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Abstract. We study some location problems in directed networks: we define
circular medians and p-circular medians, p > 1. We present an algorithm for
establishing circular medians. We adopt the definition of network as metric space
in the sense of Dearing and Francis (1974).
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1. PRELIMINARY NOTIONS AND RESULTS

Firstly, we recall the definitions of undirected networks as metric space
introduced in [1] by P. M. Dearing and R. L. Francis, and also used in [2], [10],
[11], [7], [14], [13].

We consider an undirected, connected graph G = (W,A), without loops or
multiple edges. To each vertex wi ∈W = {w1, w2, ..., wn} we associate a point
vi from Rq, q ≥ 2. This yields a finite subset V = {v1, v2, ..., vn} of Rq, called
the vertex set of the network. We also associate to each edge (wi, wj) ∈ A
a rectifiable arc [vi, vj ] ⊂ Rq called edge of the network. We assume that
any two edges have no interior common points. Consider that [vi, vj ] has the
positive length lij and denote by U the set of all edges. We define the network
N = (V,U) by

N = {x ∈ Rq | ∃ (wi, wj) ∈ A such that x ∈ [vi, vj ]} .

Suppose that for each edge [vi, vj ] ∈ U there is a continuous one-to-one
mapping θij : [vi, vj ] → [0, 1] with θij (vi) = 0, θij (vj) = 1, and θij ([vi, vj ]) =
[0, 1]. We denote by Tij the inverse function of θij.

We consider an edge u = [vi, vj ] ∈ U and the points x, y ∈ [vi, vj ]. The set
of points from the edge [vi, vj ], between x and y, included x and y, is called
closed subedge and is denoted by [x, y]. If one or both of x, y are missing we
say than the subedge is open in x, or in y or is open and we denote this by
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(x, y] , [x, y) or (x, y), respectively. Using θij , it is possible to compute the
length of [x, y] as

l ([x, y]) = |θij (x)− θij (y)| · lij .
Particularly we have

l ([vi, vj ]) = lij , l ([vi, x]) = θij (x) lij
and

l ([x, vj ]) = (1− θij (x)) lij .
We consider the points x, y ∈ N and a sequence of edges and at most two
subedges

[x, v1] , [v1, v2] , . . . , [vk−1, vk] , [vk, y] , k ∈ N, k ≤ n,(1)
{v1, v2, . . . , vk} ⊆ V

in which the vertices are not necessary distinct in twos.
A path D (x, y) between the points x, y ∈ N is the union of the edges and

subedges from the sequence (1). If x = y then the path is called cycle. The
length of a path (cycle) is the sum of the lengths of all its component edges
and subedges and will be denoted by l (D (x, y)). If a path (cycle) contains
only distinct vertices then we call it elementary.

If u = [vi, vj ] is an edge of the network, we say that vertices vi, vj are
adjacent and u and vi respectively u and vj are incident. If two distinct edges
are incident with the same vertex then we say that the edges are adjacent.

A network is connected if for any points x, y ∈ N there is a path D (x, y) ⊂
N .

A vertex v of a network N is called articulation point if N\ {v} it is not
connected.

A connected network without cycles is called tree. In a tree there is a single
path D (x, y) for every two points x, y of the tree.

Any subset of a network is called subnetwork. If N ′ is a subnetwork of a
connected network N and v is a vertex from N ′ then the degree of v in N ′,
gN ′(v), is the number of the edges and subedges containing v.

If V ′ ⊂ V the induced subnetwork from V ′ is N(V ′) = (V ′, U ′) where
U ′ ⊂ U contain all the edges [v, v′] ∈ U with v, v′ ∈ V ′.

The blocs of a network N are the maximal induced subnetworks without
articulation points.

A network N is called cactus if any two cycles has at most a common vertex.
It is immediately that trees and cycles are particularly cases of cactus.
Let D∗ (x, y) be a shortest path between the points x, y ∈ N . This path is

also called geodesic.

Definition 1. [1]. For any x, y ∈ N , the distance from x to y, d (x, y) in
the network N is the length of a shortest path from x to y:

d (x, y) = l (D∗ (x, y)) .
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Proposition 2. [9]. The function
d(·, ·) : N ×N → R,(2)

d (x, y) = l (D∗ (x, y)) , ∀x, y ∈ N,
is a metric on N.

If in an undirected network N = (V,U), we attach to each edge a sense, we
obtain a directed network, and the edges together with the respective senses
are called arcs.

If [vi, vj ] is an arc of directed network then we suppose the sense of the arc
is from the vertex vi to the vertex vj . If x, y ∈ [vi, vj ] and [x, y] has the same
sense as the arc [vi, vj ] then [x, y] is called subarc.

