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ON β-DIFFERENTIABILITY OF NORMS∗
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Abstract. In this note we give some characterizations for the differentiability
with respect to a bornology of a continuous convex function. The special case of
seminorms is treated. A characterization of this type of differentiability in terms
of the subgradient of the function is also obtained.
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RESULTS

Let E and E1 be Banach spaces, U an open subset in E and x ∈ U. A
function f : U → E1 is said to be Gâteaux differentiable at x if there exists a
linear continuous mapping denoted df(x) : E → E1 such that for each h in E
one has

(1) df(x)(h) = lim
t→0+

1
t (f(x+ th)− f(x)).

The function f is said to be Fréchet differentiable at x if there exists a linear
continuous mapping denoted f ′(x) : E → E1 such that for each ε > 0, there
exists δ > 0 satisfying

(2) ‖f(x+ h)− f(x)− f ′(x)(h)‖ ≤ ε‖h‖, for each h ∈ BE(x, δ).

The two linear mappings df(x), f ′(x) are the Gâteaux and Fréchet differ-
entials and are unique (when they exist).

In the sequel, we shall be interested only by real functions (i.e. E1 = R).
When a real function f is also convex on an open convex set U ⊆ E, then
the limit in (1) exists and is denoted by d+f(x); this directional derivative is
generally only sublinear and the Gâteaux differentiability of f at x is equivalent
with the linearity of d+f(x), or with the fact that

d+f(x)(h) = −d+f(x)(−h) [=: d−f(x)(h)], for each h ∈ E.
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∗“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, 1 Kogălni-

ceanu St., 400084 Cluj-Napoca, Romania, e-mail: anisiu@math.ubbcluj.ro.

www.ictp.acad.ro/jnaat


142 Valeriu Anisiu 2

It is obvious that any Fréchet differentiable function is also Gâteaux dif-
ferentiable, and the two differentials coincide. The converse is not true, even
for convex functions. For example, the norm of the Banach space `1 is known
to be nowhere Fréchet differentiable, but it is Gâteaux differentiable at those
points (xn)n∈N having only nonzero components.

It is well known that the function f is Fréchet differentiable at x if and only
if it is Gâteaux differentiable at x and the limit (1) is uniform with respect
to h ∈ B[0, 1] (=the closed unit ball in E) or, equivalently, with respect to
any bounded subset of E. This remark allows a useful generalization of the
differentiability.

Let β be a nonempty family of bounded sets in E whose union is E, which
is directed with respect to ⊆ (i.e., for each B1, B2 ∈ β there exists B3 ∈ β
such that B1, B2 ⊆ B3) and is invariant under scalar multiplication. Such a
family is named bornology in Phelps’ monograph [3].

The function f is said to be β-differentiable at the point x if f is Gâteaux
differentiable at x and the limit (1) is uniform in h ∈ B for each B ∈ β.
This turns out to be equivalent with the convergence in the uniform struc-
ture Fβ(E,R). We shall denote by τβ the topology induced by this uniform
structure.

The following interesting special cases of a bornology arise (as pointed out
in [3]):

• β = G = the family of all finite subsets in E (generating the Gâteaux
differentiability);
• β = F = the family of all bounded subsets in E (generating the Fréchet

differentiability);
• β = H = the family of all compact subsets in E (generating the

Hadamard differentiability);
• β = W = the family of all weak compact subsets in E (generating the

strong Hadamard differentiability).
One obviously has the inclusions: G ⊆ β ⊆ F, G ⊆ H ⊆ W ⊆ F ; if f

is β2-differentiable and β1 ⊆ β2, then f is also β1-differentiable and the two
differentials coincide.

Theorem 1. Let f be a continuous convex function on an open convex
subset U in the normed space E and β a bornology on E. Then f is β-
differentiable at x ∈ U if and only if, for each B ∈ β, the limit

(3) lim
t→0+

1
t (f(x+ th) + f(x− th)− 2f(x)) = 0,

holds uniformly for h ∈ B.

