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Abstract. In this paper, we suggest some procedures for solving two special
classes of max-min fractional reverse-convex programs. We show that a special
bilinear fractional max-min reverse-convex program can be solved by a linear
reverse-convex programming problem.

For a linear fractional max-min reverse-convex program, possessing two re-
verse-convex sets, we propose a parametrical method. The particularity of this
procedure is the fact that the max-min optimal solution of the original problem
is obtained by solving at each iteration two linear reverse-convex programs with
a rank-two monotonicity property.
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1. INTRODUCTION

In this paper, we propose some methods for solving two special classes of
max-min fractional reverse-convex programs.

Let X ⊆ Rn, Y ⊆ Rm be given convex sets. Let T be a reverse-convex set in
Rn (i.e. the complement of a convex set in Rn) and S be a reverse-convex set
in Rm and h : X×Y → R. The general max-min reverse-convex programming
consists in finding an optimal max-min solution for:

PRC. max
x∈X∩T

min
y∈Y ∩S

h(x, y).

We recall (see, e.g. [14, 17]) that a point (x′, y′) ∈ (X ∩ T ) × Y is said
to be an optimal max-min solution for PRC problem, if the following two
conditions hold:

(i) h(x′, y′) = max
x∈X∩T

min
y∈Y ∩S

h(x, y),

(ii) min
y∈Y ∩S

h(x′, y) = h(x′, y′).
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In the particular case, when PRC is a simple maximization problem only
(i.e. Y has a single element, X is a polyhedral set and T is a reverse-convex set
defined by a convex or quasi-convex constraint which has a rank-two mono-
tonicity property), we recall that procedures for solving the maximum (or
minimum) reverse-convex programming problems were given, for instance, in
the papers [4], [7], [8], [10], [18], [6]. Duality aspects of the reverse-convex pro-
gramming can be found in the paper by Penot [9]. For the max-min reverse-
convex programming we mention the refs. [5], [6].

In section 2, for a special fractional type of the objective function h and
for some particular cases of the sets X,Y, T and S, we obtain a particular
case of problem PRC of bilinear fractional form, for which we propose, in
Section 3, a method of finding optimal max-min solutions by reducing these
problems to the particular case when X is a polyhedral set and T is a reverse-
convex set defined by a convex or quasi-convex constraint that has a rank-two
monotonicity property. These auxiliary problems can be solved by Kuno-
Yamamoto procedure [8].

In section 4, we consider a max-min linear fractional reverse-convex pro-
gramming problem, having two reverse-convex sets T and S, and for which we
propose a parametric procedure.

Some concluding remarks are made in the last section.

2. BILINEAR FRACTIONAL MAX-MIN REVERSE-CONVEX PROGRAM PFM

Next we consider the following bilinear fractional max-min reverse-convex
program (see, [6]) in which the reverse set S = Rm:

PFM. Find

(1) V = max
x∈X∩T

min
y∈Y

(
yTCx+ cTx+ eTy + e0

max{αT
i y + βi|i ∈ I}

)
where I = {1, 2, ..., r}, C ∈ Rm×n, c ∈ Rn, e, αi ∈ Rm and e0, βi ∈ R, (i ∈ I).

The sets X and Y are defined by
(2) X = {x ∈ Rn|Ax = a, x ≥ 0},

(3) Y = {y ∈ Rm|Dy ≥ d, y ≥ 0},
where A ∈ Rs×n, a ∈ Rs, D ∈ Rq×m, d ∈ Rq.

The reverse-convex set
(4) T = {x ∈ X0|f (x) ≤ 0},
is defined by a function f : Rn → R, which is continuous, strictly quasiconcave
and has rank-two monotonicity on an open convex setX0 ⊆ Rn, which includes
the set X.

We recall that f is said to be strictly quasiconcave on X0 if for each x, y ∈
X0 with f(x) 6= f(y) we have f((1 − t)x + ty) > min{f(x), f(y)}, for any
t ∈ (0, 1).
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Definition 1. [8] The function f possess a rank-two monotonicity on X0

with respect to linearly independent vectors λ1, λ2 ∈ Rn, if for any points
x′, x′′ ∈ X0, the inequality λix′ ≤ λix′′, i = 1, 2 implies f (x′) ≤ f (x′′) .

We have the following representation for a function f possessing a rank-two
monotonicity on X0 with respect to linearly independent vectors λ1, λ2 ∈ Rn.

