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APPROXIMATION THEORY IN COMBINATORIAL OPTIMIZATION.
APPLICATION TO THE GENERALIZED MINIMUM SPANNING

TREE PROBLEM

PETRICA C. POP∗, G. STILL† and W. KERN†

Abstract. We present an overview of the approximation theory in combina-
torial optimization. As an application we consider the Generalized Minimum
Spanning Tree (GMST) problem which is defined on an undirected complete
graph with the nodes partitioned into clusters and non-negative costs are asso-
ciated to the edges. This problem is NP-hard and it is known that there cannot
exists a polynomial approximation algorithm. We present an in-approximability
result for the GMST problem and under special assumptions: cost function sat-
isfying the triangle inequality and with cluster sizes bounded by ρ, we give an
approximation algorithm with ratio 2ρ.
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1. APPROXIMATION THEORY IN COMBINATORIAL OPTIMIZATION

Combinatorial Optimization is the process of finding one or more best (opti-
mal) solutions in a well defined discrete problem space, i.e. a space containing
a finite set of possible solutions, that optimizes a certain function, the so-
called objective function. The finite set of possible solutions can be described
by inequality and equality constraints, and by integrality constraints. The in-
tegrality constraints force the variables to be integers. The set of points that
satisfy all these constraints is called the (feasible) solution set.

Such problems occur in almost all fields of management (e.g. finance, mar-
keting, production, scheduling, inventory control, facility location, etc.), as
well as in many engineering disciplines (e.g. optimal design of waterways or
bridges, design and analysis of data networks, energy resource-planning mod-
els, logistic of electrical power generation and transport, etc.). A survey of
applications of combinatorial optimization is given by Grötschel in [7].
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Combinatorial Optimization models are often referred to as integer pro-
gramming models where some or all of the variables can take on only a finite
number of alternative possibilities.

Many of the optimization problems we would like to solve are NP-hard.
Therefore it is very unlikely that these problems could be solved by a poly-
nomial-time algorithm. However, these problems still have to be solved in
practice. In order to do that, we have to relax some of the requirements.
There are in general, three different possibilities.

• Superpolynomial-time algorithms: Even though an optimization
problem is NP-hard, there are “good” and “not so good” algorithms
for solving it exactly. To the “not so good” algorithms certainly belong
most of the simple enumeration methods where one would enumerate
all the feasible solutions and then choose the one with the optimal
value of the objective function. Such methods have very high time
complexity. Among the “good” algorithms belong methods like branch-
and-bound where an analysis of the problem at hand is used to discard
most of the feasible solutions before they are even considered. These
approaches allow one to obtain exact solutions of reasonably large
problem instances, but their running time still depends exponentially
on the size of the problem.
• Average-case polynomial-time algorithms: For some problems,

it is possible to have algorithms which require superpolynomial-time
on only a few instances and for the other instances run in polynomial
time. A famous example is the Simplex Method for solving problems
in Linear Programming.
• Approximation Algorithms: We may also relax the requirement of

obtaining an exact solution of the optimization problem and content
ourselves with a solution which is “not too far” from the optimum.
This is partially justified by the fact that, in practice, it is usually
enough to obtain a solution that is slightly sub-optimal.

Clearly, there are good approximation algorithms and bad ones as well.
What we need is some means of determining the quality of an approximation
algorithm and a way of comparing different algorithms. There are a few criteria
to consider:

Average-case performance: One has to consider some probability dis-
tribution on the set of all possible instances of a given problem. Based on this
assumption, an expectation of the performance can then be found. Results of
this kind strongly depend on the choice of the initial distribution and do not
provide us any information about the performance on a particular instance.

Experimental performance: This approach is based on running the al-
gorithm on a few “typical” instances. It has been used mostly to compare
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performance of several approximation algorithms. Of course the result de-
pend on the choice of the “typical” instances and may vary from experiment
to experiment.

Worst-case performance: This is usually done by establishing upper
and lower bounds for approximate solutions in terms of the optimum value.
In case of minimization problems, we try to establish upper bounds, in case
of maximization problems, one wants to find lower bounds.

The advantage of the worst-case bounds on the performance of approxima-
tion algorithms is the fact that given any instance of the optimization problem,
we are guaranteed that the approximate solution stays within these bounds. It
should also be noted that approximation algorithms usually output solutions
much closer to the optimum than the worst-case bounds suggest. Thus it is
of independent interest to see how tight the bounds on the performance of
each algorithm are; that is, how bad the approximate solution can really get.
This is usually done by providing examples of specific instances for which the
approximate solution is very far from the optimum solution.

Establishing worst-case performance bounds for even simple algorithms of-
ten requires a very deep understanding of the problem at hand and the use of
powerful theoretical results from areas like linear programming, combinatorics,
graph theory, probability theory, etc.

We consider an NP-hard optimization problem for which as we have seen
it is difficult to find the exact optimal solution within polynomial time. At
the expense of reducing the quality of the solution by relaxing some of the
requirements, we can often get considerable speed-up in the complexity. This
leads us to the following definition:

Definition 1. (Approximation algorithms) Let X be a minimization prob-
lem and α > 1. An algorithm APP is called an α-approximation algorithm for
problem X, if for all instances I of X it delivers in polynomial time a feasible
solution with objective value APP (I) such that
(1) APP (I) ≤ αOPT (I),
where by APP (I) and OPT (I) we denoted the values of an approximate solu-
tion and that of an optimal solution for instance I, respectively.

