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Abstract. In the present paper there are given some applications of the prin-
ciple of condensation of the singularities of families of nonnegative functions
established by W. W. Breckner in 1984. They reveal Baire category information
on certain subsets of a normed linear space X of the second category that are de-
fined by means of an inequality of the type f(x) < ∞, where f is a given function
from X to [0, ∞]. Sets of this type occur frequently in the theory of operator
ideals. They are constructed individually by using entropy or approximation
numbers of operators. By specializing the general results given in the paper it
follows that such operator sets are of the first category, while their complements
are residual Gδ-sets, of the second category, uncountable and dense.
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1. INTRODUCTION

In functional analysis concrete normed or quasinormed linear spaces are in-
troduced frequently as sets consisting of all the elements x of a certain normed
linear space X that satisfy an inequality f(x) < ∞, where f is a given func-
tion from X to [0,∞]. For instance, the classical sequence spaces lp are of this
type, and so are numerous linear spaces occuring in the theory of operator
ideals: lp,q, lp,∞, Lsp,q(E0, E), Lep,q(E0, E) etc. (see [3], [6]). The aim of our
present paper is to look at such linear spaces from a topological point of view
and to prove that such linear spaces are often subsets of the first category of
the space X comprising them, while their complements are dense in X. In-
vestigations of this kind have already been carried out in [2] in the cases when
X is the normed linear space L(E) of all continuous linear operators on an
infinite-dimensional Banach space E or the normed linear space b consisting
of all bounded sequences of real or complex numbers. Here we continue these
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investigations in a more general framework, but just like in [2] we use the
following principle of condensation of the singularities of families of nonnega-
tive functions as main tool.

Theorem 1. Let X be a topological linear space, and let F be a family
of lower semicontinuous functions from X to [0,∞] satisfying the following
conditions:

(i) there exists a number r ∈ [1,∞] such that for all f ∈ F one has
f(x− y) ≤ rmax {f(x), f(y)}

whenever x, y ∈ X and f(x) <∞, f(y) <∞;
(ii) there exists a bounded subset M of X such that

sup {f(x)| (f, x) ∈ F ×M} =∞.
Then the set SF of all singularities of F , i.e., the set consisting of all x ∈ X

for which sup {f(x)| f ∈ F} =∞, has the following properties:
1◦. SF is a residual Gδ-set.
2◦. If in addition X is of the second category, then SF is of the second

category and dense in X.
3◦. If in addition X is of the second category, satisfies the separation ax-

iom T1 and has nonzero elements, then SF is of the second category,
uncountable and dense in X.

This theorem is a generalization of the classical principle of condensation
of the singularities of a family of continuous linear operators from a Banach
space into another normed linear space. It follows from the results stated in
[1].

Throughout the paper K denotes either the field R of real numbers or the
field C of complex numbers, while N is the set of all positive integers. All linear
spaces that will be used are over K. The set consisting of all nonnegative real
numbers is denoted by R+.

2. A FIRST GROUP OF APPLICATIONS OF THE PRINCIPLE OF CONDENSATION

OF THE SINGULARITIES

Theorem 2. Let p and q be positive real numbers, let X be a normed linear
space of the second category, and let s be a map that assigns to each x ∈ X
a sequence s(x) := (sn(x)) of real numbers such that the following conditions
are satisfied:

(i) ‖x‖ = s1(x) ≥ · · · ≥ sn(x) ≥ · · · ≥ 0, for all x ∈ X;
(ii) sm+n−1(x− y) ≤ sn(x) + sn(y), for all m,n ∈ N and all x, y ∈ X;

(iii) there exists an x0 ∈ X such that inf {sn(x0)| n ∈ N} > 0.
Then the set Xs

p,q of all x ∈ X for which
∞∑
n=1

nq/p−1[sn(x)]q <∞
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has the following properties:
1◦. X \Xs

p,q is a residual Gδ-set, of the second category, uncountable and
dense in X.

2◦. Xs
p,q is a subset of the first category in X.

Proof. 1◦. To simplify the notation we put r := q/p− 1. Next we define for
each m ∈ N the function fm : X → R+ by

fm(x) :=
m∑
n=1

nr[sn(x)]q.