Proof. Necessity. Let B be an arbitrary subset in β. Using (1) for B and
−B one obtains the equalities df(x)(h) = limt→0+

1
t (f(x + th) − f(x)) and

df(x)(−h) = limt→0+
1
t (f(x − th) − f(x)), which hold uniformly for h ∈ B;

by addition the desired conclusion follows.
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Sufficiency. Choose B ∈ β, ε > 0. Using the continuity of f, one can
select a subgradient x∗ ∈ ∂f(x). The hypothesis guarantees the existence of
a positive number δ such that f(x + th) + f(x − th) − 2f(x) < tε, for each
h ∈ B and t ∈ (0, δ). (B is bounded, so, for sufficiently small δ > 0 one has
x± th ∈ B.)

We have

〈x∗, th〉 ≤ f(x+ th)− f(x),
〈x∗,−th〉 ≤ f(x− th)− f(x),

and for 0 < t < δ, h ∈ B one obtains:

0 ≤f(x+ th)− f(x)− 〈x∗, th〉
=
(
f(x+ th) + f(x− th)− 2f(x)

)
+
(
f(x)− f(x− th)− 〈x∗, th〉

)
≤εt+ 0 = εt,

which implies that (1) holds uniformly for h ∈ B. �

Remark 1. a) For the Fréchet differentiability it is sufficient that the limit
(3) holds uniformly on the unit sphere SE ; for the Gâteaux differentiability,
the pointwise limit in (3) suffices.

b) The continuity condition imposed on the convex function f cannot be
omitted when E is infinite dimensional; in fact it is sufficient to consider a
linear discontinuous functional f (cf. [5, p. 251]); in this case, df(x) = f is
not continuous. �

Corollary 2. Let fn (n ∈ N) be a sequence of continuous convex functions
on an open convex subset in a Banach space E endowed with a bornology β.
If the series

∑
n∈N fn is pointwise convergent having a continuous sum f, and

f is β-differentiable at a point x0, then each function fn is β-differentiable at
x0.

Proof. The statement follows immediately from the preceding theorem,
using the relations:

0 ≤
∑
n∈N

1
t (fn(x+ th) + fn(x− th)− 2fn(x))

= 1
t (f(x+ th) + f(x− th)− 2f(x))

(valid for x ∈ U , t > 0, h ∈ B ∈ β provided that x+ th ∈ U). �

The (semi)norms are important special cases of convex functions. The next
result represents a simple characterizations for the β-differentiability of a norm,
extending a theorem of Smulian [1].

Theorem 3. Let E be a normed space endowed with a bornology β and x
a point on the unit sphere SE of E.
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The norm ‖·‖ is β-differentiable at x if and only if the following condition
holds: for all sequences x∗n, y∗n ∈ SE∗ satisfying x∗n(x) → 1, y∗n(x) → 1 one
has x∗n − y∗n → 0 in Fβ(E,R).

Proof. Necessity. Let B ∈ β, ε > 0, x∗n, y∗n ∈ SE∗ satisfy x∗n(x) → 1,
y∗n(x) → 1. Choosing B′ ∈ β such that B ∪ (−B) ⊆ B′ and applying the
preceding theorem, there exists δ > 0 such that for t ∈ (0, δ] one has

‖x+ th‖+ ‖x− th‖ < 2 + εt ≤ 2 + εδ, for each h ∈ B′.

The hypothesis implies the existence of a positive integer n0 such that for
n ≥ n0:

|1− x∗n(x)|+ |1− y∗n(x)| < εδ.

We have

x∗n(x+ th) + y∗n(x− th) ≤ ‖x+ th‖+ ‖x− th‖ ≤ 2 + εδ,

hence

x∗n(th)− y∗n(th) ≤ 1− x∗n(x) + 1− y∗n(x) + εδ < 2εδ, for n ≥ n0.

