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LOCAL-GLOBAL EFFICIENCY PROPERTIES FOR
MULTIOBJECTIVE MAX-MIN PROGRAMMING
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Abstract. The purpose of this paper is to give sufficient conditions of general-
ized concavity and convexity type for a local (weakly) max-min efficient solution
to be a global (weakly) max-min efficient solution for an vector maxmin pro-
gramming problem.

In the particular case of the vector max-min pseudomonotonic programming
problem, we derive some characterizations properties of max-min efficient and
properly max-min efficient solutions .
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1. INTRODUCTION

The aim of this paper is to derive sufficient conditions of generalized con-
cavity type for a local (weakly) max-min efficient solution to be a global
(weakly) max-min efficient solution for an vector max-min set-valued pro-
gramming problem.

Let X ⊂ Rn Y ⊂ Rmand Q : X × Y −→ Rp be a vectorial function defined
on X × Y.

The multiobjective max-min programming problem under consideration is
formulated as
(VMMP.) Vmax-min Q(x, y), subject to x ∈ X, y ∈ Y,

where the vector maximin “Vmax-min” will be understood in the sense of
efficiency that will be defined in different forms below in the next section.

The optimal solutions of the V MMP that we deal with include the concepts
of efficient, weakly efficient, local efficient and properly efficient solutions that
will be defined with respect to a semiorder relationship in Rp.

The paper is organized as follows. In Section 2 we introduce the notation
and definitions, which will be used throughout of the paper.
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In Section 3, we give sufficient conditions of generalized concavity type for
a local (weakly) efficient solution to be a global (weakly) efficient solution of
a V MMP .

In Section 4, for the particular case of the vector max-min pseudomonotonic
programming problem, we obtain some characterizations properties of efficient
and properly efficient solutions.

Some concluding remarks are made in the last section.

2. NOTATION AND DEFINITIONS

Next we recall some notations and concepts considered in [6] and introduce
some max-min efficiency concepts.

Let a, b ∈ Rp be arbitrary vectors in Rp. Then we consider the following
relations on the set Rp:

(i) a ≥ b if and only if ai ≥ bi, for any i ∈ J = {1, 2, ..., p},
(ii) a > b if and only if ai ≥ bi, for any i ∈ J and there is j ∈ J such that

aj > bj ,
(iii) a� b if and only if ai > bi, for any i ∈ J .
Next, we consider some classes of generalized concave functions (see, e.g.

[4], [2], [3], [6]).

Definition 1. Let F : X −→ Rp be a vector function, where X is a convex
non-empty set in Rs. We say that F is:

a) quasiconcave if for any x′, x′′ ∈ X and t ∈ (0, 1), we have F (tx′+ (1−
t)x′′) ≥ Min(F (x′), F (x′′)),

b) semistrictly quasiconcave if for any x′, x′′ ∈ X such that F (x′) 6=
F (x′′), we have F (tx′ + (1 − t)x′′) > Min(F (x′), F (x′′)), for each t ∈
(0, 1),

c) semiexplicitly quasiconcave if it is quasiconcave and semistrictly qua-
siconcave,

d) strictly quasiconcave if for all x′, x′′ ∈ X such that F (x′) 6= F (x′′) ,
we have F (tx′ + (1− t)x′′)� Min(F (x′), F (x′′)), for each t ∈ (0, 1),

e) explicitly quasiconcave if it is quasiconcave and strictly quasiconcave,
f) quasiconvexe, semi strictly quasiconvex, semiexplicitly quasiconvex,

strictly quasiconvex and explicitly quasiconvex if (−F ) is quasicon-
cave, semistrictly quasiconcave, semiexplicitly quasiconcave, strictly
quasiconcave and explicitly quasiconcave respectively.

Obviously, from Definition 1, F is semiexplicitly quasiconcave if it is explic-
itly quasiconcave. However, the converse is not true (see, e.g. [2]).

Definition 2. Let D be an open convex set D ⊆ Rn.
i) A differentiable function f : D → R is pseudoconvex if

∇f(x)(y − x) ≥ 0 =⇒ f(y) ≥ f(x),∀x, y ∈ D,

where ∇f(x) is the gradient of the function f on the point x.
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ii) The differentiable function f : D → R is called pseudomonotonic if f
and −f are pseudoconvex.

Next we consider for Problem MSV P some efficiency concepts based on
the semiorder relationships presented above (see, (i)–(iii)).

Definition 3. A point (x, y) ∈ X × Y is said to be a max-min efficient
solution to Problem V MMP if there does not exist x ∈ X such that Q(x, y) >
Q(x, y) (that is, x is a maximum-efficient solution for Q(·, y) on X) and there
does not exist y ∈ Y such that Q(x, y) > Q(x, y) (that is, y is a minimum-
efficient solution for Q(x, ·) on Y ).

Let MmE denote the set of all efficient max-min solutions to Problem
V MMP .

Definition 4. A point (x, y) ∈ X × Y is said to be a weakly max-min
efficient solution to Problem V MMP if there does not exist x ∈ X such that
Q(x, y)� Q(x, y) (that is x is a weakly maximum-efficient solution for Q(·, y)
on X) and there does not exist y ∈ Y such that Q(x, y)� Q(x, y) (that is, y
is a weakly minimum-efficient solution for Q(x, ·) on Y ).

