FINITELY DEFINED FUNCTIONALS AND DIVIDED DIFFERENCES

MIRCEA IVAN∗

Dedicated to Professor Elena Popoviciu on the occasion of her 80th birthday.

Abstract. We give a necessary and sufficient condition for representing finitely defined functionals in terms of divided differences. As particular cases we obtain formulas of Tiberiu Popoviciu, Newton, etc.

MSC 2000. 41A05, 41A10.

Keywords. Divided difference, finitely defined functionals.

1. PRELIMINARIES AND NOTATIONS

Let n be a positive integer. We use the following notations andabbreviations:

• \mathcal{P}_n, the linear space of polynomials of degree at most n;
• $e_i \in \mathcal{P}_n$, $e_i(t) = t^i$, $i = 0, \ldots, n$;
• x_0, \ldots, x_n, distinct points of an interval $[a, b]$;
• \mathcal{F}, the linear space of all real functions defined on $\{x_0, \ldots, x_n\}$;
• \mathcal{A}_n, a set of linear finitely defined functionals,

$$\mathcal{A}_n = \left\{ A : \mathcal{F} \to \mathbb{R} \mid A(f) = \sum_{i=0}^{n} a_i f(x_i), \ a_0, \ldots, a_n \in \mathbb{R} \right\};$$

• $[t_1, \ldots, t_n; f]$, the divided difference of the function f, with respect to the distinct nodes t_1, \ldots, t_n;
• $\{x_{i,0}, \ldots, x_{i,n_i}\}, i = 0, \ldots, n$, nonempty subsets of $\{x_0, \ldots, x_n\}$;
• $u_+ := \begin{cases} 0, & \text{if } u \leq 0; \\ u, & \text{if } u > 0, \end{cases}$ the positive part of u;

Lemma 1. If $f_0, \ldots, f_n \in \mathcal{F}$ are linearly independent and $F_0, \ldots, F_n \in \mathcal{A}_n$ satisfy the condition

$$d := \det(F_i(f_j))_{i,j=0}^{n} \neq 0,$$
then, for any $A \in \mathcal{A}_n$, the following formula is satisfied

\[A = \sum_{k=0}^{n} \frac{(-1)^k}{d} \begin{vmatrix} A(f_0) & \cdots & A(f_n) \\ F_0(f_0) & \cdots & F_0(f_n) \\ \vdots & \ddots & \vdots \\ F_k(f_0) & \cdots & F_k(f_n) \\ F_n(f_0) & \cdots & F_n(f_n) \end{vmatrix} \cdot F_k \] \tag{2}

(the notation $\not\!F_k$ means that the k-th row is canceled).

Proof. Let $f \in \mathcal{F}$. Taking into account the fact that f is a linear combination of f_0, \ldots, f_n, it follows that

\[
\begin{vmatrix} A(f_0) & \cdots & A(f_n) \\ F_0(f_0) & \cdots & F_0(f_n) \\ \vdots & \ddots & \vdots \\ F_n(f_0) & \cdots & F_n(f_n) \end{vmatrix} = 0.
\]

We expand the determinant in terms of the first column and we take into consideration (1). □

Consider the polynomials

\[P_i(t) := \frac{\ell(t)}{(t - x_{i,0}) \ldots (t - x_{i,n})}, \]

$i = 0, \ldots, n$, where $\ell(t) := (t - x_0) \ldots (t - x_n)$.

For $y_0, \ldots, y_p \in \{x_0, \ldots, x_n\}$, the reduction formula for divided differences gives

\[\left[x_0, \ldots, x_n; \frac{\ell(t)}{(t - y_0) \ldots (t - y_p)} f(t) \right]_t = [y_0, \ldots, y_p; f]. \]

The the polynomials P_i satisfy

\[[x_0, \ldots, x_n; P_i \cdot f] = [x_{i,0} \ldots, x_{i,n}; f]. \] \tag{4}

Lemma 2. If $Q \in \mathcal{P}_n$ and

\[[x_0, \ldots, x_n; P Q] = 0, \quad \forall P \in \mathcal{P}_n, \]

then $Q = 0$.

