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ON A MEAN VALUE THEOREM CONNECTED WITH
HERMITE-HADAMARD’S INEQUALITY
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Abstract. In this paper we prove a mean-value theorem for integral calculus,
then we demonstrate properties of the mean point. In the end we give an exten-
sion of Hermite-Hadamard’s inequality.
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1. INTRODUCTION

In this article, we will give two interpolations of the Hermite-Hadamard’s
inequality. We start from:

Theorem 1 (Hermite-Hadamard). Let f : [a, b]→ R be a convex function.
Then

(1) f
(
a+b

2

)
≤ 1

b−a

∫ a

b
f(x)dx ≤ f(a)+f(b)

2 .

For the proofs we refer to [3] or [8].

2. PRELIMINARIES

It is known that if a < b, then x ∈ [a, b] iff there exists t ∈ [0, 1] such that
x = (1 − t)a + tb, and if x1, x2 ∈ [a, b], x1 ≤ x2 are symmetrical with respect
to the middle point of the interval [a, b] iff there exists c ∈

[
0, b−a2

]
such that

x1 = a+b
2 − c and x2 = a+b

2 + c.

Lemma 2. Let [a, b], a < b, be an interval. The points x1, x2 ∈ [a, b],
x1 ≤ x2 are symmetrical with respect to the middle point of the interval [a, b]
iff there exists t ∈

[
0, 1

2

]
, such that x1 = (1− t)a+ tb, and x2 = (1− t)b+ ta.

Proof. Let t =
b−a

2 −c
b−a = 1

2 −
c
b−a . It can be checked that t ∈

[
0, 1

2

]
, and

that x1 = (1 − t)a + tb, x2 = (1 − t)b + ta. Reciprocally, it is proved that
x1+x2

2 = a+b
2 . �
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3. MAIN RESULTS

Theorem 3. Let f : [a, b]→ R be a convex function. Then the function

g :
[
0, b−a2

]
→ R, g(x) = f

(
a+b

2 − x
)

+ f
(
a+b

2 + x
)
, ∀ x ∈

[
0, b−a2

]
is increasing on

[
0, b−a2

]
.

Proof. Let 0 ≤ x1 < x2 ≤ b−a
2 . Then

a ≤ a+b
2 − x2 <

a+b
2 − x1 ≤ a+b

2 + x1 <
a+b

2 + x2 ≤ b,

and considering Lemma 2, we find that there exists t ∈ (0, 1
2) so that a+b

2 −
x1 = (1 − t)

(
a+b

2 − x2
)

+ t
(
a+b

2 + x2
)
, and a+b

2 + x1 = (1 − t)
(
a+b

2 + x2
)

+

t
(
a+b

2 − x2
)
.

Considering these relations and by use of the fact that function f is convex,
we obtain

f
(
a+b

2 − x1
)

= f
(
(1− t)

(
a+b

2 − x2
)

+ t
(
a+b

2 + x2
))

≤ (1− t)f
(
a+b

2 − x2
)

+ t f
(
a+b

2 + x2
)
,

so
f
(
a+b

2 − x1
)
≤ (1− t)f

(
a+b

2 − x2
)

+ t f
(
a+b

2 + x2
)
.

Analogously,

f
(
a+b

2 + x1
)
≤ (1− t)f

(
a+b

2 + x2
)

+ t f
(
a+b

2 − x2
)
.

Adding the above relations, we obtain

f
(
a+b

2 − x1
)

+ f
(
a+b

2 + x1
)
≤ f

(
a+b

2 − x2
)

+ f
(
a+b

2 + x2
)
,

that is g(x1) ≤ g(x2). So, the function g is increasing on
[
0, b−a2

]
. �

Lemma 4. Let f : [a, b] → R be a continuous function on [a, b] with the
property that

∫ b
a f(x)dx = 0. Then there exists α ∈

(
0, b−a2

)
, such that

(2) f
(
a+b

2 − α
)

+ f
(
a+b

2 + α
)

= 0 .

Proof. Let F : [0, 1]→ R be the function defined by F (t) =
∫ ta+(1−t)b

(1−t)a+tb f(x)dx.
We have F (0) = F

(
1
2

)
= F (1) = 0. Since f is a continuous function, it

results that F is a Rolle function.
Applying Rolle’s theorem to function F on the intervals

[
0, 1

2

]
and

[
1
2 , 1

]
,

we obtain that there exists c1 ∈
(
0, 1

2

)
, c2 ∈

(
1
2 , 1

)
such that

(3) F ′(c1) = F ′(c2) = 0 .
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We have F ′(t) = f
(
ta+ (1− t)b

)
(a− b)− f

(
(1− t)a+ tb

)
(b− a), and so we

have that F ′(t) = (a− b)
[
f
(
ta+ (1− t)b

)
+ f

(
(1− t)a+ tb

)]
.