Let MmWE denote the set of all max-min efficient solutions to Problem
V MMP .

Definition 5. i) A point (x, y) ∈ X×Y is said to be a local max-min
efficient solution to Problem V MMP if there does not exist x ∈ X ∩U
such that Q(x, y) > Q(x, y) (that is x is a local maximum-efficient
solution for Q(·, y) on X) and there does not exist y ∈ Y ∩V such that
Q(x, y) > Q(x, y) (that is y is a local minimum-efficient solution for
Q(x, ·) on Y ), for some neighborhoods U of x and V of y.

ii) A point (x, y) ∈ X × Y is said to be a local weakly max-min efficient
solution to Problem V MMP if there does not exist x ∈ X ∩ U such
that Q(x, y) � Q(x, y) (that is x is a local weakly maximum-efficient
solution for Q(·, y) on X) and there does not exist y ∈ Y ∩ V such
that Q(x, y) � Q(x, y) (that is, y is a local weakly minimum-efficient
solution for Q(x, ·) on Y ), for some neighborhoods U of x and V of y.

Let MmLE (MmLWE) denote the set of all local (weakly) max-min effi-
cient solutions to Problem V MMP .

Definition 6. Let Q(x, y) = (Q1(x, y), ..., Qp(x, y)), for any (x, y) ∈ X×Y.
A max-min efficient solution (x, y) ∈ X ×Y to Problem V MMP is said to be
a properly max-min efficient solution if there exists a scalar M > 0 such that:

i) for all i ∈ J and each x ∈ X, for which Qi(x, y) > Qi(x, y), there exists
j ∈ J − {i}, for which Qj(x, y) > Qj(x, y) and Qi(x,y)−Qi(x,y)

Qj(x,y)−Qj(x,y) ≤ M

(that is, x is a properly maximum-efficient solution for Q(·, y) on X);
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ii) for all i ∈ J and each y ∈ Y, for which Qi(x, y) < Qi(x, y), there exists
j ∈ J − {i}, for which Qj(x, y) > Qj(x, y) and Qi(x,y)−Qi(x,y)

Qj(x,y)−Qj(x,y) ≤ M

(that is, y is a properly minimum-efficient solution for Q(x, ·) on Y ).

Let MmPE denote the set of all properly efficient solutions to Problem
V MMP .

From Definition 6, it follows that (x, y) ∈ X × Y is a properly max-min
efficient solution to Problem V MMP if and only if x is a properly maximum-
efficient solution for Q(·, y) on X and y is a properly minimum-efficient solution
for Q(x, ·) on Y.

Obviously, from Definitions 3–6, we have the following relationship between
the different classes of optimal solutions of V MMP :

MmPE ⊂MmE ⊂MmWE,(1)
MmE ⊂MmLE,(2)

MmWE ⊂MmLWE,(3)
MmLE ⊂MmLWE.(4)

The efficiency notions given by Definitions 3-5 are analogous to that considered
for vector real valued objective functions in refs. [2], [3]. The proper efficiency
concept is a generalization of that introduced by Geoffrion [1].

3. SUFFICIENT CONDITIONS FOR LOCAL-GLOBAL EFFICIENCY PROPERTIES

We now generalize to vector max-min optimization problems a character-
ization of local efficient solutions obtained in Refs. [2], [3] for usual vector
optimization problems or for vector set-valued optimization problems [6]. A
similar result is given for local weakly efficient solutions.

We mention that some local-global efficiency properties for minimum-risk
problems was recently obtained by Tigan and Stancu-Minasian [5].

Given p ≥ 2 and X 6= ∅, X ⊆ Rnan arbitrary set, consider the function
f : X → Rp, f(x) = (f1(x), f2(x), . . . , fp(x)), ∀x ∈ X, where fi : X → R, for
any i ∈ J = {1, 2, . . . , p}.

Next, we need the following property due to Weber [7] which provide suffi-
cient conditions in order to a pseudo-monotonic multi-objective program has
“complete proper efficiency property”, that is any efficient solution to this
problem is also properly efficient.

Lemma 7. [7] Let fk (k ∈ {1, 2, . . . , p} be pseudo-monotonic functions twice
continuously differentiable on the open subset D ⊆ Rn and X be a polyhedral
set X ⊆ D. Then a point x′ ∈ X is maximum (minimum) efficient for
the pseudo-monotonic function f = (f1, f2, . . . , fp) on X if and only if it is
properly maximum (minimum) efficient.

Theorem 8. Let X ⊂ Rn and Y ⊂ Rm be given non-empty convex sets
and Q : X × Y −→ Rp be a vector function such that: (i) Q(·, y) : X −→
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Rp is semiexplicitly quasiconcave for any y ∈ Y ; (ii) Q(x, ·) : Y −→ Rp is
semiexplicitly quasiconvex for any x ∈ X. Then (x, y) ∈ X×Y is a local max-
min efficient solution to Problem V MMP if and only if (x, y) is a (global)
max-min efficient solution (i.e. MmE = MmLE).