We claim that all the functions fm (m ∈ N) are continuous. Indeed, from (i)
and (ii) it follows that

sn(x+ y) ≤ sn(x) + ‖x‖, for all n ∈ N and all x, y ∈ X.

This property implies

|sn(x)− sn(y)| ≤ ‖x− y‖, for all n ∈ N and all x, y ∈ X.

Consequently, for every n ∈ N the function

(1) ∀ x ∈ X 7→ sn(x) ∈ R

is continuous. This result implies that all the functions fm (m ∈ N) are
continuous.

Next we put a := max {1, 2r} and prove that the following inequality is
valid for all m ∈ N:

(2) fm(x− y) ≤ a2q+2 max {fm(x), fm(y)}, whenever x, y ∈ X.

To this end we fix m ∈ N as well as x, y ∈ X. Further we choose a k ∈ N
such that 2(k − 1) < m ≤ 2k. It is easily seen that for all n ∈ N the following
inequalities hold:

max {(2n− 1)r, (2n)r} ≤ anr;
[s2n−1(x− y)]q ≤ [sn(x) + sn(y)]q ≤ 2q([sn(x)]q + [sn(y)]q).

They imply

fm(x− y) ≤ f2k(x− y) ≤
k∑

n=1
[(2n− 1)r + (2n)r][s2n−1(x− y)]q

≤ a2q+1
{ k∑
n=1

nr[sn(x)]q +
k∑

n=1
nr[sn(y)]q

}
= a2q+1{fk(x) + fk(y)} ≤ a2q+2 max {fk(x), fk(y)}.

Taking into account that k ≤ m we get

fm(x− y) ≤ aq+2 max {fm(x), fm(y)}.

Consequently (2) holds for all m ∈ N.
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Next we select an x0 ∈ X for which
(3) b := inf {sn(x0)| n ∈ N} > 0.
Then we have

fm(x0) ≥ (1r + · · ·+mr)b, for all m ∈ N.
Since the series

∑
nr diverges, it follows that

(4) sup {fm(x0)| m ∈ N} =∞.
Summing up our considerations we can conclude that the family F :=

{fm| m ∈ N} consists of continuous functions from X to R+ that satisfy
(2) and (4). In view of the assertions 1◦ and 3◦ in Theorem 1 the set SF of all
singularities of F is a residual Gδ-set, of the second category, uncountable and
dense in X. But, on the other hand, we have SF = X \ Xs

p,q. Consequently
the assertion 1◦ of our theorem is true.

2◦. This assertion follows immediately from assertion 1◦. �

Theorem 3. Let p be a positive real number, let X be a normed linear
space of the second category, and let s be a map that assigns to each x ∈ X a
sequence s(x) := (sn(x)) of real numbers satisfying the conditions (i)–(iii) in
Theorem 2. Then the set Xs

p,∞ of all x ∈ X for which

sup {n1/psn(x)| n ∈ N} <∞
has the following properties:

1◦. X \Xs
p,∞ is a residual Gδ-set, of the second category, uncountable and

dense in X.
2◦. Xs

p,∞ is a subset of the first category in X.

Proof. 1◦. For each m ∈ N we define the function fm : X → R+ by

fm(x) := max {11/ps1(x), . . . ,m1/psm(x)}.
Since for every n ∈ N the function (1) is continuous, it follows that all the
functions fm (m ∈ N) are continuous.

Next we put a := 21+1/p and prove that the following inequality holds for
all m ∈ N:
(5) fm(x− y) ≤ amax {fm(x), fm(y)}, whenever x, y ∈ X.
To this end we fix m ∈ N as well as x, y ∈ X. First we note that for all n ∈ N
we have

(2n− 1)1/ps2n−1(x− y) ≤ (2n)1/p[sn(x) + sn(y)] ≤ 21/p{fm(x) + fm(y)}
when 2n− 1 ≤ m, and

(2n)1/ps2n(x− y) ≤ (2n)1/ps2n−1(x− y)
≤ (2n)1/p[sn(x) + sn(y)]
≤ 21/p{fm(x) + fm(y)}
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when 2n ≤ m. This result implies

fm(x− y) ≤ 21/p{fm(x) + fm(y)}.