Proof. By virtue of (1), with $P_i(t) = \ell(t)/(t - x_i), i = 0, \ldots, n$, we obtain

\[Q(x_i) = [x_i; Q] = [x_0, \ldots, x_n; P_i \cdot Q] = 0, \quad i = 0, \ldots, n, \]

hence $Q = 0$. □
2. MAIN RESULTS

Theorem 3. Any functional \(A \in A_n \) can be written in the form

\[
A = \sum_{k=0}^{n} \lambda_k [x_{k,0}, \ldots, x_{k,n}; \cdot],
\]

for some \(\lambda_0, \ldots, \lambda_n \in \mathbb{R} \), if and only if the polynomials \(P_0, \ldots, P_n \) are linearly independent.

Proof. Necessity. Let \(P \in P_n \) be an arbitrary polynomial of degree \(n \). Consider the linear functional

\[
A(f) = [x_0, \ldots, x_n; P \cdot f].
\]

It follows that there exist \(\lambda_k \in \mathbb{R}, k = 0, \ldots, n \), such that

\[
A(f) = \sum_{k=0}^{n} \lambda_k [x_{k,0}, \ldots, x_{k,n}; f], \quad \forall f \in F.
\]

By using (4), we obtain

\[
A(f) = \sum_{k=0}^{n} \lambda_k [x_0, \ldots, x_n; P_k \cdot f] = \sum_{k=0}^{n} \lambda_k P_k \cdot f],
\]

Consequently,

\[
\left[x_0, \ldots, x_n; \left(P - \sum_{k=0}^{n} \lambda_k P_k \right) f \right] = 0, \quad \forall f \in F,
\]

therefore, by Lemma 2, we obtain

\[
P = \sum_{k=0}^{n} \lambda_k P_k,
\]

that is the set \(\{P_0, \ldots, P_n\} \) is a basis in \(P_n \). It follows that the polynomials \(P_0, \ldots, P_n \) are linearly independent.

Sufficiency. Suppose that the polynomials \(P_0, \ldots, P_n \) are linearly independent and let \(A \in A_n, A(f) = \sum_{k=0}^{n} a_k f(x_k) \). There exist \(\lambda_0, \ldots, \lambda_n \in \mathbb{R} \) such that

\[
\sum_{k=0}^{n} a_k \frac{f(t)}{t-x_k} = \sum_{k=0}^{n} \lambda_k P_k(t), \quad t \in \{x_0, \ldots, x_n\}.
\]

It follows that

\[
\sum_{k=0}^{n} a_k \frac{f(t)}{t-x_k} f(t) = \sum_{k=0}^{n} \lambda_k P_k(t) f(t), \quad t \in \{x_0, \ldots, x_n\},
\]

hence

\[
\left[x_0, \ldots, x_n; \sum_{k=0}^{n} a_k \frac{f(t)}{t-x_k} f(t) \right]_t = \left[x_0, \ldots, x_n; \sum_{k=0}^{n} \lambda_k P_k(t) f(t) \right]_t.
\]
therefore
\[\sum_{k=0}^{n} \left[x_0, \ldots, x_n; a_k \ell(t) f(t) \right] = \sum_{k=0}^{n} \left[x_0, \ldots, x_n; \lambda_k P_k(t) f(t) \right]. \]
Consequently, by using (4), it follows that
\[\sum_{k=0}^{n} a_k f(x_k) = \sum_{k=0}^{n} \lambda_k [x_{k,0}, \ldots, x_{k,n}; f]; \]
that is,
\[A(f) = \sum_{k=0}^{n} \lambda_k [x_{k,0}, \ldots, x_{k,n}; f]. \]

In what follows we consider the functionals (6)
\[D_k := [x_{k,0}, \ldots, x_{k,n}; \cdot], \quad k = 0, \ldots, n. \]

Lemma 4. If \(\det(P_i(x_j))_{i,j=0}^{n} \neq 0 \), then \(\delta := \det(D_k(P_i))_{i,k=0}^{n} \neq 0. \)

