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ON S-DIFFERENTIABILITY OF NORMS*
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Abstract. In this note we give some characterizations for the differentiability
with respect to a bornology of a continuous convex function. The special case of
seminorms is treated. A characterization of this type of differentiability in terms
of the subgradient of the function is also obtained.
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RESULTS

Let E and E; be Banach spaces, U an open subset in £ and x € U. A
function f : U — FEj is said to be Gdteaux differentiable at x if there exists a
linear continuous mapping denoted df(z) : E — Ej such that for each h in F
one has

1) Af(@)(h) = lim L/ +th) - [(2).

The function f is said to be Fréchet differentiable at x if there exists a linear
continuous mapping denoted f’(z) : E — Ej such that for each e > 0, there
exists § > 0 satisfying

@) Nf@+h) = f@) = f@) (M) <elhl, for each h € Bp(x,9).

The two linear mappings df (z), f'(z) are the Gateaux and Fréchet differ-
entials and are unique (when they exist).

In the sequel, we shall be interested only by real functions (i.e. E; = R).
When a real function f is also convex on an open convex set U C FE, then
the limit in exists and is denoted by d* f(z); this directional derivative is
generally only sublinear and the Gateaux differentiability of f at x is equivalent
with the linearity of d* f(x), or with the fact that

dtf(z)(h) = =dT f(z)(=h) [=: d" f(z)(h)], for each h € E.
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It is obvious that any Fréchet differentiable function is also Gateaux dif-
ferentiable, and the two differentials coincide. The converse is not true, even
for convex functions. For example, the norm of the Banach space ¢! is known
to be nowhere Fréchet differentiable, but it is Gateaux differentiable at those
points (x,)nen having only nonzero components.

It is well known that the function f is Fréchet differentiable at x if and only
if it is Gateaux differentiable at x and the limit is uniform with respect
to h € B[0,1] (=the closed unit ball in E) or, equivalently, with respect to
any bounded subset of F£. This remark allows a useful generalization of the
differentiability.

Let 8 be a nonempty family of bounded sets in £ whose union is F, which
is directed with respect to C (i.e., for each By, By € [ there exists Bz €
such that By, Ba C Bs) and is invariant under scalar multiplication. Such a
family is named bornology in Phelps’ monograph [3].

The function f is said to be S-differentiable at the point x if f is Gateaux
differentiable at x and the limit is uniform in h € B for each B € §.
This turns out to be equivalent with the convergence in the uniform struc-
ture Fg(E,R). We shall denote by 73 the topology induced by this uniform
structure.

The following interesting special cases of a bornology arise (as pointed out
in [3]):

e 3 = G = the family of all finite subsets in E (generating the Gateaux
differentiability);

e 3 = F = the family of all bounded subsets in E (generating the Fréchet
differentiability);

e § = H = the family of all compact subsets in E (generating the
Hadamard differentiability);

e 3 =W = the family of all weak compact subsets in E (generating the
strong Hadamard differentiability).

One obviously has the inclusions: G C 8§ C F, GC H CW C F;if f
is Ps-differentiable and By C Ps, then f is also [i-differentiable and the two
differentials coincide.

THEOREM 1. Let f be a continuous convex function on an open conver
subset U in the normed space E and B a bornology on E. Then f is (-
differentiable at x € U if and only if, for each B € (3, the limit

(3) Jim L (f(+th) + f(x — th) = 2f(2)) =0,

holds uniformly for h € B.

Proof. Necessity. Let B be an arbitrary subset in 8. Using for B and
—B one obtains the equalities df(z)(h) = limyo4 +(f(z + th) — f(z)) and
df(z)(=h) = lim¢04 $(f(z — th) — f(z)), which hold uniformly for h € B;
by addition the desired conclusion follows.
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Sufficiency. Choose B € 3, ¢ > 0. Using the continuity of f, one can
select a subgradient z* € Jf(x). The hypothesis guarantees the existence of
a positive number 0 such that f(x + th) + f(z — th) — 2f(x) < te, for each
h € B and t € (0,6). (B is bounded, so, for sufficiently small 6 > 0 one has
x+£the B.)