By taking t = δ, one obtains x∗n(h)− y∗n(h) < 2ε, for n ≥ n0, h ∈ B′.
For h ∈ B, we have ±h ∈ B′, and the last inequality implies

|x∗n(h)− y∗n(h)| < 2ε, for each n ≥ n0, h ∈ B.

Sufficiency. Suppose by contradiction that ‖·‖ is not β-differentiable at x,
and hence there exists ε > 0, B ∈ β, hn ∈ B\{0}, tn > 0 such that tn → 0,
‖x+ tnhn‖+ ‖x− tnhn‖ ≥ 2 + εtn.

Choosing x∗n, y∗n ∈ SE∗ such that x∗n(x + tnhn) ≥ ‖x + tnhn‖ − ‖tnhn‖/n
and y∗n(x− tnhn) ≥ ‖x− tnhn‖ − ‖tnhn‖/n one obtains

1 ≥ x∗n(x)
= x∗n(x+ tnhn)− x∗n(tnhn)

≥ ‖x+ tnhn‖ − ‖tnhn‖
n − ‖tnhn‖

≥ 1− ‖tnhn‖
n − 2‖tnhn‖,

hence x∗n(x)→ 1.
Similarly, y∗n(x)→ 1.
Because

x∗n(x+ tnhn) + y∗n(x− tnhn) ≥ 2 + εtn − 2‖tnhn‖
n ,

we have
x∗n(hn)− y∗n(hn) ≥ ε− 2‖hn‖

n ≥ ε
2 , for n ≥ n0,

in contradiction with x∗n − y∗n → 0 in Fβ(E,R) �
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If f is a continuous convex function on an open convex subset U of a Banach
space E, then the subdifferential ∂f is a set-valued operator, having convex,
nonempty weak∗ compact values in E∗.

We shall obtain a characterization of the β-differentiability for f in terms
of the subdifferential operator ∂f . Such characterizations are known for the
Fréchet and Gâteaux differentiability, and are very useful in the analysis of the
smoothness of f ; in the same time such results motivated an intensive research
on the set-valued operators.

If (X, τ1 ), (Y, τ2 ) are topological spaces, a set-valued operator T : X → 2Y
is said to be τ1-τ2 upper semicontinuous (u.s.c.) at x ∈ X, if for each subset
W ∈ τ2 containing T (x), there exists V ∈ τ1 containing x such that T (V ) =
∪{T (v) : v ∈ V } ⊆W .

The set dom(T ) := {x ∈ X : T (x) 6= ∅} is the domain of T.
We are interested in the case when the operator T acts between E and 2E∗ ,

where E is a Banach space. Denoting by ‖·‖ the norm in E and by ‖ · ‖∗
its dual norm in E∗ we shall consider the strong topology τ‖·‖ (generated by
the norm) on E, and the topology τβ of the β-convergence on E∗, where β
is a bornology on E. We remind that τF = τ‖·‖∗ , where F is the Fréchet
bornology (of all bounded subsets), and τG is the weak∗ topology (G denoting
the Gâteaux bornology).

Proposition 4. Let E be a normed space, β a bornology on E, x a point
in E and T : E → 2E∗ a set-valued operator. Then, the following statements
are equivalent:

(i) T is τ‖·‖-τβ upper semicontinuous at x.
(ii) For each W ∈ τβ, T (x) ⊆ W , (xn)n∈N ⊆ E with ‖xn − x‖ → 0, there

exists n0 ∈ N, such that for n ≥ n0, T (xn) ⊆W .
(iii) For each W ∈ τβ, T (x) ⊆ W , there exists δ > 0, such that for r ∈

(0, δ], T (B[x, r]) ⊆W .
If, furthermore, T (x) is a singleton {x∗0}, the above conditions are

also equivalent with
(iv) For each (xn)n∈N ⊆ E, with ‖xn − x‖ → 0 it follows that

(4) lim
n→∞

sup
{
| 〈x∗ − x∗0, h〉 | : x∗ ∈ T (xn), h ∈ B

}
= 0, (B ∈ β)

and, for β = F, (4) may be reformulated as
(5) lim

r→0+
diamT (B[x, r]) = 0.