Consequently, (5) is valid.
Next we choose an x0 ∈ X for which (3) holds. Then we have fm(x0) ≥

m1/pb for all m ∈ N, whence (4) follows.
Summing up our considerations we can conclude that the family F :=

{fm| m ∈ N} consists of continuous functions from X to R+ that satisfy
(5) and (4). By applying the assertions 1◦ and 3◦ of Theorem 1 we conclude
that the set SF of all singularities of F is a residual Gδ-set, of the second cat-
egory, uncountable and dense in X. Taking into account that SF = X \Xs

p,∞,
it follows that the assertion 1◦ of our theorem is true.

2◦. This assertion follows immediately from assertion 1◦. �

Theorems 2 and 3 provide a series of results revealing Baire category infor-
mation on sets occurring in the theory of operator ideals. To illustrate this let
E0 and E be normed linear spaces. By L(E0, E) we denote the linear space
of all continuous linear operators T : E0 → E endowed with the norm

‖T‖ := sup {‖T (x)‖ | x ∈ E0, ‖x‖ ≤ 1}.

Further we denote by K(E0, E) the set consisting of all compact linear oper-
ators T : E0 → E. It is well-known that K(E0, E) ⊆ L(E0, E).

Let B0 and B be the closed unit balls in E0 and E, respectively. Given any
T ∈ L(E0, E), we put

en(T ) := inf
{
α ∈ R+ | ∃ m ∈ N, ∃ y1, . . . , ym ∈ E : m ≤ 2n−1,

T (B0) ⊆ (y1 + αB) ∪ · · · ∪ (ym + αB)
}

for all n ∈ N. The number en(T ) is called the nth outer entropy number of T
(see [5, p. 168]).

Theorem 4. Let p and q be positive real numbers, let E0 and E be normed
linear spaces such that L(E0, E) \K(E0, E) 6= ∅ and E is complete. Then the
set Lep,q(E0, E) of all T ∈ L(E0, E) for which

∞∑
n=1

nq/p−1[en(T )]q <∞

has the following properties:
1◦. L(E0, E) \ Lep,q(E0, E) is a residual Gδ-set, of the second category,

uncountable and dense in L(E0, E).
2◦. Lep,q(E0, E) is a subset of the first category in L(E0, E).

Proof. Since E is complete, L(E0, E) is also complete, and hence of the
second category.
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Recall that the outer entropy numbers have the following properties (see
[5, pp. 168–169]):

‖T‖ = e1(T ) ≥ · · · ≥ en(T ) ≥ · · · ≥ 0, for all T ∈ L(E0, E);
em+n−1(T − U) ≤ em(T ) + en(U), for all m,n ∈ N and all T,U ∈ L(E0, E).

Moreover, an operator T ∈ L(E0, E) is compact if and only if

lim
n→∞

en(T ) = 0.

In view of these properties Theorem 2 is applicable. �

By analogy with the deduction of Theorem 4 from Theorem 2, Theorem 3
can also be specialized for the case when X := L(E0, E) and s(x) is the
sequence of outer entropy numbers.

By taking X := L(E0, E), but choosing a sequence of additive s-numbers
instead of the sequence of outer entropy numbers (for instance, the sequence of
approximation numbers, the sequence of Kolmogorov numbers, or the sequence
of Gelfand numbers), we can obtain quite similarly further specializations of
the Theorems 2 and 3 to classes of linear operators occuring in the theory of
operator ideals (see [5], [6]). We leave the details to the reader. Obviously,
Theorem 2.1 given in [2] can be obtained in this manner.

3. A SECOND GROUP OF APPLICATIONS OF THE PRINCIPLE OF CONDENSATION

OF THE SINGULARITIES

Theorem 5. Let X be a normed linear space of the second category, let s be
a map that assigns to each x ∈ X a sequence s(x) := (sn(x)) of real numbers
satisfying the conditions (i)–(iii) in Theorem 2, and let φ := (φn) be a sequence
of functions φn : Rn → R such that the following properties are satisfied:

(j) φn is sublinear, i.e., the inequality

φn(αt1 + βu1, . . . , αtn + βun) ≤ αφn(t1, . . . , tn) + βφn(u1, . . . , un)

holds whenever α, β ∈ R+ and (t1, . . . , tn), (u1, . . . , un) ∈ Rn;
(jj) φn(t1, . . . , tn) ≥ 0, for all (t1, . . . , tn) ∈ Rn;

(jjj) φn(t1, . . . , tn) = φ(|tσ(1)|, . . . , |tσ(n)|), for any (t1, . . . , tn) ∈ Rn and
any permutation σ : {1, . . . , n} → {1, . . . , n};

(jv) φn(1, 0, . . . , 0) = 1;
(v) sup {φn(1, . . . , 1) | n ∈ N} =∞.