Lemma 2. [8] If the function f possess a rank-two monotonicity on X0

with respect to linearly independent vectors λ1, λ2 ∈ Rn, then there exists
a function g : R2 → R, which is continuous and strictly quasiconcave on
Γ0 = {(λ1x, λ2x)|x ∈ X0} and satisfies the following two conditions:
(i) f(x) = g(λ1x, λ2x), for x ∈ X0,
(ii) g(θ) ≤ g(η) if θ, η ∈ Γ0 and θ ≤ η.

Concerning the problem PFM, we make the following assumptions:
A1. Y is a bounded non-empty set,
A2. the function f is continuous, strictly quasi-concave and has rank-two

monotonicity on the open convex set X0,
A3. max{αiy + βi|i ∈ I} > 0, ∀y ∈ Y.

3. LINEAR REVERSE-CONVEX PROGRAMMING APPROACH

We proposed in [6] a procedure for solving problem PFM based on the
Charnes-Cooper [1] variable change.

Thus, if we perform in the problem (1)–(4), the Charnes-Cooper variable
change v = ty, t ≥ 0, v ∈ Rs, (see, also Schaible [11], Stancu-Minasian [12]
and Tigan [14], [16]) it follows by assumptions A1 and A3 that problem PFM
is equivalent with:

PA. Find
(5) V ′ = max

x∈X∩T
min

(v,t)∈Y ′

(
vTCx+ cTxt+ eTv + e0t

)
,

where the set Y ′ is defined by:
(6) Dv − dt ≥ 0,

(7) max{αT
i v + βit|i ∈ I} ≥ 1,

(8) v ≥ 0, t ≥ 0.
We can show, by assumptions A1 and A3, that V = V ′ and that for any

optimal max-min solution (x∗, y∗) of problem PFM there exists an optimal
max-min solution (x∗, v∗, t∗) of problem PA such that y∗ = v∗

t∗ and conversely.
By Golstein [3] (see, also Ţigan and Stancu-Minasian [17]), the constraint

(7) in Problem PA can be rewritten as the following maximum bilinear con-
straint:

(9) max
θ∈Z

r∑
i=1
θi(αiv + βit− 1) ≥ 0,
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where Z = {θ ∈ Rr|
r∑
i=1
θi = 1, θi ≥ 0, i = 1, 2, ..., r}.

Let us denote

(10) ψ(v, t) = max
θ∈Z

r∑
i=1
θi(αT

i v + βit− 1), ∀(v, t) ∈ Y ′.

By linear programming duality, for any (v, t) ∈ Y ′, we have

(11) ψ(v, t) = min w

subject to

(12) w ≥ αT
i v + βit− 1,∀i ∈ I, w ≥ 0.

From (10)–(12), it follows that the inequation (9) can be expressed by the
following system:

w ≥ 0,
w ≥ αT

i v + βit− 1,∀i ∈ I.
Therefore, problem PA can be reduced to the following max-min bilinear

reverse-convex program
PMM1. Find

(13) V ′ = max
x∈X∩T

min
(v,t,w)∈Y ′′

(
vT(Cx+ e) + t(cTx+ e0)

)
,

where the set Y ′′ is defined by:

(14) Dv − dt ≥ 0,

(15) w ≥ αT
i v + βit− 1,∀i ∈ I

(16) v ≥ 0, t ≥ 0, w ≥ 0.

From (13)–(16), by linear programming duality, for any x ∈ X ∩T, problem
PMM1 can be transformed into the following linear reverse-convex program:

PML. Find

(17) V ′ = max
x,u,z

(−z1 − z2 − ...− zr) ,

subject to

uTD − zTΩ ≤ Cx+ e,

−uTd− zTΛ ≤ cTx+ e0, i ∈ I
x ∈ X ∩ T,
u ≥ 0, z ≥ 0, u ∈ Rq, z ∈ Rr.

In problem PML, we denote by Ω ∈ Rr×s the matrix having the rows αi
(i ∈ I), and by Λ the vector Λ = (β1, ..., βr)T ∈ Rr.

Therefore, we proved the following theorem:
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Theorem 3. If the problem PFM satisfies the assumptions A1-A3, then
problem PFM can be solved by solving the linear reverse-convex program with
a rank-two monotonicity PML.

In order to solve problem PFM, a procedure similar to Algorithm 1 can
be used, by replacing in step1 the problem PLC by the linear reverse-convex
programming problem PML.

Algorithm 1. Step 1. Solve the linear reverse-convex programs with a
rank-two monotonicity PML.

If V < ∞ and the feasible set X ′ of PML is non-empty, let x∗ be the
corresponding component of an optimal solution of problem PML.

If X = ∅, then take V = −∞.
Step 2. i) If −∞ < V < ∞, then (x∗, y∗) is an optimal solution of max-

min problem PFM, where y∗ is an optimal solution of the generalized linear-
fractional program PFA.

ii) If V = −∞, then PFM is unfeasible.
iii) If V =∞, then PFM has an infinite optimum.