Proof. We consider the functionals \(A_j \in \mathcal{A}_n \),
\[A_j(f) = f(x_j), \quad j = 0, \ldots, n. \]
Since the polynomials \(\{P_i\} \) are linearly independent, by virtue of Theorem 3, it follows that there exists numbers \(\lambda_{jk} \) such that
\[A_j = \sum_{k=0}^{n} \lambda_{jk} D_k, \]
hence
\[P_i(x_j) = A_j(P_i) = \sum_{k=0}^{n} \lambda_{jk} D_k(P_i), \]
i, j = 0, \ldots, n. We get
\[\det(P_i(x_j))_{i,j=0}^{n} = \det(\lambda_{jk})_{k,j=0}^{n} \cdot \det(D_k(P_i))_{i,k=0}^{n}, \]
therefore \(\det(D_k(P_i))_{i,k=0}^{n} \neq 0 \).

In the next theorem we give a representation of \(\lambda_k \) from Eq. (5) in terms of the functionals (6).

Theorem 5. If \(\det(P_i(x_j))_{i,j=0}^{n} \neq 0 \) and \(A \in \mathcal{A}_n \), then
\[A = \sum_{k=0}^{n} \left(-1 \right)^k \frac{1}{\delta} \begin{vmatrix} A(P_0) & \cdots & A(P_n) \\ D_0(P_0) & \cdots & D_0(P_n) \\ \vdots & \ddots & \vdots \\ \Psi_k(P_0) /\Psi_k(P_n) & \cdots & \Psi_k(P_0)/\Psi_k(P_n) \\ \vdots & \ddots & \vdots \\ D_n(P_0) & \cdots & D_n(P_n) \end{vmatrix} [x_{k,0}, \ldots, x_{k,n}; \cdot]. \]
Proof. We use Theorem 3, Lemma 1 and Lemma 4.

3. APPLICATIONS

Corollary 6 (Popoviciu’s Transformation Formula [3 Eq. (17)]). If \(r \) is an integer, \(0 \leq r \leq n \), then for all \(A \in \mathcal{A}_n \) there exist numbers \(\alpha_i \) such that

\[
A(f) = \sum_{0 \leq i \leq r-1} \alpha_i [x_0, \ldots, x_i; f] + \sum_{r \leq i \leq n} \alpha_i [x_{i-r}, \ldots, x_i; f].
\]

Proof. In Theorem 3, we take

\[
\mathcal{P}_i(t) := \begin{cases} \frac{\ell(t)}{(t-x_0)(t-x_1)}, & 0 \leq i \leq r-1, \\ \frac{\ell(t)}{(t-x_{i-r})(t-x_i)}, & r \leq i \leq n. \end{cases}
\]

Corollary 7. [2]. If \(a = x_0 < \cdots < x_n = b \) and \(U : \mathcal{F}[a, b] \to \mathcal{F}[a, b] \) is a linear operator, then

\[
U(f; x) = U(e_0; x) f(x_0) + U(e_1 - x_0 e_0; x) [x_0, x_1; f] + \sum_{k=0}^{n-2} (x_{k+2} - x_k) U((\cdot - x_{k+1})_+; x) [x_k, x_{k+1}, x_{k+2}; f],
\]

for all \(f \in \mathcal{F}[a, b] \), \(x \in [a, b] \).

Proof. For fixed \(x \in [a, b] \), we consider the functional \(U(\cdot; x) \in \mathcal{A}_n \). The polynomials

\[
\frac{\ell(t)}{(t-x_0)}, \frac{\ell(t)}{(t-x_0)(t-x_1)}, \frac{\ell(t)}{(t-x_0)(t-x_1)(t-x_2)}, \ldots, \frac{\ell(t)}{(t-x_{n-2})(t-x_{n-1})(t-x_n)},
\]

are linearly independent. Therefore, by virtue of Theorem 3 it follows that there exist \(\alpha(x), \beta(x), a_k(x) \in \mathbb{R}, k = 0, \ldots, n-2 \), such that

\[
U(f; x) = \alpha(x) [x_0; f] + \beta(x) [x_0, x_1; f] + \sum_{k=0}^{n-2} a_k(x) [x_k, x_{k+1}, x_{k+2}; f],
\]

for all \(f \in \mathcal{F}[a, b] \).