We have

<ZL‘*,th> < f(.%' + th) - f(x)a
(z*, —th) < f(z —th) — f(=),
and for 0 <t < d, h € B one obtains:
0 <f(x+th)— f(x) — (z",th)
—(f(x+th) + fla — th) = 2f(x)) + (f(2) — f(x — th) — (", th))
<et 40 = et,
which implies that holds uniformly for h € B. a

REMARK 1. a) For the Fréchet differentiability it is sufficient that the limit
holds uniformly on the unit sphere Sg; for the Gateaux differentiability,
the pointwise limit in suffices.

b) The continuity condition imposed on the convex function f cannot be
omitted when F is infinite dimensional; in fact it is sufficient to consider a
linear discontinuous functional f (cf. [5, p. 251]); in this case, df(x) = f is
not continuous. g

COROLLARY 2. Let f, (n € N) be a sequence of continuous convez functions
on an open convex subset in a Banach space E endowed with a bornology (.
If the series Y, cn fn 5 pointwise convergent having a continuous sum f, and
f is B-differentiable at a point xg, then each function f, is B-differentiable at
xo.

Proof. The statement follows immediately from the preceding theorem,
using the relations:

0< Z %(fn(x + th) + fn(m - th) - 2fn(x))

neN
= +(f(z +th) + f(z — th) — 2f(x))
(valid for x € U, t > 0, h € B € § provided that  + th € U). O

The (semi)norms are important special cases of convex functions. The next
result represents a simple characterizations for the g-differentiability of a norm,
extending a theorem of Smulian [I].

THEOREM 3. Let E be a normed space endowed with a bornology B and x
a point on the unit sphere Sg of E.
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The norm ||-|| is B-differentiable at x if and only if the following condition
holds: for all sequences x,, vy € Sg= satisfying x}(x) — 1, yi(x) — 1 one
has x}, — yy, — 0 in Fg(E,R).

Proof. Necessity. Let B € 3, ¢ > 0, =),y € Sg- satisfy z}(x) — 1,
y*(z) — 1. Choosing B’ € 8 such that BU (—B) C B’ and applying the
preceding theorem, there exists 6 > 0 such that for ¢ € (0, ] one has

|z + th|| + ||z — th|| < 2+¢et <2+¢ed, for each h € B

The hypothesis implies the existence of a positive integer ng such that for
n > no:

11— a7, (2)[ 4 [1 = yp(z)] < ed.
We have
25 (0 + th) + (@ — th) < &+ th]) + o — th]] <2+ 20,
hence
xy(th) —yr(th) <1 —a)(x) + 1 —y;(z) +€d < 2e6, for n > ng.

By taking ¢ = §, one obtains z(h) — vy (h) < 2¢, for n > ng, h € B'.
For h € B, we have +h € B’, and the last inequality implies

|z (h) —yr(h)| < 2e, for each n > ng, h € B.

Sufficiency. Suppose by contradiction that ||-|| is not S-differentiable at x,
and hence there exists ¢ > 0, B € 3, h, € B\{0}, ¢, > 0 such that ¢, — 0,
|z + thhn|| + |z — thhy|| > 2 + ety.

Choosing z7, y¥ € Sp« such that =% (z + tyhy) > ||z + thhnll — |[thhnll/n
and v (x — tphy) > ||x — thhy|| — |[thhn||/n one obtains

1> o (x)
=xy(x + tyhy) — ) (thhny)

TLhTL
> |l + tohy | — Lkl i,

> 1 — ltnhall _op ),

hence z (z) — 1.
Similarly, y; (z) — 1.
Because

) (x4 tohn) +yp (x — thhy) > 2+ ety — 2%»

we have

xy (hy) —yr(hp) > € — paL| > 5, for n > no,

n n

in contradiction with «;, — v — 0 in F3(E,R) O
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If f is a continuous convex function on an open convex subset U of a Banach
space E, then the subdifferential df is a set-valued operator, having convex,
nonempty weak® compact values in E*.