Then from (3) we have
(4) f

(
cka+ (1− ck)b

)
+ f

(
(1− ck)a+ ckb

)
= 0 , k ∈ {1, 2} .

Since ck 6= 1
2 , k ∈ {1, 2}, it follows that cka + (1 − ck)b 6= a+b

2 , k ∈ {1, 2}.
As an observation, it is possible that c2 = 1 − c1. Consequently, from (4) we
have that there exists c ∈

(
0, 1

2

)
such that

(5) f
(
ca+ (1− c)b

)
+ f

(
(1− c)a+ cb

)
= 0 .

We have (1 − c)a + cb < ca + (1 − c)b, since this inequality is equivalent to
0 < (b− a)(1− 2c), where 0 < c < 1

2 .
Let α = (b−a)(1−2c)

2 = b−a
2 −c(b−a). Since 0 < c < 1

2 , it can be immediately
checked that 0 < α < b−a

2 and that a+b
2 − α = (1 − c)a + cb, a+b

2 + α =
ca+ (1− c)b.

Then, considering (5), we have that there exists α ∈
(
0, b−a2

)
such that (2)

holds. �

Theorem 5. If f : [a, b] → R is a continuous function on interval [a, b],
then there exists α ∈

(
0, b−a2

)
so that

(6) 1
2

[
f
(
a+b

2 − α
)

+ f
(
a+b

2 + α
)]

= 1
b−a

∫ b

a
f(x)dx .

Proof. Let g : [a, b] → R be the function g(x) = f(x) − 1
b−a

∫ b
a f(t)dt,

∀ x ∈ [a, b].
Since the function g is continuous on interval [a, b], and∫ b

a
g(x)dx =

∫ b

a

[
f(x)− 1

b−a

∫ b

a
f(t)dt

]
dx =

∫ b

a
f(x)dx−

∫ b

a
f(t)dt = 0,

are among the conditions of Lemma 4, there exists α ∈
(
0, b−a2

)
, such that

g
(
a+b

2 − α
)

+ g
(
a+b

2 + α
)

= 0. Replacing the function g, we obtain that[
f
(
a+b

2 − α
)
− 1

b−a

∫ b

a
f(t)dt

]
+
[
f
(
a+b

2 + α
)
− 1

b−a

∫ b

a
f(t)dt

]
= 0,

and there from comes (6). �

Lemma 6. Let n ∈ N, n ≥ 2. The equation
(

1
2 − x

)n
+
(

1
2 + x

)n
= 2

n+1

has one and only one solution on the interval
(
0, 1

2

)
.

Proof. Let f :
(
0, 1

2

)
→ R be the function defined by

f(x) =
(

1
2 − x

)n
+
(

1
2 + x

)n
− 2

n+1 .
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Then
f ′(x) = n

[(
1
2 + x

)n−1
−
(

1
2 − x

)n−1
]

and from the variation of function f , it results that the function f has only
one zero on the interval

(
0, 1

2

)
. �

Theorem 7. If the function f : [a, b] → R is continuous on the interval
[a, b], then ∀x ∈ (a, b], ∃ c(x) ∈

(
0, x−a2

)
, such that

(7) 1
2
[
f
(
a+x

2 − c(x)
)

+ f
(
a+x

2 + c(x)
)]

= 1
x−a

∫ x

a
f(t)dt.

Proof. We apply now Theorem 5 to the restriction of the function f on the
interval [a, x]. �

Theorem 8. We have the function f : [a, b] → R which verifies the condi-
tions:

(i) there exists a neighborhood V of the point a so that the function f is
n+ 1 times derivable on V ∩ [a, b], and f (n+1) is bounded on V ∩ [a, b],
where n ∈ N, n ≥ 2 is fixed;

(ii) f ′′(a) = f ′′′(a) = · · · = f (n−1)(a) = 0, n ≥ 3;
(iii) f (n)(a) 6= 0.
Then, for every x ∈ V ∩(a, b], the number c(x) ∈

(
a, x−a2

)
given by Theorem

7 has the property that there exists limx↘a
c(x)
x−a = l, l ∈

(
0, 1

2

)
, and l is the

unique solution of the equation

(8)
(

1
2 − l

)n
+
(

1
2 + l

)n
= 2

n+1 .

