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Abstract. In this paper, we suggest some procedures for solving two special
classes of max-min fractional reverse-convex programs. We show that a special
bilinear fractional max-min reverse-convex program can be solved by a linear
reverse-convex programming problem.

For a linear fractional max-min reverse-convex program, possessing two re-
verse-convex sets, we propose a parametrical method. The particularity of this
procedure is the fact that the max-min optimal solution of the original problem
is obtained by solving at each iteration two linear reverse-convex programs with
a rank-two monotonicity property.
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1. INTRODUCTION

In this paper, we propose some methods for solving two special classes of
max-min fractional reverse-convex programs.

Let X CR™ Y C R™ be given convex sets. Let T" be a reverse-convex set in
R™ (i.e. the complement of a convex set in R™) and S be a reverse-convex set
in R™and h: X XY — R. The general max-min reverse-convex programming
consists in finding an optimal max-min solution for:

PRC. max  min h(x,y).
2€EXNT  yeyns

We recall (see, e.g. [I4] [I7]) that a point (2/,y’) € (X NT) x Y is said
to be an optimal max-min solution for PRC problem, if the following two
conditions hold:

) k(2 y) = in h
(4) (@',y) = max — min h(z,y),

.. . / o ;o
(“) yg}l}gsh(l‘ 7y) - h(ﬂj‘ Y )
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In the particular case, when PRC is a simple maximization problem only
(i.e. Y has a single element, X is a polyhedral set and T is a reverse-convex set
defined by a convex or quasi-convex constraint which has a rank-two mono-
tonicity property), we recall that procedures for solving the maximum (or
minimum) reverse-convex programming problems were given, for instance, in
the papers [4], [7], [8], [10], [18], [6]. Duality aspects of the reverse-convex pro-
gramming can be found in the paper by Penot [9]. For the max-min reverse-
convex programming we mention the refs. [5], [6].

In section 2, for a special fractional type of the objective function h and
for some particular cases of the sets X,Y,T and S, we obtain a particular
case of problem PRC of bilinear fractional form, for which we propose, in
Section 3, a method of finding optimal max-min solutions by reducing these
problems to the particular case when X is a polyhedral set and T is a reverse-
convex set defined by a convex or quasi-convex constraint that has a rank-two
monotonicity property. These auxiliary problems can be solved by Kuno-
Yamamoto procedure [8].

In section 4, we consider a max-min linear fractional reverse-convex pro-
gramming problem, having two reverse-convex sets 1" and S, and for which we
propose a parametric procedure.

Some concluding remarks are made in the last section.

2. BILINEAR FRACTIONAL MAX-MIN REVERSE-CONVEX PROGRAM PFM

Next we consider the following bilinear fractional max-min reverse-convex
program (see, [6]) in which the reverse set S = R™:
PFM. Find

(1) V — max min yTCx + cTo +eTy + e
r€EXNTyEY

max{afy + Bili € I}

where I = {1,2,....7},C e R™*" c € R, e,a; € R™ and e, 3; € R, (i € I).
The sets X and Y are defined by

(2) X ={z e R"Az = a,z > 0},

(3) Y ={y e R"[Dy > d,y > 0},

where A € RS™ q € R®, D € R¥*"™ d € R,
The reverse-convex set

(4) T ={z e X°f(x) <0},

is defined by a function f : R™ — R, which is continuous, strictly quasiconcave
and has rank-two monotonicity on an open convex set X° C R”, which includes
the set X.

We recall that f is said to be strictly quasiconcave on X0 if for each z,y €
X0 with f(z) # f(y) we have f((1 —t)z + ty) > min{f(z), f(y)}, for any
te(0,1).
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DEFINITION 1. [8] The function f possess a rank-two monotonicity on X°
with respect to linearly independent vectors A, Ao € R™, if for any points
o 2" € X0, the inequality \ix' < Nix”, i = 1,2 implies f (2') < f (z").

