BERSTEIN-SCHURER BIVARIATE OPERATORS

DAN BĂRBOSU*

Abstract

The sequence of bivariate operators of Bernstein-Schurer is constructed and some approximation properties of this sequence are studied. MSC 2000. 41A10, 41A35, 41A63. Keywords. Bernstein operators, Bernstein-Schurer operators, bivariate operators, Korovkin-type theorem, bivariate modulus of smoothness.

1. PRELIMINARIES

In 1962, Schurer F., (see [5]) introduced and studied the linear positive operators $\widetilde{B}_{m, p}: C([0,1+p]) \rightarrow C([0,1])$, defined for any function $f \in C([0,1+$ p]) by:

$$
\begin{equation*}
\left(\widetilde{B}_{m, p} f\right)(x)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k}{m}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{p}_{m, k}(x)=\binom{m+p}{k} x^{k}(1-x)^{m+p-k} \tag{2}
\end{equation*}
$$

are the so called "fundamental polynomials" of Bernstein-Schurer. Note that in (11) and (2), p denotes a non-negative fixed integer. Clearly, for $p=0$ the operators $\widetilde{B}_{m, 0}$ are the classical operators of Bernstein. Some special properties of the polynomials (2) are established in our paper [2]. In the paper [3] we discussed about the remainder operator associated to $\widetilde{B}_{m, p}$.

The most important approximation properties of the operators $\widetilde{B}_{m, p}$ are contained in the following theorem

Theorem 1. (see [1], [5]). The Bernstein-Schurer operators defined at (1) have the following properties:
(i)

$$
\begin{aligned}
\left(\widetilde{B}_{m, p} e_{0}\right)(x) & =1 \\
\left(\widetilde{B}_{m, p} e_{1}\right)(x) & =(1+p / m) x \\
\left(\widetilde{B}_{m, p} e_{2}\right)(x) & =(m+p) m^{-2}\left\{(m+p) x^{2}+x(1-x)\right\},
\end{aligned}
$$

[^0]for any $x \in[0,1+p]$, where $e_{i}(x)=x^{i},(i=0,1,2)$ are the test functions;
(ii) $\lim _{m \rightarrow \infty} \widetilde{B}_{m, p} f=f$, uniformly on $[0,1+p],(\forall) f \in C([0,1+p])$;
(iii) $\left|\left(\widetilde{B}_{m, p} f\right)(x)-f(x)\right| \leq 2 \omega_{f}\left(\delta_{m, p, x}\right)$,
where ω_{f} denotes the first order modulus of smoothness and
$$
\delta_{m, p, x}=\sqrt{p^{2} x^{2}+(m+p) x \frac{1-x}{m}} .
$$

The purposes of the present paper are the following:
1^{0}. To construct the sequence of bivariate operators of Bernstein-Schurer;
2^{0}. To study the uniform convergence of the sequence of the approximants defined by this sequence to the approximated bivariate function f;
3^{0}. To estimate the order of the above approximation using the first order modulus of smoothness for bivariate functions.

We need the auxiliary results, contained in the following theorems
ThEOREM 2. (see [7]). Let $I, J \subseteq \mathbb{R}$ be two compact intervals of the real axis and let $\left(L_{m, n}\right)_{m, n \in \mathbb{N}}$ be a sequence of positive linear operators defined on $C(I \times J)$.

If $e_{i j}(x, y)=x^{i} y^{j} \quad(0 \leq i+j \leq 2, i, j \in \mathbb{N})$ are the test functions defined on $I \times J$ and

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty}\left(L_{m, n} e_{i j}\right)(x, y)=e_{i j}(x, y) \tag{3}
\end{equation*}
$$

uniformly on $I \times J$, then

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty}\left(L_{m, n} f\right)(x, y)=f(x, y) \tag{4}
\end{equation*}
$$

uniformly on $I \times J$, for any $f \in C(I \times J)$.
Note that the Theorem 2 is the well known Korovkin-type theorem for the approximation of bivariate functions.

