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IOANNIS K. ARGYROS∗

Abstract. We present a semilocal convergence analysis for the method of tan-
gent parabolas (Euler–Chebyshev) using a combination of Lipschitz and center
Lipschitz conditions on the Fréchet derivatives involved. This way we produce a
majorizing sequence which converges under weaker conditions than before. The
error bounds obtained are more precise and the information of the location of
the solution better than in earlier results.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of equation
(1) F (x) = 0,
where F is a twice-Fréchet differentiable operator on an open convex subset
D of a Banach space X with values in a Banach space Y .

The method of tangent parabolas (Euler–Chebyshev)
(2)
xn+1 = xn −

{
I + 1

2ΓnF ′′(xn)ΓnF (xn)
}

ΓnF (xn), Γn = F ′(xn)−1 (n ≥ 0)

is one of the best known cubically convergent iterative procedures for solving
nonlinear equations like (1). Here F ′(xn) ∈ L(X,Y ), F ′′(xn) ∈ L(X,L(X,Y ))
denote the first and second Fréchet derivatives of operator F evaluated at
x = xn (n ≥ 0) [3], [7].

Semilocal convergence results under Lipschitz conditions on the second
Fréchet-derivative have been given by Necepurenko [9], Mertvecova [8], Safiev
[10], Schwetlick [11], Kanno [6], Yamamoto [12], Argyros [1]–[3], Gutiérrez et
al. [4], [5]. Discretized versions of this method have been considered in [2], [3].

Here we provide a semilocal convergence analysis based on Lipschitz and
center-Lipschitz conditions on the first and second Fréchet-derivatives of F .
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This way existing convergence conditions are finer and the information on the
location of the solution more precise than before.

2. CONVERGENCE ANALYSIS

We need the following results on majorizing sequences.

Theorem 1. Let η, `i, i = 0, 1, . . . , 4 be non-negative parameters. Define
scalar sequence {tn} (n ≥ 0) by

t0 = 0, t1 =
(
1 + 1

2`0η
)
η = η0,

tn+2 − tn+1 =
[
1 + 1

2
`0+`3tn+1

(1−`1tn+1)2 ηn+1
]

ηn+1
1−`1tn+1

,(3)

where
ηn+1 = 1

2

{
`2
4

(`0+`3tη)2

(1−`1tn)6 ηη + `2
`0+`3tn

(1−`1tn)4 + `4
3

1
(1−`1tn)3

}
η3
η,

and parameter α by

(4) α =
[
`2
4

(`0+2`3η0)2

(1−2`1η0)6 η0 + `2
`0+2`3η0

(1−2`1η0)4 + `4
3(1−2`1η0)3

]
η2

0.

Assume:
`0η ≤ 2,

2`1η0 < 1,
and

α ≤ min{1, α0},
where α0 is the positive solution of quadratic equation
(5) 1

4
`0+2`3η0

(1−2`1η0)3 η0t
2 + t

1−2`1η0
− 1 = 0.

Then, sequence {tn} (n ≥ 0) is non-decreasing, bounded above by
t∗∗ = 2η0,

and converges to t∗ such that
(6) 0 ≤ t∗ ≤ t∗∗.
Moreover, the following error bounds hold for all n ≥ 0:

0 ≤ tn+2 − tn+1 ≤ 1
2(tn+1 − tn) ≤

(
1
2

)n+1
η0.

Proof. Using induction on k we show:
ηk+1 ≤ 1

2ηk,(7)
tk+1 − tk ≥ 0,(8)

and
(9) 1− `1tk+1 > 0.
For k = 0 (7)–(9) hold by the initial conditions. By (3) we then get

t2 − t1 ≤ α
2 (t1 − t0) ≤ 1

2(t1 − t0).
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Let us assume (7)–(9) hold for all k ≤ n + 1. We can easily obtain from (3)
that

tk+1 ≤
1−
(

1
2

)k+1

1− 1
2

η0 = 2
[
1−

(
1
2

)k+1
]
η0 ≤ t∗∗.