We shall obtain a characterization of the Sg-differentiability for f in terms
of the subdifferential operator df. Such characterizations are known for the
Fréchet and Gateaux differentiability, and are very useful in the analysis of the
smoothness of f; in the same time such results motivated an intensive research
on the set-valued operators.

If (X, 71 ), (Y, 72 ) are topological spaces, a set-valued operator T': X — 2
is said to be 11-19 upper semicontinuous (u.s.c.) at x € X, if for each subset
W € 1 containing T'(x), there exists V' € 7 containing z such that T'(V) =
U{T(v) :veV}CW.

The set dom(T) := {z € X : T(x) # 0} is the domain of T.

We are interested in the case when the operator T' acts between E and 277,
where E is a Banach space. Denoting by ||-|| the norm in E and by || - ||*
its dual norm in £* we shall consider the strong topology 7). (generated by
the norm) on E, and the topology 73 of the f-convergence on E*, where
is a bornology on E. We remind that 77 = 7)-, where F' is the Fréchet
bornology (of all bounded subsets), and 7¢ is the weak* topology (G denoting
the Géateaux bornology).

PROPOSITION 4. Let E be a normed space, 3 a bornology on E, x a point
in E and T : E — 2P a set-valued operator. Then, the following statements
are equivalent:

(i) T is 7). -5 upper semicontinuous at x.

(ii) For each W € 15, T(x) C W, (2n)nen C E with ||z, — z|| — 0, there
exists ng € N, such that for n > ngy, T(x,) C W.

(iii) For each W € 15, T'(x) C W, there exists § > 0, such that for r €
(0,6), T(Blz, ) C W.

If, furthermore, T(x) is a singleton {z{}, the above conditions are

also equivalent with

(iv) For each (zp)nen C E, with ||z, — x| — 0 it follows that

(4) Jgnolosup{\ (" — a5, h)| 2" € T(xy),h € B} =0, (Be€p)
and, for 8 =F, may be reformulated as
(5) Tlg(ﬁ diam T'(B[xz,r]) = 0.

Proof. The proof is standard, similar to Heine’s theorem in general topology.
0

We shall need the following result (see [3], [2]):

THEOREM 5. Let E be a normed space, f a convex continuous function
defined on an open convex set D C E. Then the subdifferential Of : D — 2F°
IS @ T|.||-TG upper semicontinuous operator.
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Note that in the general case, df will not be 7).-73 upper-semicontinuous
for an arbitrary bornology 5 as the following example shows:

EXAMPLE 1. Let E = (' be the Banach space of all summable sequences
endowed with the norm ||z|| = >, en|z(n)|, and f: E = R, f(z) = ||z|. For
h € E, we have

+ _ |z(n +th(n [=lz(n)|
o0 =g, T
N i \x(n)+th<f>| fe(m)
neNtﬁo
= Y (ignz(m)h(m)+ D |h(n)]
neN,z(n)#0 neN,z(n)=0

(the permutation of the limit and sum symbols can be legitimated by using
the Weiersrass theorem, or the dominated convergence theorem from mea-
sure theory applied to the sum as a discrete integral). The function f is G-
differentiable at x if and only if AT f(x)(h) = —d* f(z)(=h), (h € E), which
means:
Z |h(n)| =0, for each h € E,i.e., x(n) #0,(n € N).
neN,z(n)=0

Choose now = € 11, x(n) = ap, > 0 (n € N); then f is G-differentiable at x.

Defining x, = (o1, g, ..., 0, 0,0...), i.e. z,(n) = ay, forn <p and z,(n) =
0 for n > p, we obviously have ||z, — x| — 0.

