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LEAST SQUARES PROBLEM
FOR LINEAR INEQUALITIES WITH BOUNDS ON THE VARIABLES

ELENA POPESCU∗

Abstract. In [2] S.P. Han proposed a method for finding a least-squares solution
for systems of linear inequalities. Additional information about the real world
problem may take the form of additional inequalities. A common case is when
the variables are restricted to lie in certain prescribed intervals. A method for
this very important case is the subject of this paper.
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1. INTRODUCTION

Consider the system of linear inequalities
(1) Ax ≤ b,
where A ∈ Mm×n, b ∈ Rm, x ∈ Rn. When the system is inconsistent, we are
interested in vectors that satisfy the system (1) in a least-squares (LS) sense,
that is, vectors x ∈ Rn solving
(2) min 1

2‖(Ax− b)+‖22,
where ‖ ·‖ stands for the Euclidean norm in Rm and (Ax−b)+ is the m-vector
whose i-th component is max {(Ax− b)i, 0}. The linear least squares problem
of equalities has always enjoyed a lot of attention from researchers (see [1]).

We are concerned with LS problem (2) of inequalities when the components
of x are within meaningful intervals:
(3) li ≤ xi ≤ ui, i = 1, ..., n.
A vector which verifies the constraints (3) will be called a feasible point.

In paper [3] we have worked out an algorithm for solving convex programs
subject to box constraints. In this paper we have applied the algorithm to
solve the problem (2) with (3).

The method proposed proceeds by solving a finite number of smaller un-
constrained subproblems, such a subproblem having the form of least squares
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minimization over a linear subspace. Is an adaptive method for determining
the constraints that are active at optimal solution x̂, i.e. the components of x̂
that are exactly at one of their bounds. The method considered develops on
two levels. At each iteration of a higher level (it will be called major iteration)
it is decided which variables are fixed at one of its bounds and which one are
free, that is, strictly between its bounds.

At lower level, a least squares subproblem is solved at a time, only in the
subspace of the free variables while keeping the fixed variables unchanged.
The iterations of this subproblem will be called minor iterations. The starting
point for the minor iterations is a feasible point given by the current major
iteration.

Consider the following problem:

(4)
{

min f(x)
li ≤ xi ≤ ui, i = 1, ..., n,

where f is the convex differentiable function

(5) f(x) = 1
2(Ax− b)T

+(Ax− b)+.

Its gradient is

(6) ∇f(x) = AT(Ax− b)+.

For any feasible point x, we use Nl(x) and Nu(x) to denote the sets of indices
for which the corresponding components of the point x are fixed at one of its
bounds, that is:

Nl(x) = {i : xi = li}

Nu(x) = {i : xi = ui}
and N(x) = Nl(x) ∪Nu(x).

If x̂ is an optimal point for problem (4) then it is also optimal for “restraint”
problem: {

min f(x)
li ≤ xi ≤ ui, i ∈ N(x̂).

If we can determine the sets Nl(x̂) and Nu(x̂), we can solve the “restraint”
problem with constraints taken as equalities:

min f(x)
xi = li, i ∈ Nl(x̂)
xi = ui, i ∈ Nu(x̂).

Consider the subproblem

(7)


min f(x)
xi = li, i ∈ Np

l
xi = ui, i ∈ Np

u .
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Assume that F p is the complement of Np = Np
l ∪ Np

u , that is, the set of
indices of free variables at major iteration p. We also assume without loss of
generality, that

F p = {1, ..., q}.
Then we have the following partitions:

x =
(
z

z̄

)
, A = (C D),

where the subvector z contains the first q components of x (the free part), while
z̄ contains the last n− q components (the fixed part). The matrix C ∈Mm×q

contains the first columns of A.
The subproblem (7) then reduces to finding a vector z(p) ∈ Rq solving

(8) min
z∈Rq

1
2‖(Cz − d)+‖22

where
d = b−Dz̄.

From practical point of view, (8) is an unconstrained problem with q free
variables.

Then, returning to the n-dimensional space, the optimal point for (7) is

yp =
(
z(p)

z̄

)
.

2. SOLVING THE SUBPROBLEM IN THE FREE VARIABLE

For solving the least squares subproblem (8), we have chosen to use the
S.-P. Han algorithm [2] with modification that the iterations of the algorithm
(minor iterations) are stopped as soon as one or more of the free variables
violate their bounds. The starting point for minor iterations is given by the
current major iteration.

The Han’s method has a finite convergence property.
The function

g(z) = 1
2‖(Cz − d)+‖22

is differentiable and convex and its gradient is:
∇g(z) = CT(Cz − d)+.

The necessary and sufficient condition for an q-vector ẑ to be a least squares
solution of the system
(9) Cz ≤ d
is
(10) ∇g(ẑ) = 0.

Condition (10) may be called the normal equation of the system (9) because
it is analogous to the normal equation for the equality case.
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In [2] it is pointed that a least squares solution of (9) exists. The system
(9) may be also written as

cT
i z ≤ di, i ∈M = {1, 2, ...,m}

where cT
i forms the i-th row of the matrix C and di the i-th component of

d. For z ∈ Rq we use I(z) to denote the set of indices i ∈ M of active and
violated inequalities at z. That is,

I(z) = {i : cT
i z ≥ di}.

For I = I(z) we denote CI the submatrix of C that consists of rows whose
indices are in I, while the subvector dI is similarly defined.