We consider a directed networks N = (V,U), and x, y ∈ N.
A directed path D(x, y) from the point x ∈ N to the point y ∈ N , is a

sequence of arcs and at most two subarcs at the extremities, having the same
sense:

[x, v1] , [v1, v2] , . . . , [vk−1, vk] , [vk, y] , k ∈ N,
k ≤ n, {v1, . . . , vk} ⊆ V, |{v1, . . . , vk}| = k.

If x = y then the directed path is called circuit.
We denote by D∗ (x, y) a shortest directed path from x to y.

Definition 3. A directed network N is called strong connected if there is
a directed path from x to y, for every x, y ∈ N .

A directed network N is called directed cactus if it is obtained from a cactus,
attaching to each edge a sense.

The following theorems are immediately implied.

Theorem 4. A directed cactus is strong connected if and only if every bloc
is a circuit.

Theorem 5. There is a single directed path from x to y in N if and only
if N is a strong connected directed cactus.

Remark 1. In this sense, in the case of directed networks, strong connected
directed cactus are the analogs of trees. �

In the following lines we will endow a strong connected directed network N
with a metric space structure.

We consider a strong connected directed network N , the points x, y ∈ N ,
and D∗ (x, y) a shortest directed path from x to y.

The function
d1(·, ·) : N ×N → R, where(3)

d1 (x, y) = l (D∗ (x, y)) for every x, y ∈ N,
it is not a metric on N since it is not symmetric.
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We will define a metric on N , analogously to that introduced by Bohdan
Zelinka in [20], for directed graphs.

We define the function

d0(·, ·) : N ×N → R, where(4)
d0 (x, y) = d1 (x, y) + d1 (y, x) , for every x, y ∈ N.

Proposition 6. [15]. The function d0(·, ·) : N ×N → R is a metric on N .

We call the metric d0, circular metric.
That is d0 (x, y) is equal with the length of a shortest directed path going

from x to y and then back to x.
Note that in the mentioned path, called circular path, vertices and arcs may

repeat.
We obtain a modality to compute the circular distance when the network

is a strong connected directed cactus.
We consider a strong connected directed cactus N .

Theorem 7. [15]. If x and y are distinct vertices of N then d0(x, y) is
equal with summa of the lengths of all blocs from N which contain arcs of the
path D(x, y).

In the following lines we consider a directed network N = (V,U), a vertex
vk ∈ V , an edge [vi, vj ] ∈ U and a point x = Tij(θ) ∈ [vi, vj ], θ ∈ [0, 1].

Theorem 8. The function

fk
ij : [0, 1]→ R,(5)
fk

ij(θ) = d0(vk, Tij(θ)), θ ∈ [0, 1]

is constant on (0, 1).

Proof. Indeed, from the definition of circular distance, for every θ ∈ (0, 1)
we obtain:

fk
ij(θ) = d0(vk, Tij(θ))

= d1 (vk, vi) + θlij + (1− θ)lij + d1 (vj , vk)
= d1 (vk, vi) + lij + d1 (vj , vk)

hence the function fk
ij is constant on (0, 1). �

We denote by ck
ij the constant value of the function fk

ij on (0, 1).

Theorem 9. fk
ij(0) ≤ ck

ij and fk
ij(1) ≤ ck

ij .
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Proof. Indeed,

fk
ij(0) =d0(vk, Tij(0))

=d0(vk, vi)
=d1(vk, vi) + d1(vi, vk)
≤d1 (vk, vi) + lij + d1 (vj , vk)
=ck

ij ,

and

fk
ij(1) =d0(vk, Tij(1))

=d0(vk, vj)
=d1(vk, vj) + d1(vj , vk)
≤d1 (vk, vi) + lij + d1 (vj , vk)
=ck

ij . �

2. A MINISUM LOCATION PROBLEM IN DIRECTED NETWORK

Locations on networks were initiated by the work of Hakimi [4] who formu-
lated the minimax and minisum problem in their most current form, presented
a geometrical algorithm for the minimax problem and proved his vertex op-
timality theorem, namely the set of vertices always contains an optimal solu-
tion to the minisum problem. The literature on network location problem has
grown rapidly since.

The network location problem may be formulated as follows: find the lo-
cation of a number of points on a given network (called facilities) so as to
provide goods or services to a specified set of potential users and to optimize
one or several criteria. Examples of facilities are plants, warehouses, deposits,
schools, hospitals, bus stops, mail boxes, switching centers in communication
networks, etc.

The problem is motivated by a number of potential applications. For exam-
ple: several plants are to be set up at some points of a transportation system
to minimize production and shipment costs, a computer is established at some
point of a communication network to minimize transmission costs from and
towards peripheral units. When we choose the location of an emergency ser-
vice we are concerned with the largest distance from this location to the site
occupied by a potential user.