Theorem 3. (see [7]). Let $I, J \subseteq \mathbb{R}$ be two compact intervals of the real axis and let be $f \in C(I, J)$. The first order modulus of smoothness of the bivariate function f is the function $\omega_{f}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$, defined by

$$
\begin{equation*}
\omega_{f}\left(\delta_{1}, \delta_{2}\right)=\max \left\{\left|f\left(x^{\prime}, y^{\prime}\right)-f(x, y)\right|:\left|x-x^{\prime}\right| \leq \delta_{1},\left|y-y^{\prime}\right| \leq \delta_{2}\right\} \tag{5}
\end{equation*}
$$

Let $\left(L_{m, n}\right)_{m, n \in \mathbb{N}}$ be a sequence of linear positive operators defined on $C(I \times$ $J)$. If $L_{m, n}(1 ; x, y)=1$, the following inequality:
(6) $\mid\left(L_{m, n} f(x, y)-f(x, y) \mid \leq\right.$

$$
\begin{aligned}
\leq & \left\{1+\left(\delta_{1}\right)^{-1}\left\{L_{m, n}\left((\circ-x)^{2} ; x, y\right)\right\}^{\frac{1}{2}}+\left(\delta_{2}\right)^{-1}\left\{L_{m, n}\left((*-y)^{2} ; x, y\right)\right\}^{\frac{1}{2}}\right. \\
& \left.+\left(\delta_{1} \delta_{2}\right)^{-1}\left\{L_{m, n}((\circ-x)(*-y) ; x, y)\right\}^{1 / 2}\right\} \omega_{f}\left(\delta_{1}, \delta_{2}\right)
\end{aligned}
$$

holds for any $f \in C(I \times J)$, any $(x, y) \in I \times J$ and any $\delta_{1}>0, \delta_{2}>0$.

2. MAIN RESULTS

Let p, q be two non-negative given integers and let $\widetilde{B}_{m, p}: C([0,1+p]) \rightarrow$ $C([0,1]), \widetilde{B}_{n, q}: C([0,1+q]) \rightarrow C([0,1])$ be the Bernstein-Schurer operators defined at (1). Let f be a bivariate function $f \in C([0,1+p] \times[0,1+q])$. Then the "parametric extensions" (for this terminus see Delvos I., and Schempp W., [4]) of the operators $\widetilde{B}_{m, p}, \widetilde{B}_{n, q}$ are defined as follows

$$
\begin{align*}
& \left(\widetilde{B}_{m, p}^{x} f\right)(x, y)=\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x) f\left(\frac{k}{m}, y\right) \quad(y \in[0,1+q]), \tag{7}\\
& \left(\widetilde{B}_{n, q}^{x} f\right)(x, y)=\sum_{j=0}^{n} \widetilde{p}_{n, j}(y) f\left(x, \frac{j}{n}\right), \quad(x \in[0,1+p]) . \tag{8}
\end{align*}
$$

By direct computation one obtain the results contained in the following two theorems.

Theorem 4. The parametric extensions of the Bernstein-Schurer commute on $C([0,1+p] \times[0,1+q])$. Their product is the linear positive operator

$$
\widetilde{B}_{m, n, p, q}: C([0,1+p] \times[0,1+q]) \rightarrow C([0,1] \times[0,1]),
$$

which associates to any function $f \in C([0,1+p] \times[0,1+q])$ the approximant

$$
\begin{equation*}
\left(\widetilde{B}_{m, n, p, q} f\right)(x, y)=\sum_{k=0}^{m+p} \sum_{j=o}^{n+q} \widetilde{p}_{m, n}(x) \widetilde{p}_{n, j}(y) f\left(\frac{k}{m}, \frac{j}{n}\right), \tag{9}
\end{equation*}
$$

where $\widetilde{p}_{m, n}(x), \widetilde{p}_{n, j}(y)$ are the fundamental polynomials of Bernstein-Schurer.
Theorem 5. The bivariate Bernstein-Schurer operator (9) interpolates the function $f \in C([0,1+p] \times[0,1+q])$ in the point $(0,0)$, i.e.

$$
\begin{equation*}
\left(\widetilde{B}_{m, n, p, q} f\right)(0,0)=f(0,0) . \tag{10}
\end{equation*}
$$

Theorem 6. If $e_{i j}(x, y)=x^{i} y^{j}(0 \leq i+j \leq 2, i, j \in \mathbb{N})$ are the test functions, the following equalities:
(i) $\left(\widetilde{B}_{m, n, p, q} e_{00}\right)(x, y)=1$;
(ii) $\left(\widetilde{B}_{m, n, p, q} e_{10}\right)(x, y)=\{1+p / m\} x$;
(iii) $\left(\widetilde{B}_{m, n, p, q} e_{01}\right)(x, y)=\{1+q / n\} y$;
(iv) $\left(\widetilde{B}_{m, n, p, q} e_{11}\right)(x, y)=\{1+p / m\} \times\{1+q / n\} x y$;
(v) $\left(\widetilde{B}_{m, n, p, q} e_{20}\right)(x, y)=(m+p) m^{-2}\left\{(m+p) x^{2}+x(1-x)\right\}$;
(vi) $\left(\widetilde{B}_{m, n, p, q} e_{02}\right)(x, y)=(n+q) n^{-2}\left\{(n+q) y^{2}+y(1-y)\right\}$;
hold, for any $(x, y) \in[0,1+p] \times[0,1+q]$.