Proof. The proof is standard, similar to Heine’s theorem in general topology.
�

We shall need the following result (see [3], [2]):

Theorem 5. Let E be a normed space, f a convex continuous function
defined on an open convex set D ⊆ E. Then the subdifferential ∂f : D → 2E∗

is a τ‖·‖-τG upper semicontinuous operator.
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Note that in the general case, ∂f will not be τ‖·‖-τβ upper-semicontinuous
for an arbitrary bornology β as the following example shows:

Example 1. Let E = `1 be the Banach space of all summable sequences
endowed with the norm ‖x‖ =

∑
n∈N |x(n)|, and f : E → R, f(x) = ‖x‖. For

h ∈ E, we have

d+f(x)(h) = lim
t→0+

∑
n∈N

|x(n)+th(n)|−|x(n)|
t

=
∑
n∈N

lim
t→0

|x(n)+th(n)|−|x(n)|
t

=
∑

n∈N,x(n)6=0
(sign x(n))h(n) +

∑
n∈N,x(n)=0

|h(n)|

(the permutation of the limit and sum symbols can be legitimated by using
the Weiersrass theorem, or the dominated convergence theorem from mea-
sure theory applied to the sum as a discrete integral). The function f is G-
differentiable at x if and only if d+f(x)(h) = −d+f(x)(−h), (h ∈ E), which
means: ∑

n∈N,x(n)=0
|h(n)| = 0, for each h ∈ E, i.e., x(n) 6= 0, (n ∈ N).

Choose now x ∈ `1, x(n) = αn > 0 (n ∈ N); then f is G-differentiable at x.
Defining xp = (α1, α2, ..., αp, 0, 0...), i.e. xp(n) = αn for n ≤ p and xp(n) =

0 for n > p, we obviously have ‖xp − x‖ → 0.
But d+f(xp)(h) = h(1) + ... + h(p) + |h(p + 1)| + |h(p + 2)| + ..., and by

taking x∗p(h) = h(1) + ...+ h(p), one obtains:

x∗p ∈ E∗, x∗p ≤ d+f(xp),
hence x∗p ∈ ∂f(xp).

On the other hand, ‖df(x)− x∗p‖∗ = 1, so ∂f is not τ‖·‖-τF u.s.c. at x (cf.
(iii), with W = B(df(x), 1)).

In this example, f is not F -differentiable at x. This fact will follow from the
next theorem which contains also a refinement of the preceding proposition

Theorem 6. Let E be a normed space, β a bornology, f a continuous convex
function on an open convex set D ⊆ E, which is β-differentiable at x ∈ D.
Then the subdifferential ∂f : D → 2E∗ is an τ‖·‖-τβ upper semicontinuous
operator.

Proof. Suppose by contradiction that ∂f is not τ‖·‖-τβ u.s.c. at x. Applying
(iv) from Proposition 4 one obtains that there exist xn ∈ E, with ‖xn−x‖ → 0,
ε > 0, B ∈ β, hn ∈ B, x∗n ∈ ∂f(xn), such that

| 〈x∗n − x∗0, hn〉 | > 2ε, (n ∈ N), where x∗0 = df(x).
Chose B′ ∈ β such that B ∪ (−B) ⊆ B′.
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Interchanging if necessary hn with −hn (∈ B′), we will have
(6) 〈x∗n − x∗0, hn〉 > 2ε.
From the β-differentiability of f at x, there exists δ > 0, such that B[x, δm] ⊆
D, where m > 0 is chosen such that B′ ⊆ B[0,m], and

f(x+ th)− f(x)− 〈x∗, th〉 ≤ tε, (t ∈ (0, δ], h ∈ B′).
Hence

(7) f(x+ thn)− f(x)− 〈x∗, thn〉 ≤ tε, (n ∈ N, t ∈ (0, δ]).
Using the fact that x∗n ∈ ∂f(xn), one obtains 〈x∗n, x+ δhn − xn〉 ≤ f(x +
δhn)− f(xn), hence
(8) 〈x∗n, δhn〉 ≤ f(x+ δhn)− f(x) + 〈x∗n, xn − xn〉+ f(x)− f(xn).
From (6), (7) and (8) we have