Moreover we have,

tk+2 − tk+1 ≤ αk+1
[
1 + 1

4
`0+2`3η0

(1−2`1η0)2 η0α
]

1
1−2`1η0

(
1
2

)k+1
η0 ≤

(
1
2

)k+1
η0

by the choice of α and α0 (see (4) and (5)).
Furthermore we have

tk+2 ≤ 2
[
1−

(
1
2

)k+2
]
η0 ≤ t∗∗,

`1tk+2 ≤ 2`1η0 < 1,
and

tk+2 − tk+1 ≥ 0.
The induction for (7)–(9) is now complete. Hence, sequence {tn} (n ≥ 0)
is bounded above by t∗∗, non-decreasing and as such it converges to some t∗
satisfying (6). That completes the proof of Theorem 1. �

Similarly we show the next two theorems:

Theorem 2. Let η, `0, `3, `4 be non-negative parameters. Define scalar
sequence {sn} (n ≥ 0) by

s0 = 0, s1 =
(
1 + 1

2`0η
)
η = η0,

sn+2 − sn+1 =
[
1 + 1

2
(`0+`3sn+1)ηn+1

(1−`0sn+1−`3s2
n+1)2

]
ηn+1

1−`0sn+1−`3s2
n+1

,

where

ηn+1 = 1
2

{
1
2

(`0+`3sn)2

(1−`0sn− `32 s2
n)4

+ `3
6

(`0+`3sn)ηη
(1−`0sn−`3s2

n)5 + `4
3

1
(1−`0sn−`3s2

n)3

}
η3
η

and parameter α by

α =
{

1
2

(`0+2`3η0)2

(1−2`0η0−2`3η2
0)4 + `3

6
(`0+2`3η0)η0

(1−2`0η0−2`3η2
0)5 + `4

3(1−2`0η0−2`3η2
0)3

}
η2

0.

Assume:
(10) 2(`0 + `3η0)η0 < 1,
and
(11) α ≤ min{1, α0},
where α0 is the positive solution of quadratic equation

1
4

`0+2`3η0
(1−2`0η0−2`3η2

0)3 η0t
2 + t

1−2`0η0−2`3η2
0
− 1 = 0.

Then, sequence {sn} (n ≥ 0) is non-decreasing, bounded above by
s∗∗ = 2η0,



6 Ioannis K. Argyros 4

and converges to s∗ such that

0 ≤ s∗ ≤ s∗∗.

Moreover, the following error bounds hold for all n ≥ 0

0 ≤ sn+2 − sn+1 ≤ 1
2(sn+1 − sn) ≤

(
1
2

)n+1
η0.

Theorem 3. Let η, `0, `1, `3, `4 be non-negative parameters. Define scalar
sequence {vn} (n ≥ 0) by

v0 = 0, v1 =
(
1 + 1

2`0η
)
η = η0,

vn+2 − vn+1 =
[
1 + 1

2
(`0+`3vn+1)ηn+1

(1−`1vn+1)2

]
ηn+1

1−`1vn+1
,

where
ηn+1 = 1

2

{
1
2

(`0+`3vn)2

(1−`1vn)4 + `3
6

(`0+`3vn)ηn
(1−`1vn)5 + `4

3(1−`1vn)3

}
η3
η,

and parameter α by

α =
{

1
2

(`0+2`3η0)2

(1−2`1η0)4 + `3
6

(`0+2`3η0)η0
(1−2`1η0)5 + `4

3(1−2`1η0)3

}
η2

0.

Assume:

`0η ≤ 2,
2`1η0 < 1,

and
α ≤ min{1, α0},

where α0 is the positive solution of quadratic equation
1
4
`0+2`3η0

(1−2`1η0)3 η0t
2 + t

1−2`1η0
− 1 = 0.