The minimax location problem is to determine the location of a single fa-
cility for which the largest distance from this location to the site occupied by
a potential user is minimized. Restriction on possible locations of the facility
and users to vertices or to the entire network generates four types of prob-
lems. In the first case, a vertex must be found for which the distance to the
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farthest vertex is minimized. The solution vertex is called center. This prob-
lem was studied by Hakimi in [4]. The center problem is very easily solved by
comparison with distance vectors once the distance matrix between vertices is
known. In the second case a vertex must be determined so as distance to the
most remote point of the network is minimized (Minieka [17]). The solution
vertex is called general center. In the third case a point of the network must
be found, minimizing the maximum distance to any vertex (Hakimi [4] and
Kariv and Hakimi [8]). Finding such a solution point, called absolute cen-
ter, is more difficult. In [4] is presented a method to find the absolute center
set. In the fourth and most general case, both the locations of the facility
and of the users can be chosen any where on the network. Frank [3] presents
the principle of an algorithm to determine a solution point, called continu-
ous center. He proposed to extend Hakimi’s approach for the absolute center
and a similar proposal was made by Minieka [17]. Concerning the continuous
center set, Labbé [9] followed Frank’s work by providing a detailed discussion
of the problem including the treatment of an overlooked case, a polynomial
implementation of the resulting algorithm and a series of rules designed to
accelerate the algorithm.

In [12] Labbé and Louveaux presented a selective bibliography regarding
location problems.

In [16] we studied some location problems in directed networks: we defined
circular centers, circular absolute centers and circular continuous centers. We
presented algorithms for establishing circular absolute centers and circular
continuous centers.

In the following lines we will study a minisum location problem.
We consider a set of users located at the vertices of a strong connected

directed network N = (V,U), |V | = n.
The minisum location problem (or median problem) in directed network N ,

considered in the following lines, is to determine a point on N such that the
summa of circular distance from this point to the users is minimized.

We consider the function

F : N → R, F (x) =
n∑

i=1
d0(vi, x), ∀x ∈ N.

Definition 10. A point m ∈ N is a circular median if for any x ∈ N the
following inequality is satisfied

F (m) ≤ F (x).

The set of all circular median is denoted by A0.

Theorem 11. The set of vertices contain a circular median.

Proof. We consider an edge [vi, vj ] ∈ U and vk ∈ V . We recall that the
function (5), fk

ij : [0, 1] → R is constant on (0, 1), the values of this function
in 0 and 1 being lesser or equal with its constant value on (0, 1), ∀vk ∈ V
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(Theorems 8, 9). Consequently the restriction of the function F : N → R,
to [vi, vj ] is constant on ]vi, vj [ and F (x) ≥ min {F (vi), F (vj)}, ∀x ∈ ]vi, vj [.
Hence the function F attains its minimum in V . �

The following two theorems are immediately implied.

Theorem 12. If all the functions fk
ij : [0, 1] → R are not continuous in 0

and 1, ∀ [vi, vj ] ∈ U and ∀vk ∈ V , then any circular median is a vertex.

Theorem 13. If there is a point x ∈ [vi, vj ] ∈ U which is a circular median
then all the points of the arc [vi, vj ] are circular medians.

To determine circular medians we can use the following algorithm.

Algorithm 14. 1. Compute F (vi), ∀vi ∈ V.
2. Determine F (m) = min {F (vi) | vi ∈ V } and denote by C1 the set of all

vertices for which the minimum is attains.
3. For each vertex v ∈ C1 consider on every incident arc a point x dif-

ferent by extremities and compute F (x). If F (x) = F (m) then all the points
of respective arc are circular medians. We denote by Cv the set of all these
determined points, if exist. Else Cv = ∅.

4. C2 = ∪
v∈V

Cv.

5. A0 = C1 ∪ C2.

Finally, the vertex optimality property can be extended to the location
problems of p facilities, p > 1. Assume that the users go to the closest among
these p facilities. Then an optimal solution, called a p-circular median is a set
of p points Xp = {x1, x2, . . . , xp} such that for any set Yp = {y1, y2, . . . , yp},
|Yp| = p,

F (Xp) =
n∑

i=1
min

{
d0(vi, x), x ∈ Xp

}
≤ F (Yp) =

n∑
i=1

min
{
d0(vi, y), y ∈ Yp

}
.

In this case, there always exists a subset of vertices which is a p-circular
median.
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[10] Labbé, M., Location on networks. Networks routing, Handbooks Oper. Res. Manage-
ment Sci., North-Holland, Amsterdam, 8, pp. 551–624, 1995.
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