0, %) .

Proof. Let f: (0, %) — R be the function defined by

f(x)z(%—ﬁ&)n—i—(%—i—x)n—%ﬂ.
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Then

r@ =+ = (b-2)]

and from the variation of function f, it results that the function f has only
one zero on the interval (0, %) O

b] — R is continuous on the interval

THEOREM 7. If the functzon [ a,
0, %5%), such that

la,b], then Vz € (a,b], 3 e(z) € (

(™) §IF (5 = cl@) + £ (552 + e@)] = A [ f(opar

Proof. We apply now Theorem 5 to the restriction of the function f on the
interval [a, x]. O

THEOREM 8. We have the function f : [a,b] — R which verifies the condi-
tions:

(i) there exists a neighborhood V' of the point a so that the function f is
n+1 times derivable on V N [a,b], and f™Y is bounded on V N|a,b],
where n € N, n > 2 is fized;

(i) f"(a) = f"(a) = -+ = f""D(a) =0, n > 3;

(ii) 70(a) #0.
Then, for every x € VN (a,b], the number c(x) € (a, 25%) given by Theorem

7 has the property that there exists limg\ q o) _ [, 1€ (0 l), and | is the

r—a ’ 2
unique solution of the equation

(8) (A-0)"+(1+0)" =%
Proof. We consider the function F : V N [a,b] — R defined by
- / FHdt — (x — a)f(a) — 252 f(a), VeeVnlab.
We calculate the limit

L = lim —£&)

T—a (2?70,)""'1

x>a
— i L@ —fla)—(z—a)f'(a)
= lim (n+1)(z—a)"
T>a
_ : f(a) _
- TLJlrl l}ll}rg, n((x)a)”( 1) -
r>a
_ P Al € e Al ()
- (n+1)1-n-...-2 alcll}(} ( x)—a ’
r>a
SO
(9) L= lim (zig)mrzﬂ = (n—il—l)! F™(a).

T>a
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According to Taylor’s formula with the rest of Lagrange, for each
x € V N (a,b] there exists &1, o,

a<& <HE—c(z)<w, a<&<E4ce(r)<w,

so that

T—a r—a _C(x))n+1

£ = @) = fa) + 3 CEE O (g ¢ LZeO) g

£ (552 4 e@)) = fla)+ 3 CEHO) pb(q) 4 BT gy

from where, considering (ii) it results that

(10) 3 [f (55 —c(@) + f (5 +c(@))] =

+ %W FrE) + %W Fr(&).

From relation 0 < ¢(x) < %3¢, it results that lim c(x) = 0, so

r>a

(11) lim (%5 —c(2)) =0, lim (3% +¢(2)) =0,
T>a rx>a

and 0 < <& o 3, Vz V N (a,b], from where we obtain that

€
r—a
1 1 1 1
Tl dd o1 0<l @ o1 vpevn(a,bl.
So the functions x — % - ;@L ) % + ;(fi are bounded on V N (a, b] and con-
sidering the condition (i), it results that the functions <% — %)n frt (),

3+ % " 41 (&) are also bounded on V N (a, b]. From these observation
and from , it results that

(12) lim (55 — (@) (3 = 222)" £ e = 0
and
(13) lim (25 + o)) (4 + £2)" £ (g) = 0.

Tz>a
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Considering and , we have

. F
L= lim 25
r>a

(552 —c@) "+ (552 +e(@))

_ 17 T F (a)+
—2 91c1—>H«lz " (z—a)"
rx>a
(zfa ,C@))nﬂ (M+c(z))n+1
+W f(n+1>((§1)+)W f<n+1)(§2) —
r—a)”
1_e@\", (1, ()
. 5= +\5+
— j Ll_{% (2 z—a) n'(2 z—a) f(n)(a)

and using and , we obtain

(14) LZ%%? (mfggﬂ = f(;;(!a) %l_i% [(%_z(_x[)l)n_i_(%_’_%)n} )

We shall prove that there exists lim,\, ;(f()l . Assuming the contrary that

this limit does not exist, then there exist two sequences (zp,)m>0, (Ym)m>0,

Ty Ym € V N (a,b], Ym € N, so that lim,, oo T = liMypeoYm = a,
T o S22 = 13 € (0, 4), im0 222 =1y € (0,4) and 1y # b,
From (iii), @ and ([14)) it results that

(0" (o) = (=) () =
and considering Lemma 6, we have [; = lo, which is a contradiction.
Since we proved that there exists lim,\ 4 Lﬂ, from (iii), @) and , we
obtain that [ verifies . Also considering Lemma 6, Theorem 8 is proved. [
COROLLARY 9. In the conditions of Theorem 8, for n = 2, we obtain that

[ = limg\q ;(_x,)l = 2\% ., and for n = 4, we obtain that | = lim,\ 4 c@) _
2v/70-15

T—a
20 :

EXAMPLE. Let 0 < a and f : [a,b] — R be the function f(z) = 1. Accord-
ing to Theorem 7, Va € (a,b], 3 c(z) € (0,%5%) which verifies , and from
this we obtain that

— [(z+a\? _ z%’—d?
c(x)—\/( ) Pt

c@) _

According to Corollary 9, limg~\ 4 7=, ﬁ . O
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THEOREM 10. Let f : [a,b] — R be a convexr function, f is continu-
ous on the right at a and continuous on the left at b. Then there exists

a € (0, %) so that Yz € [0,a], Vy € [oz, IFTQ}, we have

(15) f(eg) <

Proof. Since f is a convex function on interval [a,b], it results that f is
continuous on (a, b), and since f is continuous on the right at a and continuous
on the left at b, we know that f is continuous on interval [a, b]. Next Theorem
3 and Theorem 5 are to be applied. ]

REMARKS. Theorem 10 is an extension and refinement of Hermite-Hada-
mard’s inequality. O

Next, we will show that the maximal value of o with the property from

Theorem 5, is aax = boa

ExXAMPLE. Let f:[—1,1] — R be the function defined by

—Lar—1&, zel-1,—¢
fe(x) =40, x € [—c¢,c]
llcx—l%c, x € (¢, 1],

where ¢ € [0, 1).
We have that %fil fe(z)dz =154, and § [f.(—2) + fo(2)] =0, [0, ]

vz € [0, c|.
We determine « on interval (¢, 1). We have % [fe(—a) + fe(a)] = fil fe(t)dt,
equivalent to 1% — & = 15¢ from which we have a = # ,

If ¢ tended towards 1, than o would tend 1 (that is b_T“, where a = —1

and b = 1), so the maximal value of o with the property from Theorem 10 is
b—a
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