But dF f(xp)(h) = h(1) + ... + h(p) + |h(p + 1)| + |h(p + 2)| + ..., and by
taking x,(h) = h(1) + ... + h(p), one obtains:

xy e B*, ap <dff(xy),

hence x;, € Of ().
On the other hand, ||df(z) — || =1, so Of is not 7.|-TF u.s.c. at x (cf.
(iit), with W = B(df(z),1)).

In this example, f is not F-differentiable at x. This fact will follow from the
next theorem which contains also a refinement of the preceding proposition

THEOREM 6. Let E be a normed space, 5 a bornology, f a continuous conver
function on an open convex set D C E, which is §-differentiable at x € D.
Then the subdifferential Of : D — 2F" is an T||.|-T8 upper semicontinuous
operator.

Proof. Suppose by contradiction that df is not 7.-73 u.s.c. at z. Applying
(iv) from Proposition 4 one obtains that there exist z,, € E, with ||z, —z| — 0,
e>0, Bep, h, € B,z €df(xy,), such that

| (x5, — x5, hn) | > 2, (n€N), where z5g =df(x).
Chose B’ € 8 such that BU(—B) C B'.
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Interchanging if necessary h,, with —h,, (€ B’), we will have
(6) (x) — x5, hy) > 2¢.
From the g-differentiability of f at x, there exists 6 > 0, such that B[z, dm] C
D, where m > 0 is chosen such that B’ C B0, m], and
f(z +th) — f(z) — (2%, th) < te, (t€(0,6], he B).
Hence
(7) f(z+thy) — f(z) — (%, th,) <te, (neN,te(0,9]).
Using the fact that x} € 0f(x,), one obtains (z},x + 0h, — ) < f(x +
0hn) — f(xy), hence
8)  (an, 0hn) < f(x+ 6hn) — f(z) + (23, 20 — Tn) + f(2) — f(2n).
From @, and we have
2ed < (), — x4, 0hy)
= (7, 0hn) — (20, 6hn)
<f(x+0hn) — f(@) + (25, 20 — 20) + f(2) = f2n) — (20, 0hn)
=(f(z + 0hn) — f(x) = (25, 6hn)) + (27, Tn — Tn) + f(2) — f(2n)
<ed + |lzpllllzn — znll + 1f(2) = f(2n)].
The convex function f being continuous, it is locally Lipschitz, hence the

sequence ||z} || is bounded (by the Lipschitz constant). For n — oo one obtains
2ed < &6, a contradiction. O

THEOREM 7. Let E be a normed space, 5 a bornology, f a continuous convex
function on an open convex set D C E. Then the following statements are
equivalent:

(i) f is pB-differentiable at x € D.
(ii) Each selection ¢ : D — E* for the subdifferential Of is ||| -Tg contin-
uous at x € D.
(iii) There exists a selection ¢ : D — E* for the subdifferential Of which is
|| -TB continuous at x € D.

Proof. (i)=-(ii). According to the previous proposition, df is 7.|-75 w.s.c.,
hence each of its selections will be 7).-7 continuous.

(ii)=-(iii). This implication is obvious.

(iii)=(i). For y € D we have (p(z),y —z) < f(y) — f(z), because ¢(x) €
Of(x). Using p(y) € 9f(x) one obtains (p(y),r —y) < f(x) — f(y), hence:
(9) 0< fly) = flx) = {e(x),y —z) < {py) — (), y — ).

For h € E,t > 0, replacing in @ y = x +th, dividing by ¢ and letting ¢ — 0+,
one obtains 0 < d* f(z)(h) — p(z)(h) <0, hence

A" f(z) = ¢(z) € E7,



148 Valeriu Anisiu 8

and f is G-differentiable at z.
For Be g, he B,t> 0, y=x+th, we have

0 < ;(flz +th) - f(2)) — df(x) < (p(z +th) — p(z), h) .

From the 7)-75 continuity of ¢, the right hand side tends to 0 uniformly
for h € B (=bounded) as t — 0+, and the conclusion follows. O
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