We have the following representation for a function f possessing a rank-two
monotonicity on X with respect to linearly independent vectors Ai, Ay € R™.

LEMMA 2. [8] If the function f possess a rank-two monotonicity on X°
with respect to linearly independent vectors A1, o € R™, then there exists
a function g : R? — R, which is continuous and strictly quasiconcave on
% = {(\z, \az) |z € X} and satisfies the following two conditions:

(i) f(z) = g(\iz, Aox), for x € XO,
(ii) g(0) < g(n) if 6,7 € T° and 6 <.

Concerning the problem PFM, we make the following assumptions:

Al. Y is a bounded non-empty set,

A2. the function f is continuous, strictly quasi-concave and has rank-two
monotonicity on the open convex set XY,

A3. max{a;y + Bili € [} >0,Vy €Y.

3. LINEAR REVERSE-CONVEX PROGRAMMING APPROACH

We proposed in [6] a procedure for solving problem PFM based on the
Charnes-Cooper [I] variable change.

Thus, if we perform in the problem —, the Charnes-Cooper variable
change v = ty, t > 0, v € R®, (see, also Schaible [I1], Stancu-Minasian [12]
and Tigan [14], [16]) it follows by assumptions Al and A3 that problem PFM
is equivalent with:

PA. Find
(5) V' = max min (vTCx +clat + v+ eot) ,
2€XNT(v,t)EY”
where the set Y’ is defined by:
(6) Dv —dt >0,
(7) max{a v+ Bit)i € I} > 1,
(8) v>0,t>0.

We can show, by assumptions Al and A3, that V' = V' and that for any
optimal max-min solution (z*,y*) of problem PFM there exists an optimal
max-min solution (z*,v*,t*) of problem PA such that y* = % and conversely.

By Golstein [3] (see, also Tigan and Stancu-Minasian [I7]), the constraint
@ in Problem PA can be rewritten as the following maximum bilinear con-
straint:

.

(9) max ;i (v + pit — 1) > 0,
0cz i
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T
where Z ={0 e R"|>0;,=1,0; >0,i=1,2,...,1}.
i=1

Let us denote

r
(10) (v, t) = max ;91-(@? v+ Bit —1),Y(v,t) € Y.
By linear programming duality, for any (v,t) € Y’, we have
(11) P(v,t) = min w

subject to

(12) w > afv4 Bit —1,Vi € I,w > 0.

From 7, it follows that the inequation @ can be expressed by the
following system:
w >0,
w > atv+ Bt —1,Vi € L.
Therefore, problem PA can be reduced to the following max-min bilinear

reverse-convex program
PMM1. Find

13 V' = i T t(ct
03) i, (MO i b)),

where the set Y is defined by:

(14) Dy —dt >0,
(15) w>afv+ fit—1,Viel
(16) v>0,t>0,w>0.

From —, by linear programming duality, for any z € X NT, problem
PMM1 can be transformed into the following linear reverse-convex program:
PML. Find

(17) V= max (=21 — 22— . — 21),

subject to
W'D - 2TQ < Cx+ e,
—uTd—2TA <Yz 4ep, i€l
reXNT,
u>0,2>0ueR! zeR".
In problem PML, we denote by © € R"** the matrix having the rows «;

(i € I), and by A the vector A = (31, ..., 3,)T € R".
Therefore, we proved the following theorem:
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THEOREM 3. If the problem PFM satisfies the assumptions AI1-A3, then
problem PFM can be solved by solving the linear reverse-convex program with
a rank-two monotonicity PML.

In order to solve problem PFM, a procedure similar to Algorithm 1 can
be used, by replacing in stepl the problem PLC by the linear reverse-convex
programming problem PML.

ALGORITHM 1. Step 1. Solve the linear reverse-convexr programs with a
rank-two monotonicity PML.

If V < oo and the feasible set X' of PML is non-empty, let z* be the
corresponding component of an optimal solution of problem PML.

If X =0, then take V = —cc.