Taking successively \(f = e_0 \) and \(f = e_1 \), we obtain

\[
\alpha(x) = U(e_0; x) \quad \text{and} \quad \beta(x) = U(e_1; x) - x_0 U(e_0; x),
\]

hence

\[
U(f; x) = U(e_0, x)f(x_0) + (U(e_1; x) - x_0 U(e_0; x))[x_0, x_1; f] + \sum_{k=0}^{n-2} a_k(x) [x_k, x_{k+1}, x_{k+2}; f], \quad \forall f \in \mathcal{F}[a, b].
\]

In order to compute the numbers \(a_k(x) \) we consider the functions

\[
\varphi_i(t) := (t - x_{i+1})_+,
\]
\(i = 0, \ldots, n - 2\). They satisfy the relations
\[
[x_k, x_{k+1}, x_{k+2}; \varphi_i] = \begin{cases}
0, & \text{if } k \neq i, \\
\frac{1}{x_{i+2} - x_i}, & \text{if } k = i,
\end{cases}
\]
i, k = 0, \ldots, n - 2. From here, we deduce
\[
U(\varphi_k; x) = \frac{a_k(x)}{x_{k+2} - x_k},
\]
and the proof is completed. \(\square\)

Corollary 8 (T. Popoviciu [6, p. 151]). If \(\Delta = \{x_0, \ldots, x_n\}\), then the broken line \(S_\Delta(f)\) associated to \(f\) on \(\Delta\) can be represented in the form
\[
S_\Delta(f)(x) = f(x_0) + (x - x_0) [x_0, x_1; f] + \sum_{k=0}^{n-2} (x_{k+2} - x_k)(x - x_{k+1}) [x_k, x_{k+1}, x_{k+2}; f], \quad x \in \mathbb{R}.
\]

Proof. If in Corollary 7 we take \(U := S_\Delta\) and use the fact that \(S_\Delta\) preserves broken lines, i.e.,
\[
\varphi_k(x) = S_\Delta(\varphi_k)(x),
\]
the proof is completed. \(\square\)

Corollary 9 (Newton Interpolating Formula). If \(x, x_0, \ldots, x_n\) are distinct points in \([a, b]\), then
\[
f(x) = \sum_{k=0}^n (x - x_0) \cdots (x - x_{k-1}) [x_0, \ldots, x_k; f] + (x - x_0) \cdots (x - x_n) [x_0, \ldots, x_n, x; f],
\]
for all \(f \in F[a, b]\).

Proof. Let \(\Delta = \{x_0, \ldots, x_{n+1}\}\) and \(A \in A_n, A(f) := f(x_{n+1})\). The polynomials
\[
\ell(t) = \frac{\ell(t)}{t-x_0} \cdot \frac{\ell(t)}{(t-x_0)(t-x_1)} \cdot \ldots \cdot \frac{\ell(t)}{(t-x_0)(t-x_1) \cdots (t-x_{n+1})},
\]
where \(\ell(t) = (t-x_0)(t-x_1) \cdots (t-x_{n+1})\), are linearly independent. Therefore, by Theorem 3 it follows that there exist \(\lambda_k \in \mathbb{R}, k = 0, \ldots, n + 1\), such that
\[
f(x_{n+1}) = \sum_{k=0}^{n+1} \lambda_k [x_0, \ldots, x_k; f],
\]
for all \(f \in F[a, b]\). In order to calculate the numbers \(\lambda_k\) we consider the functions
\[
\varphi_0(t) := 1, \quad \varphi_i(t) := (t - x_0) \cdots (t - x_{i-1}), \quad i = 1, \ldots, n + 1.
\]
We have
\[
[x_0, \ldots, x_k; \varphi_i] = \delta_{ik}, \quad k, i = 0, \ldots, n + 1.
\]
We obtain
\[\lambda_i = \varphi_i(x_{n+1}), \quad i = 0, \ldots, n + 1. \]
Consequently,
\[f(x_{n+1}) = \sum_{k=0}^{n+1} \varphi_k(x_{n+1}) \left[x_0, \ldots, x_k; f \right], \]
for all \(f \in \mathcal{F}[a, b] \). With \(x_{n+1} = x \) the proof is completed. \(\square \)

REFERENCES

Received by the editors: June 30, 2004.