Then, sequence {vn} (n ≥ 0) is non-decreasing, bounded above by

v∗∗ = 2η0,

and converges to v∗ such that

0 ≤ v∗ ≤ v∗∗.

Moreover, the following error bounds hold for all n ≥ 0

(12) 0 ≤ vn+2 − vn+1 ≤ 1
2(vn+1 − vn) ≤

(
1
2

)n+1
η0.

We can show the main semilocal convergence theorem for method (2).
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Theorem 4. Let F : D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume: there exist a point x0 ∈ D and non-negative parameters η, `i, i =
0, 1, . . . , 4 such that

F ′(x0)−1 ∈ L(Y,X),(13)
‖F ′(x0)−1F (x0)‖ ≤ η,(14)
‖F ′(x0)−1F ′′(x0)‖ ≤ `0,(15)

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `1‖x− x0‖,(16)
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `2‖x− y‖,(17)
‖F ′(x0)−1[F ′′(x)− F ′′(x0)]‖ ≤ `3‖x− x0‖,(18)

and
(19) ‖F ′(x0)−1[F ′′(x)− F ′′(y)]‖ ≤ `4‖x− y‖ for all x, y ∈ D.
Moreover, hypotheses of Theorem 1 hold, and

U(x0, t
∗) = {x ∈ X | ‖x− x0‖ ≤ t∗} ⊆ D.

Then the method of tangent parabolas {xn} (n ≥ 0) generated by (2) is
well defined, remains in U(x0, t

∗) for all n ≥ 0 and converges to a solution
x∗ ∈ U(x0, t

∗) of equation F (x) = 0. Moreover, the following error bounds
hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn,
and

‖xn − x∗‖ ≤ t∗ − tn.
Furthermore, if there exists R ≥ t∗ such that

U(x0, R) ⊆ D
and
(20) `1(t∗ +R) ≤ 2,
the solution x∗ is unique in U(x0, R).

Proof. We prove:
(21) ‖xk+1 − xk‖ ≤ tk+1 − tk
and
(22) U(xk+1, t

∗ − tk+1) ⊆ U(xk, t∗ − tk) hold for all k ≥ 0.
For every z ∈ U(x1, t

∗ − t1)
‖z − x0‖ ≤ ‖z − x1‖ − ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ − t0

implies z ∈ U(x0, t
∗ − t0). Note also that

‖x1 − x0‖ ≤
[
1 + 1

2‖F
′(x0)−1F ′′(x0)‖ ‖F ′(x0)−1F (x0)‖

]
‖F ′(x0)−1F (x0)‖

≤
(
1 + 1

2`0η
)
η = η0.
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Since also

‖x1 − x0‖ = ‖F ′(x0)−1F (x0)‖ ≤ η ≤ t1 (by (3))

(21) and (22) hold for k = 0. Given they hold for n = 0, 1, . . . , k, then

‖xk+1 − x0‖ ≤
n+1∑
i=1
‖xi − xi−1‖ ≤

k+1∑
i=1

(ti − ti−1) = tk+1 − t0 = tk+1

and

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) < t∗, θ ∈ [0, 1].

It follows from (16)
(23)
‖F ′(x0)−1[F ′(xk+1)−F ′(x0)]‖ ≤ `1‖xk+1−x0‖ ≤ `1tk+1 ≤ 2`1η0 < 1 (by (7)),

and the Banach Lemma on invertible operators [7] that the inverse F ′(xk+1)−1

exists and

‖F ′(xk+1)−1F ′(x0)‖ ≤ [1− `1‖xk+1 − x0‖]−1 ≤ (1− `1tk+1)−1.

Set

(24) yk = xk − F ′(xk)−1F (xk).

Then we get from (2)

(25) xk+1 = yk − 1
2F
′(xk)−1F ′′(xk)(yk − xk)2.