Proof. We shall prove only the identity (iii), the proofs of the others being similar.

$$
\begin{aligned}
\left(\widetilde{B}_{m, n, p, q} e_{11}\right)(x, y) & =\sum_{k=0}^{m+p} \sum_{j=0}^{n+q} \widetilde{p}_{m, k}(x) \widetilde{p}_{n, j}(y) \cdot(k / m)(j / n) \\
& =\left\{\sum_{k=0}^{m+p} \widetilde{p}_{m, k}(x)(k / m)\right\}\left\{\sum_{j=0}^{n+q} \widetilde{p}_{n, j}(y)(j / n)\right\} \\
& =\left(\widetilde{B}_{m, p} e_{1}(x)\right)\left(\widetilde{B}_{n, q} e_{1}(y)\right) \\
& =(1+p / m)(1+q / n) x y .
\end{aligned}
$$

Theorem 7. The sequence $\left\{\widetilde{B}_{m, n, p, q} f\right\}_{m, n \in \mathbb{N}}$ converges to f, uniformly on $C([0,1+p] \times[0,1+q])$, for any $f \in C([0,1+p] \times[0,1+q])$.

Proof. Using Theorem 6, it follows that $\widetilde{B}_{m, n, p, q} e_{i j}$ converges to $e_{i j}$ uniformly on $C([0,1+p] \times[0,1+q])$, for any $i, j \in \mathbb{N}$ satisfying the conditions $0 \leq i+j \leq 2$. Next, applying the Theorem 2 we get the desired result.

Theorem 8. The following inequality

$$
\begin{equation*}
\left|\left(\widetilde{B}_{m, n, p, q} f\right)(x, y)-f(x, y)\right| \leq 4 \omega_{f}\left(\delta_{m, p, x}, \delta_{n, q, y}\right) \tag{11}
\end{equation*}
$$

holds, for any $f \in C([0,1+p] \times[0,1+q])$, and any $(x, y) \in[0,1+p] \times[0,1+q]$, where:

$$
\begin{align*}
\delta_{m, p, x} & =\sqrt{p^{2} m^{-2} x^{2}+(m+p) m^{-2} x(1-x)}, \tag{12}\\
\delta_{n, q, y} & =\sqrt{q^{2} n^{-2} y^{2}+(n+q) n^{-2} y(1-y)} . \tag{13}
\end{align*}
$$

Proof. It is easy to observe that

$$
\begin{aligned}
& \widetilde{B}_{m, n, p, q}\left((\circ-x)^{2} ; x, y\right)=p^{2} m^{-2} x^{2}+(m+p) m^{-2} x(1-x) \\
& \widetilde{B}_{m, n, p, q}\left((*-y)^{2} ; x, y\right)=q^{2} n^{-2} y^{2}+(n+q) n^{-2} y(1-y)
\end{aligned}
$$

Next, using the Theorem 3 we arrive to the desired inequality (11).

REFERENCES

[1] Agratini O., Approximation by linear operators, Presa Universitară Clujeană, 2000 (in Romanian).
[2] BĂRbosu D., Properties of the fundamental polynomials of Bernstein-Schurer (to appear in Proceedings of ICAM 3).
[3] Bărbosu D., The Voronovskaja theorem for the Bernstein-Schurer operators (to appear in Proceed. of ICAM 3).
[4] Devols J. and Schempp W., Boolean Methods in Interpolation and Approximation, Longman Scientific \& Technical, 1989.
[5] Schurer F., Linear positive operators in approximation theory, Math. Inst. Techn. Univ. Delft. Report, 1962.
[6] Stancu D. D., Numerical Analysis, Univ. Babeş-Bolyai, 1977 (in Romanian).
[7] Stancu F., Approximation of functions of two and more variables by linear positive operators, Ph. D. Thesis, Univ. "Babeş-Bolyai", Cluj Napoca, 1984 (in Romanian).

Received by the editors: April 28, 2003.

[^0]: *North University of Baia Mare, Departament of the Mathematics and Computer Science, Victoriei 76, 4800 Baia Mare, Romania, e-mail: dbarbosu@ubm.ro.