We make the remark that auxiliary linear reverse-convex programming
problem PML in Algorithm 1 is simpler than the auxiliary linear reverse-
convex programming problem in the algorithm proposed for this problem in
[6]. Indeed, problem PML has only s+r linear constraints the auxiliary prob-
lem in [6] posses (s+ 2)r linear constraints. Therefore, Algorithm 1 seems to
be more efficient than algorithm proposed for this problem in [6].

4. MAX-MIN LINEAR FRACTIONAL REVERSE-CONVEX PROGRAMMING WITH

TWO SEPARATE REVERSE-CONVEX FEASIBLE SETS

In this section, we consider the following max-min linear fractional program
GLF. Find

max
x∈X∩T

min
y∈Y ∩S

h(x, y)

where

h(x, y) = αTx+ βTy + β0
γTx+ ηTy + η0

,

verifying the condition

γTx+ ηTy + η0 > 0, ∀x ∈ X, ∀y ∈ Y.

In problem GLF, X and S are defined by

(18) X = {x ∈ Rn|Ax = a, x ≥ 0},

(19) Y = {y ∈ Rm|By = b, y ≥ 0},

where A ∈ Rs×n, B ∈ Rp×m, a ∈ Rs, b ∈ Rp, α, γ ∈ Rn, β, η ∈ Rm, β0, η0 ∈ R,
are given matrices, vectors and real constants respectively.
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The reverse-convex set
(20) T = {x ∈ X0|f (x) ≤ 0},
is defined by a function f : Rn → R, which is continuous, strictly quasiconcave
and has rank-two monotonicity on an open convex setX0 ⊆ Rn, which includes
the set X and the reverse-convex set
(21) S = {y ∈ Y 0|f1(y) ≤ 0},
is defined by a function f1 : Rm → R, which is continuous, strictly quasicon-
cave and has rank-two monotonicity on an open convex set Y 0 ⊆ Rm, which
includes the set Y .

For solving problem GLF we can use a parametric procedure (see, [2], [13],
[15]), by which an approximate optimal solution could be found by solving a
sequence of the auxiliary reverse-convex programs each of them having only
one reverse-convex constraint.

Algorithm 2. Let ε > 0 be a given positive real number, representing a
level of approximation to be attain by algorithm.

1. Find a point x0 ∈ X ∩ T and a point y0 ∈ Y ∩ S and set k := 0.
2. Take

tk = h(xk, yk).
3. Find

(22) F (tk) = max
x∈X∩T

min
y∈Y ∩S

[(α− tkγ)x+ (β − tkη)y + β0 − tkη0].

But the max-min program (22) can be transformed into the following two
linear reverse-convex programs

PL1. Find
(23) max

x
(α− tkγ)x

subject to
(24) x ∈ X ∩ T.
PL2. Find
(25) min

y
[(β − tkη)y + β0 − tkη0]

subject to
(26) y ∈ Y ∩ S.

Let xk+1, yk+1 be an optimal solution of the linear reverse-convex pro-
gram (23)–(24) and (25)–(26), respectively. Obviously, we have F (tk) =
(α− tkγ)xk+1 + (β − tkη)yk+1 + β0 − tkη0.

4. i) If F (tk) ≤ ε, then (xk+1, yk+1) is an approximate optimal solution of
problem GLF.

ii) If F (tk) > ε, then take k:=k+1 and go to the step 2.
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5. CONCLUSIONS

In this paper we consider two fractional max-min reverse-convex program-
ming problems.

Firstly, we give a new procedure for solving a particular class of max-
min bilinear fractional reverse-convex programming problems. The partic-
ularity of this procedure is the fact that the max-min optimal solution of
the original problem is obtained by solving a single linear reverse-convex pro-
gram with a rank-two monotonicity with an algorithm proposed by Kuno and
Yamamoto [8].

Secondly, we consider a parametric procedure for solving a particular class
of max-min linear fractional reverse-convex programming problems, possessing
two reverse-convex feasible sets. The particularity of this procedure is the fact
that the max-min optimal solution of the original problem is obtained by
solving at each iteration two linear reverse-convex programs with a rank-two
monotonicity with the algorithm of Kuno and Yamamoto.
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Approx., 9, no. 2, pp. 283–288, 1980.

http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art11
http://ictp.acad.ro/jnaat/journal/article/view/1975-vol4-no1-art11
http://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art14
http://ictp.acad.ro/jnaat/journal/article/view/1980-vol9-no2-art14


174 Doina Ionac and Ştefan Ţigan 8
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