Using (2), (24) and (25) as in [3] we get the approximation

F (xk+1) =
∫ 1

0
[F ′(yk + θ(xk+1 − xk))− F ′(yk)](xk+1 − yk)dt

+ (F ′(yk)− F ′(xk))(xk+1 − yk)

+
∫ 1

0
[F ′′(xk + θ(yk − xk))− F ′′(xn)](1− t)dt(yk − xk)2.(26)

By composing both sides of (26) by F ′(x0)−1 and setting

ηk = ‖F ′(x0)−1F (xk)‖ (k ≥ 1), η0 = η0
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we get in turn

ηk+1 ≤ `2

∫ 1

0
t

∥∥∥∥1
2 [F ′(xk)−1F ′(x0)][F ′(x0)−1(F ′′(xk)− F ′′(x0) + F ′′(x0)]

·{[F ′(xk)−1F ′(x0)][F ′(x0)−1F ′(xk)]}2
∥∥∥∥2

dt

+ `2‖[F ′(xk)−1F ′(x0)][F ′(x0)−1F (xk)]‖

·
∥∥∥∥1

2 [F ′(xk)−1F ′(x0)]F ′(x0)−1[F ′′(xk)− F ′′(x0) + F ′(x0)]

·{[F ′(xk)−1F ′(x0)][F ′(x0)−1F (xk)]}2
∥∥∥∥
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+ `4
6 ‖[F

′(xk)−1F ′(x0)][F ′(x0)−1F (xk)]‖3

≤ `2
8

[
(`0+`3‖xk−x0‖)2

(1−`1‖xk−x0‖)6

]
η4
k + `2

2
`0+`3‖xk−x0‖

(1−`1‖xk−x0‖)4 η
3
k + `4η3

k
6(1−`1‖xk−x0‖)3

≤ `2
8

[
(`0+`3tk)2

(1−`1tk)6

]
η4
k + `2

2
`0+`3tk

(1−`1tk)4 η
3
k + `4η3

k
6(1−`1tk)3 .(27)

Hence, we obtain from (2), (14)–(19) and (27)
‖xk+2 − xk+1‖ ≤

≤
[
1 + 1

2‖F
′(xk+1)−1F ′(x0)‖ · ‖F ′(x0)−1(F ′′(xk+1)− F ′′(x0) + F ′′(x0)‖

· ‖F ′(xk+1)−1F ′(x0)‖ · ‖F ′(x0)−1F (xk+1)‖
]
‖F ′(xk+1)−1F ′(x0)‖

· ‖F ′(x0)−1F (xk+1)‖
≤
[
1 + 1

2
`0+`3‖xk+1−x0‖

(1−`1‖xk+1−x0‖)2 ηk+1

]
ηk+1

1−`1‖xk+1−x0‖

≤
[
1 + 1

2
`0+`3tk+1

(1−`1(tk+1)2 ηk+1
]

ηk+1
1−`1tk+1

= tk+2 − tk+1,(28)

which together with (21) show (16) for all n ≥ 0.
Thus for every z ∈ U(xk+2, t

∗ − tk+2) we have
‖z−xk+1‖ ≤ ‖z−xk+2‖+‖xk+2−xk+1‖ ≤ t∗− tk+2 + tk+2− tk+1 = t∗− tk+1.

That is,
(29) z ∈ U(xk+1, t

∗ − tk+1).
Estimates (28) and (29) imply that (21) and (22) hold for n = k + 1. By
induction the proof of (21) and (22) is completed.