Proof. From (2) we have MmE ⊂MmLE. To prove the converse inclusion,
assume to the contrary that (x, y) ∈ X×Y is a local max-min efficient solution
(with respect to the neighborhoods U of x and V of y), which is not a global
max-min efficient solution. This means that: (a) there exists x0 ∈ X such that
Q(x0, y) > Q(x, y) or (b) there exists y0 ∈ Y such that Q(x, y0) < Q(x, y). In
the case (a), since Q(·, y) is semiexplicitly quasiconcave, we have

(5) Q(tx0 + (1− t)x, y) > Q(x, y), for all t ∈ (0, 1).

But for t sufficiently close to zero, x(t) = tx0 + (1 − t)x will be in the neigh-
borhood U of x. But this shows by (5) and Definition 3 that (x, y) would not
be a local max-min efficient solution, which is a contradiction.

In the case (b), since Q(x, ·) is semiexplicitly quasiconvex, we have

(6) Q(x, ty0 + (1− t)y) < Q(x, y), for all t ∈ (0, 1).

But for t sufficiently close to zero, y(t) = ty0 + (1 − t)y will be in the neigh-
borhood V of y. But this shows by (6) and Definition 3 that (x, y) would not
be a local max-min efficient solution, which is a contradiction too.

Therefore, we proved that MmLE ⊂ MmE, which toogether with (2) im-
plies the equality MmE = MmLE. �

We supplement the result in Theorem 8 by a similar one for weakly efficient
solutions.

Theorem 9. Let X ⊂ Rn and Y ⊂ Rm be given non-empty convex sets and
Q : X × Y −→ Rp be a vector function such that:

(i) Q(·, y) : X −→ Rp is explicitly quasiconcave for any y ∈ Y ;
(ii) Q(x, ·) : Y −→ Rp is explicitly quasiconvex for any x ∈ X. Then

(x, y) ∈ X × Y is a local weakly max-min efficient solution to Problem
V MMP if and only if (x, y) is a (global) weakly max-min efficient
solution.

Proof. One can follow the lines of previous proof. To prove the nontrivial
implication, assume to the contrary that (x, y) ∈ X × Y is a local weakly
max-min efficient solution (with respect to the neighborhoods U of x and V of
y), which is not a global weakly max-min efficient solution. This means that:
(a) there exists x0 ∈ X such that Q(x0, y)� Q(x, y) or (b) there exists y0 ∈ Y
such that Q(x, y0) � Q(x, y). In the case (a), since Q(·, y) is semiexplicitly
quasiconcave, we have

(7) Q(tx0 + (1− t)x, y)� Q(x, y), for all t ∈ (0, 1).
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But for t sufficiently close to zero, x(t) = tx0 + (1 − t)x will be in the neigh-
borhood U of x. But this shows by (7) and Definition 4 that (x, y) would not
be a local max-min efficient solution, which is a contradiction.

In the case (b), since Q(x, ·) is semiexplicitly quasiconvex, we have

(8) Q(x, ty0 + (1− t)y)� Q(x, y), for all t ∈ (0, 1).

But for t sufficiently close to zero, y(t) = ty0 + (1 − t)y will be in the neigh-
borhood V of y. But this shows by (8) and Definition 4 that (x, y) would not
be a local max-min efficient solution, which is a contradiction too. �

Theorem 10. Let X ⊂ Rn and Y ⊂ Rm be given non-empty convex sets
and Q : X × Y −→ Rp be a vector function such that:

(i) Qi(·, y) : X −→ R is pseudomonotonic twice continuously differen-
tiable on the open subset D ⊆ Rn for any y ∈ Y and i = 1, 2, ..., p,
where X ⊂ D;

(ii) Qi(x, ·) : Y −→ R is pseudomonotonic twice continuously differentiable
on the open subset E ⊆ Rm for any x ∈ X and i = 1, 2, ..., p, where
Y ⊂ E.

Then (x, y) ∈ X ×Y is a max-min efficient solution to Problem V MMP if
and only if (x, y) is a properly max-min efficient solution.

Proof. From (1) we have MmPE ⊂ MmE. In order to prove the con-
verse inclusion, let (x, y) ∈ X × Y be a max-min efficient solution to Problem
V MMP. Then, by Definition 3, it follows that x is a maximum-efficient so-
lution for Q(·, y) on X and y is a minimum-efficient solution for Q(x, ·) on
Y. From hypothesis (i) and (ii), by Lemma 7, it follows that x is a properly
maximum-efficient solution for Q(·, y) on X and y is a properly minimum-
efficient solution for Q(x, ·) on Y. Then, by Definition 6, it result that (x, y) is
a properly max-min efficient solution to Problem V MMP. �

4. CONCLUSIONS

In this paper we obtained sufficient conditions implying generalized concav-
ity and convexity assumptions of the objective functions, in order to a local
(weakly) efficient solution be a global (weakly) efficient solution for an vector
max-min programming problem.

In the particular case of the vector pseudomonotonic max-min programming
problem, we derived some characterizations properties of efficient and properly
efficient solutions.
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