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A NOTE ON THE SOLVABILITY
OF THE NONLINEAR WAVE EQUATION
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Dedicated to Professor Elena Popoviciu on the occasion of her 80th birthday.

Abstract. New existence and localization results for the nonlinear wave equa-
tion are established by means of the Schauder fixed point theorem. The main
idea is to handle two equivalent operator forms of the wave equation, one of fixed
point type giving the operator to which the Schauder theorem applies and an
other one of coincidence type for the localization of a solution.

MSC 2000. 35L70, 47J35, 47H10.
Keywords. Nonlinear wave equation, nonlinear operator, localization.

1. INTRODUCTION

We shall discuss the existence and localization of solutions for the nonlinear
problem

(1)


−u′′ (t) + ∆u (t)−mu (t) = f (t, u (t)) , t ∈ [0, T ]
u (0) = u (T ) = 0
u ∈ C

(
[0, T ] ;H1

0 (Ω)
)
∩ C2 ([0, T ] ;H−1 (Ω)

)
.

Here 0 < T <∞, Ω ⊂ Rn is a bounded open subset, m > −λ1 (λ1 is the first
eigenvalue corresponding to −∆ and to the homogenous Dirichlet boundary
condition) and f : [0, T ]× R→ R.

Here are some notations which will be used in what follows. For a bounded
and open set Ω ⊂ Rn, 1 ≤ p < ∞ and 0 < T < ∞, we consider the space
Lp (Ω) with norm |u|p = (

∫
Ω |u (x)|p dx)1/p and the space C ([0, T ] ;Lp (Ω))

with norm |.|∞,p defined by

|u|∞,p = max
t∈[0,T ]

|u (t)|p .

The space H−1 (Ω) is the dual of the Sobolev space H1
0 (Ω) . We recall that

H1
0 (Ω) ⊂ Lp (Ω) and Lq (Ω) ⊂ H−1 (Ω) (with continuous imbeddings) for
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1 ≤ p ≤ 2∗ = 2n
n−2 and q ≥ (2∗)′ = 2n

n+2 if n ≥ 3 and for all p, q ≥ 1 if n = 1 or
n = 2.

Let A : D (A)→ C
(
[0, T ] ;H−1 (Ω)

)
be given by

(Au) (t) = −u′′ (t) .
Here D (A) =

{
u ∈ C2 ([0, T ] ;H−1 (Ω)

)
: u (0) = u (T ) = 0

}
.

Clearly A is invertible and(
A−1v

)
(t) =

∫ T

0
g (t, s) v (s) ds, v ∈ C

(
[0, T ] ;H−1 (Ω)

)
where g is the Green’s function of the differential operator A with respect to
the boundary condition u (0) = u (T ) = 0, i.e.

g (t, s) =


s(T−t)
T , 0 ≤ s ≤ t ≤ T

t(T−s)
T , 0 ≤ t ≤ s ≤ T.

Notice that for every subinterval [a, b] of [0, T ] , 0 < a < b < T, g satisfies the
following upper and lower inequalities

g (t, s) ≤ g (s, s) for t ∈ [0, T ] and s ∈ [0, T ](2)
ka,bg (s, s) ≤ g (t, s) for t ∈ [a, b] and s ∈ [0, T ] .

Here ka,b = min
{
a
T ,

T−b
T

}
. Obviously 0 < ka,b < 1. In what follows we shall

also use the notation
g∗a,b = max

t∈[0,T ]

∫ b

a
g (t, s) ds.

Clearly g∗a,b ≥ ka,b
∫ b
a g (s, s) ds > 0.

Let B : H1
0 (Ω)→ H−1 (Ω) be defined by

Bu = −∆u+mu, u ∈ H1
0 (Ω) .

Since m > −λ1, B is invertible and its inverse B−1 is a linear continuous and
positive (by the maximum principle) operator.