Theorem 1 implies {tn} (n ≥ 0) is a Cauchy sequence. From (21) and (22)
{xn} (n ≥ 0) becomes a Cauchy sequence too, and as such it converges to
some x∗ ∈ U(x0, t

∗) (since U(x0, t
∗) is a closed set) such that

(30) ‖xk − x∗‖ ≤ t∗ − tk.
The combination of (21) and (30) yields F (x∗) = 0. Finally to show uniqueness
let y∗ be a solution of equation F (x) = 0 in U(x0, R). It follows from (16) the
estimate∥∥∥∥F ′(x0)−1

∫ 1

0
[F ′(y∗ + θ(x∗ − y∗))− F ′(x0)]

∥∥∥∥dθ ≤

≤ `1
∫ 1

0
‖y∗ + θ(x∗ − y∗)− x0‖dθ

≤ `1

∫ 1

0
[θ‖x∗ − x0‖+ (1− θ)‖y∗ − x0‖]dθ < `1

2 (t∗ +R) < 1, (by (20)),

and the Banach Lemma on invertible operators that linear operator

L =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗))dθ
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is invertible.
Using the identity

0 = F (x∗)− F (y∗) = L(x∗ − y∗)
we deduce

x∗ = y∗.

That completes the proof of the theorem. �

Theorem 5. Let F : D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume: there exist a point x0 ∈ D and non-negative parameters η, `0, `3, `4
such that

F ′(x0)−1 ∈ L(Y,X),
‖F ′(x0)−1F (x0)‖ ≤ η,

‖F ′(x0)−1F ′′(x0)‖ ≤ `0,

‖F ′(x0)−1[F ′′(x)− F ′′(x0)]‖ ≤ `3‖x− x0‖
and

‖F ′(x0)−1[F ′′(x)− F ′′(y)]‖ ≤ `4‖x− y‖ for all x, y ∈ D.
Moreover, hypotheses of Theorem 2 hold, and

U(x0, s
∗) ⊆ D.

Then the method of tangent parabolas {xn} (n ≥ 0) generated by (2) is well
defined, remains in U(x0, s

∗) for all n ≥ 0 and converges to a solution x∗ ∈
U(x0, s

∗) of equation F (x) = 0.
Moreover, the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ sn+1 − sn,
and

‖xn − x∗‖ ≤ s∗ − sn.
Furthermore, if there exists R1 ≥ s∗ such that

U(x0, R1) ⊆ D,
and

γ = 1
2

[
`0 + `3

4 (R1 + s∗)
]
∈ [0, 1],

the solution x∗ is unique in U(x0, R1).

Proof. It follows along the lines of Theorem 4 but instead of (23) we use
‖F ′(x0)−1[F ′(x0)− F ′(xn+1)]‖ ≤

≤
∫ 1

0
‖F ′(x0)−1{F ′′[x0 + θ(xk+1 − x0)]− F ′′(x0)}dθ(xk+1 − x0)‖

+ ‖F ′(x0)−1F ′′(x0)(xk+1 − x0)‖
≤ 1

2`3‖xk+1 − x0‖2 + `0‖xk+1 − x0‖ ≤ `3
2 s

2
k+1 + `0sk+1

≤ 2`3η2
0 + 2`0η < 1 by (10),(31)
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so

‖F ′(xk+1)−1F ′(x0)‖ ≤
[
1− `0‖xk+1 − x0‖ − 1

2`3‖xk+1 − x0‖2
]−1

≤
(
1− `0sk+1 − `3

2 s
2
k+1

)−1
.

Moreover, instead of (26) we use

F (xk+1) =
∫ 1

0
[F ′(yk + t(xk+1 − yk))− F ′(xk)](xk+1 − yk)

+
∫ 1

0
[F ′′(xk + t(yk − xk))− F ′′(xk)](1− t)dt(yk − xk)2

=
∫ 1

0

∫ 1

0
F ′′[xk + θt(yk − xk)]t(yk − xk)dθ(xk+1 − yk)dt

+
∫ 1

0
[F ′′(xk + t(yk − xk))− F ′′(xk)](1− t)dt(yk − xk)2,

which as in (27) leads to

ηk+1 ≤ 1
4(`0 + `3‖xk − x0‖)‖F ′(xk)−1F (xk)‖3‖F ′(xk)−1F ′′(xk)‖
+ 1

12`3‖F
′(xk)−1F (xk)‖3‖F ′(xk)−1F ′′(xk)‖+ `4

6 ‖F
′(xk)−1F (xk)‖3

≤ 1
4

(`0+`3‖xk−x0‖)2η3
k[

1−`0‖xk−x0‖−
`3
2 ‖xk−x0‖2

]4 + `3
12

(`0+`3‖xk−x0‖)η4
k(

1−`0‖xk−x0‖−
`3
2 ‖xk−x0‖2

)5

+ `4
6

η3
k(

1−`0‖xk−x0‖−
`3
2 ‖xk−x0‖2

)3 .