Algorithm 1 (least squares solution of linear inequalities).
1. Initialization: z(0) ∈ Rq, (z(0) contains the free part of current major

iteration xp).
2. Typical step: Generate the direction

w̄ = C+
I (dI − CIz

(j)),

where I = I(z(j)) and C+
I is the pseudo-inverse of CI . Determine the

stepsize λ̄-the smallest minimizer of function:
θ(λ) = g(z(j) + λw̄).

Set
z(j+1) = z(j) + λ̄w̄.

In [2] it is pointed that the direction w̄ is a descendent direction for the
function g at z(j), more precisely:

∇g(z(j)) = −CT
I CIw̄.

If w̄ = 0, then from (10) z(j) is a least squares solution of (9). Else the process
is repeated until

‖CT(Cz(j) − d)+‖ ≤ ε
or one or more of the components of z(j) violate their bounds.

The pseudo-inverse can be constructed by a singular value decomposition.
In any case, to compute w̄ it is not necessary to compute the pseudo-inverse
explicitly.

3. THE METHOD

Let yp be optimal for problem (7). It follows that there are Lagrange mul-
tipliers λi, i ∈ Np = Np

l ∪Np
u such that:

(11) ∇f(yp) +
∑

i∈Np
l

λie
i +

∑
i∈Np

u

λie
i = 0,

i.e. ∇f(yp) is expressed as unique linear combination of unit vectors ei =
(0, ..., 1i, ..., 0).
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If conditions
(12) li ≤ yp

i ≤ ui, i /∈ Np,

(13)
{
λi ≤ 0, i ∈ Np

l
λi ≥ 0, i ∈ Np

u

are satisfied, then yp is optimal solution for problem (4) (see [3]).
If

L = min
i∈Np

αiλi

with
αi =

{
−1, if i ∈ Np

l
1, if i ∈ Np

u

then condition (13) may be written as L ≥ 0.
From (6) and (11), Lagrange multipliers are calculated as it follows:

λi = −{AT(Ayp − b)+}i, i ∈ Np.

The method is briefly the following: suppose the starting feasible point x1 is
given; then we solve the subproblem

(14)


min f(x)
xi = li, i ∈ Nl(x1)
xi = ui, i ∈ Nu(x1)

and let y1 be optimal point for problem (14). We distinguish between two
possibilities.

The first case: y1 is feasible for problem (2)–(3) (i.e. li ≤ y1
i ≤ ui, i /∈

N(x1)); then:
x2 = y1.

If y1 is also optimal for problem (2)–(3), (i.e. L ≥ 0), the procedure stops.
If L < 0 then a subspace of a large dimension in considered, by releasing a

constraint (according to Proposition 2 and 3, from [3], a fixed variable leaves
a bound and becomes free) and a smaller value of f will be obtained.

The second case: y1 is not feasible for problem (2)–(3) (there exists i /∈
N(x1) such that y1

i < li or y1
i > ui), then let x2 be the feasible point closest

to y1 on the line segment between x1 and y1:
x2 = x1 + τ(y1 − x1),

where the scalar τ ∈ (0, 1) in determined such that
li ≤ x2

i ≤ ui, i = 1, ..., n
and x2 to be closest y1. At least one additional component r /∈ N(x1) of x2

hits one of their bounds. Then we solve the subproblem:
min f(x)
xi = li, i ∈ Nl(x2)
xi = ui, i ∈ Nu(x2).
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Algorithm 2 (suboptimization algorithm for LS problem with interval
constraints).

1. Initialization: x1 ∈ Rn a feasible point, N1
l = Nl(x1), N1

u = Nu(x1)
and N1 = N1

l ∪N1
u the sets of indices of the components of x1 that are

exactly at one of their bounds.
2. Typical Step: Solve the subproblem on the free variables keeping the

fixed variables

(15)
{
xi = li, i ∈ Np

l
xi = ui, i ∈ Np

u

unchanged, that is, determine z(p) optimal for
min
z∈Rq

1
2‖(Cz − d)+‖22.

Determine

yp =
(
z(p)

z̄

)
,

where z̄ contains the fixed part (15).
Case 1: yp is a feasible point
Determine

L = min
i∈Np

αiλi

with
αi =

{
−1, if i ∈ Np

l
1, if i ∈ Np

u

where λi are Lagrange multipliers associated with the bound con-
straints:

λi = −{AT(Ayp − b)+}i, i ∈ Np.

If L ≥ 0, STOP; yp is optimal for problem (2)–(3).
If L < 0, let i0 ∈ Np such that L = αi0λi0.
Define

Np+1
l =

{
Np

l \ {i0}, if i0 ∈ Np
l

Np
l , if i0 /∈ Np

l

Np+1
u =

{
Np

u \ {i0}, if i0 ∈ Np
u

Np
u , if i0 /∈ Np

u

Np+1 =Np \ {i0}
xp+1 =yp.

Go to 2 with p+ 1 replacing p.
Case 2: yp is not a feasible point.
Determine xp+1 the feasible point closest to yp on the line between
xp and yp. Define

Np+1
l = Nl(xp+1)



7 Least squares problem for linear inequalities with bounds on the variables 235

Np+1
u = Nu(xp+1)

Np+1 = Np+1
l ∪Np+1

u .

Go to 2 with p+ 1 replacing p.

The algorithm is a finite process because solves a finite number of subprob-
lems and each subproblem is solved in a finite number of iterations.
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2000.

Received by the editors: December 11, 1998.


	1. INTRODUCTION
	2. Solving the subproblem in the free variable
	3. The method
	References