Basic theory on the non-homogenous linear wave equation (see [2] and
[4]) guarantees that the operator A − B from C

(
[0, T ] ;H1

0 (Ω)
)
∩ D (A) to

C
(
[0, T ] ;H−1 (Ω)

)
is invertible and its inverse (A−B)−1 is a linear opera-

tor, completely continuous from C
(
[0, T ] ;H−1 (Ω)

)
to C([0, T ] ; Lp (Ω)) for

(2∗)′ ≤ p < 2∗ if n ≥ 3 and any p ≥ 1 if n = 1 or n = 2.
One can check that the following equality is true(

B−1 −A−1
)−1

= (A−B)−1BA

for operators acting from C2 ([0, T ] ;H1
0 (Ω)

)
to the space C

(
[0, T ] ;H1

0 (Ω)
)

∩C2([0, T ] ; H−1 (Ω)).
Let F : C

(
[0, T ] ;H1

0 (Ω)
)
→ C

(
[0, T ] ;H−1 (Ω)

)
be defined by

F (u) (t) = f (t, u (t)) .
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Now solving (1) is equivalent to the problem

(A−B)u = F (u) , u ∈ C
(
[0, T ] ;H1

0 (Ω)
)
∩D (A)

which can be written under the form
(3) u = (A−B)−1 F (u)
or equivalently as

(4)
(
B−1 −A−1

)
u = A−1B−1F (u) .

Under suitable conditions on F, the complete continuity of (A−B)−1 implies
that the nonlinear operator N := (A−B)−1 F associated to the right hand
side of equation (3) is completely continuous. Hence equation (3) gives us the
operator to which Schauder’s Theorem applies. On the other hand, the upper
and lower inequalities (2) for the Green’s kernel in A−1 make equation (4)
useful for the localization of a solution of (3).

2. NONLINEARITIES WITH SUBLINEAR GROWTH

The first result is concerned with nonlinearities f (t, u) having a sublinear
growth in u.

Theorem 1. Let f : [0, T ]× R→ R be continuous with a sublinear growth
in its second variable, i.e.
(5) |f (t, u)| ≤ c+ d |u|γ , t ∈ [0, T ] , u ∈ R

for some c, d > 0 and γ > 0 with n−2
n+2 ≤ γ < 1. Then problem (1) has a

least one solution. If in addition, f ≥ 0 and there exists an interval [a, b] with
0 < a < b < T and a number σ with
(6) 0 < σ ≤ f (t, u) , t ∈ [a, b] , u ∈ R

then problem (1) has at least one solution u such that

(7)
∣∣∣(B−1 −A−1

)
u
∣∣∣
∞,q
≥

σ g∗a,b |ϕ1|q
(λ1 +m) |ϕ1|∞

.

Here q = 2∗ if n ≥ 3 and q is any number ≥ γ−1 if n = 1 or n = 2, and
ϕ1 > 0 is an eigenfunction of −∆ corresponding to the first eigenvalue λ1.

Proof. We shall apply Schauder fixed point theorem (see [1] and [3]). Let
p = γq. Notice that for n ≥ 3, from n−2

n+2 ≤ γ < 1 we have (2∗)′ ≤ p = γ2∗ < 2∗.
Let F : C ([0, T ] ;Lp (Ω))→ C ([0, T ] ;Lq (Ω)) be given by

F (u) (t) = f (t, u (t)) , u ∈ C ([0, T ] ;Lp (Ω)) , t ∈ [0, T ] .
From (5) we immediately see that F is well defined from C ([0, T ] ;Lp (Ω)) to
C ([0, T ] ;Lq (Ω)) and
(8) |F (u) (t)|q ≤ c

∗ + d |u (t)|γp , t ∈ [0, T ] .
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Here c∗ = c |1|q . Consequently, F sends bounded subsets of C ([0, T ] ;Lp (Ω))
into bounded sets of C ([0, T ] ;Lq (Ω)) . Also the continuity of f guarantees
that F is continuous. It follows that N is completely continuous from the
space C ([0, T ] ;Lp (Ω)) to itself.

Also, if we let | (A−B)−1 | be the norm of the operator (A−B)−1 from
C ([0, T ] ;Lq (Ω)) to C ([0, T ] ;Lp (Ω)) and we use (8), we obtain

(9) |N (u) |∞,p ≤ | (A−B)−1 |
(
c∗ + d |u|γ∞,p

)
.

Hence, for u ∈ C ([0, T ] ;Lp (Ω)) with |u|∞,p ≤ R, we have

|N (u)|∞,p ≤
∣∣ (A−B)−1 ∣∣ (c∗ + dRγ) .

Now since γ < 1, we can choose R > 0 sufficiently large that∣∣ (A−B)−1 ∣∣ (c∗ + dRγ) ≤ R.