The rest follows as in Theorem 4 until the uniqueness part.
Let y∗ be a solution of equation F (x) = 0 in U(x0, R1). For z ∈ U(x0, R1)

we have

‖F ′(x0)−1[F ′(z)− F ′(x0)]‖ =

=
∥∥∥∥F ′(x0)−1

∫ 1

0
F ′′(x0 + θ1(z − x0))(z − x0)dθ1

∥∥∥∥
≤
∥∥∥∥F ′(x0)−1

∫ 1

0
[F ′′(x0 + θ1(z − x0))− F ′′(x0)]

∥∥∥∥dθ1‖z − x0‖
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+ ‖F ′(x0)−1F ′′(x0)‖ · ‖z − x0‖

≤ `3
∫ 1

0
‖z − x0‖2θ1dθ1 + `0‖z − x0‖

≤ `3
2 ‖z − x0‖2 + `0‖z − x0‖.

Set L =
∫ 1

0 F
′(y∗ + θ(x∗ − y∗))dθ. Then we have for z = y∗ + θ(x∗ − y∗),

θ ∈ [0, 1]:
‖z−x0‖ ≤ (1−θ)‖y∗−x0‖+θ‖x∗−x0‖ < (1−θ)R1+θv∗ ≤ (1−θ)R1+θR1 = R1.

Hence, we get

‖F ′(x0)−1[L− F ′(x0)]‖ ≤
∫ 1

0

[
`3
2 ‖z − x0‖2 + `0‖z − x0‖

]
dθ

< `3
8 (R1 + v∗)2 + `0

2 (R1 + v∗) = γ ∈ [0, 1].
By the above and the Banach Lemma on invertible operators L is invertible.

Using the identity
F (x∗)− F (y∗) = L(x∗ − y∗),

we get
x∗ = y∗.

That completes the proof of Theorem 5. �

Theorem 6. Let F : D ⊆ X → Y be a twice Fréchet-differentiable operator.
Assume: there exist a point x0 ∈ D and non-negative parameters η, `0, `1, `3,
`4 such that

F ′(x0)−1 ∈ L(Y,X),
‖F ′(x0)−1F (x0)‖ ≤ η,

‖F ′(x0)−1F ′′(x0)‖ ≤ `0,

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `1‖x− x0‖,
‖F ′(x0)−1[F ′′(x)− F ′′(x0)]‖ ≤ `3‖x− x0‖

and
‖F ′(x0)−1[F ′′(x)− F ′′(y)]‖ ≤ `4‖x− y‖ for all x, y ∈ D.

Moreover, hypotheses of Theorem 1 hold, and
U(x0, v

∗) ⊆ D.
Then the method of tangent parabolas {xn} (n ≥ 0) generated by (2) is well
defined, remains in U(x0, v

∗) for all n ≥ 0 and converges to a solution x∗ ∈
U(x0, v

∗) of equation F (x) = 0. Moreover the following error bounds hold for
all n ≥ 0:

‖xn+1 − xn‖ ≤ vn+1 − vn,
and

‖xn − x∗‖ ≤ v∗ − vn.
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Furthermore, if there exists R2 ≥ v∗ such that

U(x0, R2) ⊆ D,

and
`1(v∗ +R2) ≤ 2,

the solution x∗ is unique in U(x0, R2).