Then the set Xs
φ of all x ∈ X for which

sup {φn(s1(x), . . . , sn(x)) | n ∈ N} <∞

has the following properties:
1◦. X \ Xs

φ is a residual Gδ-set, of the second category, uncountable and
dense in X.

2◦. Xs
φ is a subset of the first category in X.
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Proof. 1◦. For each n ∈ N we define the function fn : X → R+ by
fn(x) = φn(s1(x), . . . , sn(x)).

In view of the continuity of the functions φn (because they are sublinear) and
(1) (see the proof of Theorem 2), it follows that all the functions fn (n ∈ N)
are continuous.

Next we prove that the following inequality is valid for all n ∈ N:
(6) fn(x− y) ≤ 4 max {fn(x), fn(y)} whenever x, y ∈ X.
To this end we fix n ∈ N as well as x, y ∈ X. Then we have

k∑
i=1

si(x− y) ≤
2k∑
i=1

si(x− y)

=
k∑
i=1

s2i−1(x− y) +
k∑
i=1

s2i(x− y)

≤ 2
k∑
i=1

s2i−1(x− y)

≤ 2
k∑
i=1

[si(x) + si(y)]

for every k ∈ {1, . . . , n}. By applying a lemma due to Ky Fan (see
[4, p. 97, Lemma 3.1]), it follows that
φn(s1(x− y), . . . , sn(x− y)) ≤ φn(2[s1(x) + s1(y)], . . . , 2[sn(x) + sn(y)]).

Consequently we have
fn(x− y) ≤ 2fn(x) + 2fn(y) ≤ 4 max {fn(x), fn(y)}.

Now we select an x0 ∈ X for which (3) holds. Then we have
fn(x0) ≥ φn(b, . . . , b) = bφn(1, . . . , 1), for all n ∈ N,

whence
(7) sup {fn(x0)| n ∈ N} =∞.

Summing up our considerations we can conclude that the family F :=
{fn| n ∈ N} consists of continuous functions from X to R+ that satisfy (6)
and (7). In view of the assertions 1◦ and 3◦ in Theorem 1 the set SF of all
singularities of F is a residual Gδ-set, of the second category, uncountable and
dense in X. But, on the other hand, we have SF = X \Xs

φ. Consequently the
assertion 1◦ of our theorem is true.

2◦. This assertion follows immediately from assertion 1◦. �

By specializing X, s and φ it is easy to construct different sets of the first
category by means of Theorem 5. For instance, certain sets occuring in the
theory of operator ideals are obtained when X is replaced by the normed
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linear space L(E0, E) of all continuous linear operators from a normed linear
space E0 into another normed linear space E, s is defined by using the outer
entropy numbers or additive s-numbers, and φ is a sequence of symmetric
gauge functions (see [7, pp. 84–92]) or a symmetric norming function (see
[4, pp. 95–105], [8]–[11]).
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lies of numerical functions. In: I. Maruşciac and W. W. Breckner (Editors), Proceedings
of the Colloquium on Approximation and Optimization, Cluj-Napoca, October 25–27,
1984, University of Cluj-Napoca, Cluj-Napoca, pp. 201–212, 1985.

[2] Breckner, W. W., Trif, T. and Varga, C., Some applications of the condensation of
the singularities of families of nonnegative functions (II). In: D. D. Stancu, G. Coman,
W. W. Breckner and P. Blaga (Editors), Approximation and Optimization, Transilvania
Press, Cluj-Napoca, pp. 193–202, 1997.

[3] Carl B. and Stephani, I., Entropy, Compactness and the Approximation of Operators,
Cambridge University Press, Cambridge, 1990.
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