Step 2. 1) If —oo < V < oo, then (x*,y*) is an optimal solution of max-
min problem PFM, where y* is an optimal solution of the generalized linear-
fractional program PFA.

ii) If V = —o0, then PFM is unfeasible.

iii) If V = oo, then PFM has an infinite optimum.

We make the remark that auxiliary linear reverse-convex programming
problem PML in Algorithm 1 is simpler than the auxiliary linear reverse-
convex programming problem in the algorithm proposed for this problem in
[6]. Indeed, problem PML has only s+ 7 linear constraints the auxiliary prob-
lem in [6] posses (s + 2)r linear constraints. Therefore, Algorithm 1 seems to
be more efficient than algorithm proposed for this problem in [6].

4. MAX-MIN LINEAR FRACTIONAL REVERSE-CONVEX PROGRAMMING WITH
TWO SEPARATE REVERSE-CONVEX FEASIBLE SETS

In this section, we consider the following max-min linear fractional program
GLF. Find

max  min h(z,y)
c€XNT yeyns

where
otz + BTy + o
Yo +nTy+m

h(z,y) =
verifying the condition
Az +nTy+n >0, Ve e X, VyeV.
In problem GLF, X and S are defined by
(18) X ={z e R"Az = a,z > 0},

(19) Y ={y e R"|By = b,y = 0},

where A € RS*" B € RP*™ g € R*,b € RP,c,y € R™", 3,1 € R™, By, € R,
are given matrices, vectors and real constants respectively.
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The reverse-convex set
(20) T ={z e X°f(z) <0},

is defined by a function f : R™ — R, which is continuous, strictly quasiconcave
and has rank-two monotonicity on an open convex set X° C R”, which includes
the set X and the reverse-convex set

(21) S={yeY’|fily) <0},

is defined by a function f; : R™ — R, which is continuous, strictly quasicon-
cave and has rank-two monotonicity on an open convex set Y9 C R™, which
includes the set Y.

For solving problem GLF we can use a parametric procedure (see, [2], [13],
[15]), by which an approximate optimal solution could be found by solving a
sequence of the auxiliary reverse-convex programs each of them having only
one reverse-convex constraint.

ALGORITHM 2. Let € > 0 be a given positive real number, representing a
level of approximation to be attain by algorithm.

1. Find a point z° € X N'T and a point y° € Y NS and set k := 0.

2. Take

3. Find

29 F(t) = i ¢ —t — tmol.
(22) (tk) nax yg}gs[(a k)T + (8 = tkm)y + Bo — temo]

But the max-min program ([22) can be transformed into the following two
linear reverse-convex programs

PL1. Find
(23) mgx(a —tgy)T
subject to
(24) reXNT.
PL2. Find
(25) min[(f — tyn)y + Bo — tato]
subject to
(26) yeYnNn§s.

Let zFt1 y*+1 be an optimal solution of the linear reverse-convex pro-
gram f and 7, respectively. Obviously, we have F(t;) =
(a — tgy) 2™+ (B — i)y + Bo — timo.

4. 1) If F(ty) < e, then (z**+! y**+1) is an approximate optimal solution of
problem GLF.

ii) If F(ty) > e, then take k:=k+1 and go to the step 2.
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5. CONCLUSIONS

In this paper we consider two fractional max-min reverse-convex program-
ming problems.

Firstly, we give a new procedure for solving a particular class of max-
min bilinear fractional reverse-convex programming problems. The partic-
ularity of this procedure is the fact that the max-min optimal solution of
the original problem is obtained by solving a single linear reverse-convex pro-
gram with a rank-two monotonicity with an algorithm proposed by Kuno and
Yamamoto [g].

Secondly, we consider a parametric procedure for solving a particular class
of max-min linear fractional reverse-convex programming problems, possessing
two reverse-convex feasible sets. The particularity of this procedure is the fact
that the max-min optimal solution of the original problem is obtained by
solving at each iteration two linear reverse-convex programs with a rank-two
monotonicity with the algorithm of Kuno and Yamamoto.
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