Proof. We consider the function F : V ∩ [a, b]→ R defined by

F (x) =
∫ x

a
f(t)dt− (x− a)f(a)− (x−a)2

2 f ′(a) , ∀x ∈ V ∩ [a, b] .

We calculate the limit

L = lim
x→a
x>a

F (x)
(x−a)n+1

= lim
x→a
x>a

f(x)−f(a)−(x−a)f ′(a)
(n+1)(x−a)n

= 1
n+1 lim

x→a
x>a

f ′(x)−f ′(a)
n(x−a)n−1 = · · ·

= 1
(n+1)·n·...·2 lim

x→a
x>a

f (n−1)(x)−f (n−1)(a)
x−a ,

so

(9) L = lim
x→a
x>a

F (x)
(x−a)n+1 = 1

(n+1)! f
(n)(a) .
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According to Taylor’s formula with the rest of Lagrange, for each
x ∈ V ∩ (a, b] there exists ξ1, ξ2,

a < ξ1 <
a+x

2 − c(x) < x, a < ξ2 <
a+x

2 + c(x) < x ,

so that

f
(
a+x

2 − c(x)
)

= f(a) +
n∑
k=1

( x−a
2 −c(x))k

k! f (k)(a) + ( x−a
2 −c(x))n+1

(n+1)! f (n+1)(ξ1)

and

f
(
a+x

2 + c(x)
)

= f(a) +
n∑
k=1

( x−a
2 +c(x))k

k! f (k)(a) + ( x−a
2 +c(x))n+1

(n+1)! f (n+1)(ξ2) ,

from where, considering (ii) it results that

1
2
[
f
(
a+x

2 − c(x)
)

+ f
(
a+x

2 + c(x)
)]

=(10)

= f(a) + x−a
2 f ′(a) + 1

2

(
x−a

2 −c(x)
)n

+
(
x−a

2 +c(x)
)n

n! f (n)(a)+

+ 1
2

(
x−a

2 −c(x)
)n+1

(n+1)! f (n+1)(ξ1) + 1
2

(
x−a

2 +c(x)
)n+1

(n+1)! f (n+1)(ξ2) .

From relation 0 < c(x) < x−a
2 , it results that lim

x→a
x>a

c(x) = 0, so

(11) lim
x→a
x>a

(
x−a

2 − c(x)
)

= 0 , lim
x→a
x>a

(
x−a

2 + c(x)
)

= 0 ,

and 0 < c(x)
x−a < 1

2 , ∀x ∈ V ∩ (a, b], from where we obtain that
1
2 <

1
2 + c(x)

x−a < 1 , 0 < 1
2 −

c(x)
x−a <

1
2 , ∀x ∈ V ∩ (a, b].

So the functions x→ 1
2 −

c(x)
x−a , 1

2 + c(x)
x−a are bounded on V ∩ (a, b] and con-

sidering the condition (i), it results that the functions
(

1
2 −

c(x)
x−a

)n
f (n+1)(ξ1) ,(

1
2 + c(x)

x−a

)n
f (n+1)(ξ2) are also bounded on V ∩ (a, b]. From these observation

and from (11), it results that

(12) lim
x→a
x>a

(
x−a

2 − c(x)
) (1

2 −
c(x)
x−a

)n
f (n+1)ξ1) = 0

and

(13) lim
x→a
x>a

(
x−a

2 + c(x)
) (1

2 + c(x)
x−a

)n
f (n+1)(ξ2) = 0 .
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Considering (7) and (10), we have

L = lim
x→a
x>a

F (x)
(x−a)n+1

= 1
2 lim

x→a
x>a

(
x−a

2 −c(x)
)n

+
(
x−a

2 +c(x)
)n

n! f (n)(a)+
(x−a)n

+

(
x−a

2 −c(x)
)n+1

(n+1)! f (n+1)(ξ1)+

(
x−a

2 +c(x)
)n+1

(n+1)! f (n+1)(ξ2)
(x−a)n =

= 1
2 lim

x→a
x>a

[( 1
2−

c(x)
x−a

)n
+
(

1
2 + c(x)

x−a

)n

n! f (n)(a)

+ 1
(n+1)!

(
x−a

2 − c(x)
)(1

2 −
c(x)
x−a

)n
f (n+1)(ξ1)

+ 1
(n+1)!