2εδ < 〈x∗n − x∗0, δhn〉
= 〈x∗n, δhn〉 − 〈x∗0, δhn〉
≤f(x+ δhn)− f(x) + 〈x∗n, xn − xn〉+ f(x)− f(xn)− 〈x∗0, δhn〉
=(f(x+ δhn)− f(x)− 〈x∗0, δhn〉) + 〈x∗n, xn − xn〉+ f(x)− f(xn)
≤εδ + ‖x∗n‖‖xn − xn‖+ |f(x)− f(xn)|.

The convex function f being continuous, it is locally Lipschitz, hence the
sequence ‖x∗n‖ is bounded (by the Lipschitz constant). For n→∞ one obtains
2εδ ≤ εδ, a contradiction. �

Theorem 7. Let E be a normed space, β a bornology, f a continuous convex
function on an open convex set D ⊆ E. Then the following statements are
equivalent:

(i) f is β-differentiable at x ∈ D.
(ii) Each selection ϕ : D → E∗ for the subdifferential ∂f is τ‖·‖-τβ contin-

uous at x ∈ D.
(iii) There exists a selection ϕ : D → E∗ for the subdifferential ∂f which is

τ‖·‖-τβ continuous at x ∈ D.

Proof. (i)⇒(ii). According to the previous proposition, ∂f is τ‖·‖-τβ u.s.c.,
hence each of its selections will be τ‖·‖-τβ continuous.

(ii)⇒(iii). This implication is obvious.
(iii)⇒(i). For y ∈ D we have 〈ϕ(x), y − x〉 ≤ f(y) − f(x), because ϕ(x) ∈

∂f(x). Using ϕ(y) ∈ ∂f(x) one obtains 〈ϕ(y), x− y〉 ≤ f(x)− f(y), hence:
(9) 0 ≤ f(y)− f(x)− 〈ϕ(x), y − x〉 ≤ 〈ϕ(y)− ϕ(x), y − x〉 .
For h ∈ E, t > 0, replacing in (9) y = x+ th, dividing by t and letting t→ 0+,
one obtains 0 ≤ d+f(x)(h)− ϕ(x)(h) ≤ 0, hence

d+f(x) = ϕ(x) ∈ E∗,
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and f is G-differentiable at x.
For B ∈ β, h ∈ B, t > 0, y = x+ th, we have

0 ≤ 1
t (f(x+ th)− f(x))− df(x) ≤ 〈ϕ(x+ th)− ϕ(x), h〉 .

From the τ‖·‖-τβ continuity of ϕ, the right hand side tends to 0 uniformly
for h ∈ B (=bounded) as t→ 0+, and the conclusion follows. �

REFERENCES

[1] Deville, R., Godefroy, G. and Zizler,V., Renormings and Smoothness in Banach
Spaces, Monographs and Surveys in Pure and Appl. Math., Longman, 64, 1993.

[2] Giles, J. R., Convex Analysis with Application to Differentiation of Convex Functions,
Research Notes in Math., 58, Pitman, 1982.

[3] Phelps, R. R., Convex Functions, Monotone Operators and Differentiability, 2nd ed.,
Springer, 1993.

[4] Rainwater, J., Yet more on the differentiability of convex functions, Proc. Amer. Math.
Soc., 103, no. 3, pp. 773–778, 1988.
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