Proof. Use (23) instead of (31). The rest follows as in Theorem 5 until the
uniqueness part. Moreover the uniqueness part follows as in Theorem 4.

That completes the proof of Theorem 6. �

Remark 1. In order for us to compare our results with earlier ones in [1],
[6], [12] define sequences {δn}, {Mn}, {Nn}, {βn} by

δ0 = η, M0 = `0, N0 = `4,(32)
hn = Mnδn, τn = 1 + 1

2hn, βn = τnδn, ρn = Mnβn,(33)
εn = Nn

M2
n
, φn(ρ) = ρ+ 1

2εnρ
2,(34)

c2
n =

(
1
6εnτ

3
n + 1

2 + 1
8hn

)
/(1− ϕn(ρn)),(35)

k2
n = φ′n(ρn)c2

nh
2
n/(1− ϕn(ρn)),(36)

δn+1 = c2
nh

2
nδn, Mn+1 = Mnφ

′
h(ρn)/(1− φn(ρn)),(37)

Nn+1 = Nn
1−ϕn(ρn) ,(38)

w0 = 0, wn+1 = wn −
[
1 + f ′′(wn)f(wn)

2f ′(wn)2

]
f(wn)
f ′(wn) (n ≥ 0),(39)

and function

(40) f(t) = 1
6`4t

3 + 1
2`0t

2 − t+ η.

Assume:

δ0M0 < 2,
φ0(ρ0) < 1,

k2
0 ≤ 1,

U(x0, r) ⊆ D, r = β0
1−c2

0ρ
2
0
,

or equation
f(t) = 0

has one negative and two positive roots w∗, w∗∗ such that w∗ ≤ w∗∗ and
U(x0, w

∗) ⊆ D or, equivalently,

(41) η ≤ `20+4`4−`0
√
`20+2`4

3`4(`0+
√
`20+2`3)

, `4 6= 0 (`0η ≤ 1
2 for `4 = 0)

and

(42) U(x0, w
∗) ⊆ D.
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Then, the method of tangent parabolas {xn} (n ≥ 0) generated by (2) is
well defined, remains in U(x0, w

∗) for all n ≥ 0 and converges to a solution
x∗ ∈ U(x0, w

∗) of equation F (x) = 0. Moreover the following error bounds
hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ wn+1 − wn
and

‖xn − x∗‖ ≤ w∗ − wn.
Furthermore, if: w∗ < w∗∗ the solution is unique in U(x0, w

∗∗) otherwise the
solution is unique in U(x0, w

∗).
In general we have:

(43) `3 ≤ `4.

If strict inequality holds in (43) using induction on n we can easily show under
the hypotheses of Theorem 5 and (12)–(15), (19), (32)–(40), (41) and (42)

sn+1 − sn < wn+1 − wn (n ≥ 1)
sn < wn (n ≥ 1)

and
s∗ ≤ w∗.

That is, our Theorem 5 provides more precise error bounds and a better in-
formation on the location of the solution x∗. In the case of `3 = `4, Theorem
5 reduces to earlier ones mentioned in this remark. �

We complete this study with two simple examples:

Example 1. Let `0 = `3 = 0, η = 1 and `4 = 1. Then, (41) is violated
since

η = 1 >
√

2
2 .

Hence the results in [12] cannot be used. However all hypotheses of Theorems
2, 5 are satisfied, since α0 = 1, and (10) and (11) hold. �

In the next example we show that `4
`3

may be arbitrarily large.

Example 2. Let X = Y = R, x0 = 0 and define function F on R by

(44) F (x) =
∫ x

0
G(t)dt,

where

(45) G(t) = c0t+ c1 + c2 sin ec3t,

where ci, i = 0, 1, 2, 3 are given parameters. Using (44) and (45) we can easily
see that for c3 large and c2 sufficiently small, `4`3 may be arbitrarily large. That
is (43) holds as strict inequality and (41) may be violated whereas hypotheses
of Theorem 5 may hold (see also Example 1). �
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