Thus

(10) |u|∞,p ≤ R implies |N (u)|∞,p ≤ R

and so Schauder’s fixed point theorem applies proving the existence of a solu-
tion.

Assume that the additional hypothesis is satisfied. It is well known that
any eigenfunction of −∆ is bounded on Ω, so 0 < ϕ1 (x) ≤ |ϕ1|∞ <∞ for all
x ∈ Ω. Then

0 < σ
|ϕ1|∞

ϕ1 (x) ≤ σ, x ∈ Ω.

This, together with −∆ϕ1 + mϕ1 = (λ1 +m)ϕ1 and the positivity of B−1,
guarantees that

B−1σ ≥ σ
|ϕ1|∞

B−1ϕ1 = σ
|ϕ1|∞(λ1+m) ϕ1.

As a result

(11)
∣∣∣B−1σ

∣∣∣
q
≥ σ
|ϕ1|∞(λ1+m) |ϕ1|q .

Let u be a solution and let t∗ ∈ [0, T ] be such that g∗a,b =
∫ b
a g (t∗, s) ds. Then(

B−1 −A−1
)
u (t∗) =

(
B−1 −A−1

)
N (u) (t∗)

=A−1B−1F (u) (t∗)

=
∫ T

0
g (t∗, s)B−1F (u) (s) ds

≥
∫ b

a
g (t∗, s)B−1F (u) (s) ds

≥
∫ b

a
g (t∗, s)B−1σds = g∗a,bB

−1σ.



5 Nonlinear Wave Equation 241

This together with (11) implies∣∣∣(B−1 −A−1
)
u (t∗)

∣∣∣
q
≥ g∗a,b σ

|ϕ1|∞(λ1+m) |ϕ1|q .

Therefore, (7) holds. �

Remark 1. The assumption γ ≥ n−2
n+2 is not essential since γ can always be

increased by changing c in (5) correspondingly.

3. NONLINEARITIES WITH SUBCRITICAL SUPERLINEAR GROWTH

For the next result we assume that f (t, u) has a subcritical superlinear
growth in u.

Theorem 2. Let f : [0, T ] × R → R be continuous and satisfies (5) for
some c, d > 0, 1 ≤ γ < 2∗ − 1 = n+2

n−2 if n ≥ 3 and 1 ≤ γ < ∞ if n = 1
or n = 2. Let

∣∣B−1∣∣ denotes the norm of operator B−1 from Lr (Ω) to Lq (Ω)
where r = (2∗)′ , q = 2∗ if n ≥ 3 and r ≥ 1, q ≥ 1 in case that n = 1 or n = 2.
Denote c∗ = c |1|r . Assume that there exists R > 0 such that

(12)
∣∣∣B−1

∣∣∣ (c∗ + dRγ) ≤ R.

Then problem (1) has at least one solution u with |u|∞,p ≤ R.
If the additional assumption on f in Theorem 1 holds, then the solution u

satisfies (7).

Proof. Let p = γr. Notice that for n ≥ 3, from 1 ≤ γ < 2∗ − 1 = 2∗
(2∗)′ , we

have (2∗)′ ≤ p = γ (2∗)′ < 2∗.
Let F : C ([0, T ] ;Lp (Ω))→ C ([0, T ] ;Lr (Ω;R+)) be given by

F (u) (t) = f (t, u (t)) , u ∈ C ([0, T ] ;Lp (Ω)) , t ∈ [0, T ] .

From (5) we immediately see that F is well defined from C ([0, T ] ;Lp (Ω)) to
C ([0, T ] ;Lr (Ω)) and

(13) |F (u) (t)|r ≤ c
∗ + d |u (t)|γp , t ∈ [0, T ] .

Here again c∗ = c |1|r . As in the proof of the previous theorem, N is completely
continuous from C ([0, T ] ;Lp (Ω)) to itself and satisfies (9). Here | (A−B)−1 |
stands for the norm of the operator (A−B)−1 from the space C ([0, T ] ;Lr (Ω))
to C ([0, T ] ;Lp (Ω)) . Consequently (10) holds for R given by (12). The rest
of the proof is identical to that of Theorem 1. �

In [5] we use a similar technique in order to obtain existence, localization
and multiplicity results for the nonlinear wave equation, via Krasnoselskii’s
compression-expansion fixed point theorem in cones.
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