(
x−a

2 + c(x)
)(1

2 + c(x)
x−a

)n
f (n+1)(ξ2)

]
and using (12) and (13), we obtain

(14) L= lim
x→a
x>a

F (x)
(x−a)n+1 = f (n)(a)

2n! lim
x→a
x>a

[(
1
2−

c(x)
x−a

)n
+
(

1
2 + c(x)

x−a

)n]
.

We shall prove that there exists limx↘a
c(x)
x−a . Assuming the contrary that

this limit does not exist, then there exist two sequences (xm)m≥0, (ym)m≥0,
xm, ym ∈ V ∩ (a, b], ∀m ∈ N, so that limm→∞ xm = limm→∞ ym = a,
limm→∞

c(xm)
xm−a = l1 ∈

(
0, 1

2

)
, limm→∞

c(ym)
ym−a = l2 ∈

(
0, 1

2

)
and l1 6= l2.

From (iii), (9) and (14) it results that(
1
2 − l1

)n
+
(

1
2 + l1

)n
=
(

1
2 − l2

)n
+
(

1
2 + l2

)n
= 2

n+1 ,

and considering Lemma 6, we have l1 = l2, which is a contradiction.
Since we proved that there exists limx↘a

c(x)
x−a , from (iii), (9) and (14), we

obtain that l verifies (8). Also considering Lemma 6, Theorem 8 is proved. �

Corollary 9. In the conditions of Theorem 8, for n = 2, we obtain that
l = limx↘a

c(x)
x−a = 1

2
√

3 , and for n = 4, we obtain that l = limx↘a
c(x)
x−a =√

2
√

70−15
20 .

Example. Let 0 < a and f : [a, b]→ R be the function f(x) = 1
x . Accord-

ing to Theorem 7, ∀x ∈ (a, b], ∃ c(x) ∈
(
0, x−a2

)
which verifies (7), and from

this we obtain that
c(x) =

√(
x+a

2
)2 − x2−a2

2 ln xa
.

According to Corollary 9, limx↘a
c(x)
x−a = 1

2
√

3 . �
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Theorem 10. Let f : [a, b] → R be a convex function, f is continu-
ous on the right at a and continuous on the left at b. Then there exists
α ∈

(
0, b−a2

)
so that ∀x ∈ [0, α], ∀y ∈

[
α, b−a2

]
, we have

f
(
a+b

2

)
≤1

2

[
f
(
a+b

2 − x
)

+ f
(
a+b

2 + x
)]

(15)

≤1
2

[
f
(
a+b

2 − α
)

+ f
(
a+b

2 + α
)]

= 1
b−a

∫ b

a
f(t)dt

≤1
2

[
f
(
a+b

2 − y
)

+ f
(
a+b

2 + y
)]

≤1
2 [f(a) + f(b)] .

Proof. Since f is a convex function on interval [a, b], it results that f is
continuous on (a, b), and since f is continuous on the right at a and continuous
on the left at b, we know that f is continuous on interval [a, b]. Next Theorem
3 and Theorem 5 are to be applied. �

Remarks. Theorem 10 is an extension and refinement of Hermite-Hada-
mard’s inequality. �

Next, we will show that the maximal value of α with the property from
Theorem 5, is αmax = b−a

2 .
Example. Let f : [−1, 1]→ R be the function defined by

fc(x) =


− 1

1−c x−
c

1−c , x ∈ [−1,−c)
0 , x ∈ [−c, c ]

1
1−c x−

c
1−c , x ∈ (c, 1],

where c ∈ [0, 1).
We have that 1

2
∫ 1
−1 fc(x)dx = 1−c

2 , and 1
2 [fc(−x) + fc(x)] = 0, ∀x ∈ [0, c].

We determine α on interval (c, 1). We have 1
2 [fc(−α) + fc(α)] =

∫ 1
−1 fc(t)dt,

equivalent to α
1−c −

c
1−c = 1−c

2 , from which we have α = 1+c2

2 .
If c tended towards 1, than α would tend 1 (that is b−a

2 , where a = −1
and b = 1), so the maximal value of α with the property from Theorem 10 is
α = b−a

2 . �

REFERENCES

[1] Beckenbach, E. F. and Bellman, R., Inequalities, Springer-Verlag, Berlin-Götingen-
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integrala Riemann, Lucrările Seminarului de Creativitate Matematică, Universitatea de
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