The value α is called the performance guarantee or the worst case ratio
of the approximation algorithm APP . The closer α is to 1 the better the
algorithm is.

2. THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

Let G = (V,E) be a complete graph with V = V1 ∪ . . .∪ Vm partitioned into
disjoint clusters Vk, k ∈ K = {1, . . . ,m}. Let c : E → R+ be a non-negative
cost function. The generalized minimum spanning tree problem (GMST) is
the problem to find a minimum-cost tree spanning a subset of nodes which
includes exactly one node from each cluster. We will call a tree containing
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one node from each cluster a generalized spanning tree. In [10], Myung et
al. proved that the GMST problem is NP-hard, and in [13], we presented a
stronger result, namely, the GMST problem even on trees is NP-hard as well
an exact exponential time algorithm based on dynamic programming.

There are various (slight) generalizations of the GMST problem. For ex-
ample, the clusters may not be required to be distinct or it may be feasible to
chose more than one node per cluster. The latter problem, i.e., the problem
of finding a minimum cost tree spanning at least one node per cluster, is also
known as the generalized Steiner tree problem.

Meanwhile, the GMST problem and its relatives have been studied by sev-
eral authors w.r.t. heuristics, LP-relaxations, polyhedral aspects and approx-
imability, cf., e.g., Dror, Haouari and Chaouachi [2], Dror and Haouari [1],
Feremans, Labbe, and Laporte [3], Pop [12, 13], Salazar [14], Garg, Konjevod
and Ravi [5]. See also Penn and Rozenfeld [11] for a fairly comprehensive list
of existing literature.

In [4], Feremans and Grigoriev proposed an approximation scheme for the
GMST problem in a special case of the problem. They considered a geometric
case of the problem where the graph has all the vertices situated in the plane
and Euclidean distance defines the edge cost.

3. A NEGATIVE RESULT FOR THE GMST PROBLEM

For some hard combinatorial optimization problems it is possible to show
that they don’t have an approximation algorithm unless P = NP. In order
to give a result of this form it is enough to show that the existence of an
α-approximation algorithm would allow one to solve some decision problem,
known to be NP-complete, in polynomial time.

Applying this scheme to the GMST problem we obtain an in-approximability
result. This result is a different formulation in terms of approximation algo-
rithms of a result provided by Myung et al. [10] which says that even finding
a near optimal solution for the GMST problem is NP-hard. Our proof is
slightly different to the proof provided in [10].

Theorem 2. Under the assumption P 6= NP, there is no α-approximation
algorithm for the GMST problem.

Proof. Assume that there exists an α-approximation algorithm APP for
the GMST problem, where α is a real number greater than or equal to 1. This
means that

APP (I) ≤ αOPT (I),
for every instance I, where OPT (I) and APP (I) are the values of the optimal
solution and of the solution found by the algorithm APP , respectively.

Then, we will show that APP also solves the node-cover problem for a given
graph G = (V,E) and an integer k such that k < |V |. This result contradicts
the assumption that P 6= NP .
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We construct a graph G
′ = (V ′ , E′) and the edge cost function such that

the algorithm APP finds a feasible solution with a value no greater than α
times the optimal cost if and only if G contains C, where C is a node cover of
G, i.e. a subset of V such that all the edges of G are adjacent to at least one
node of C. �

The graph G
′ contains the following m = |E| + k + 1 node sets (clusters),

V
′

1 , ..., V
′
m:

Theorem 3. V ′1 consists of a single node denoted by r,

Theorem 4. V ′2 , ..., V
′
k+1 are identical node sets, each of which has |V |

nodes corresponding to the nodes of V , and

Theorem 5. |E| node sets, V ′k+2, ..., V
′
m, each of which contains a single

node corresponding to an edge e ∈ E.

Edges in G
′ are constructed as follows:

Theorem 6. Each node of V ′t for all t = 2, ..., k+ 1 is connected to r by an
edge. The set consisting of these edges is denoted by E′1.

Theorem 7. Let i be a node of V ′t for any t ∈ {2, ..., k+ 1} and j be a node
of V ′t for any t ∈ {k+ 2, ...,m}. Then, an edge is constructed between i and j
if the edge of G corresponding to j is incident to the node of G corresponding
to i, and let E′2 denote the set of those edges.

Theorem 8. We also construct an edge between i and j even though the
edge of G corresponding to j is not incident to the node of G corresponding to
i, and we let E′3 denote the set of those edges.

Proof. We let E′ = E
′
1 ∪ E

′
2 ∪ E

′
3.

The cost of each edge is defined as follows:

cij =


0 for all i, j ∈ E′1
1 for all i, j ∈ E′2

(|E|+ 1)α for all i, j ∈ E′3.
We claim that G contains C if and only if

APP (I) ≤ α|E|,

where instance I corresponds to G′ and its cost function.
Note that there always exists a generalized spanning tree in G

′ : all the
clusters different from the identical clusters V ′2 , ..., V

′
k+1 have only one node

and if we select k nodes from V
′

2 , ..., V
′
k+1 , one node from each cluster such

that each node of C is included, then these k nodes together with the remaining
nodes selected always uniquely form a generalized spanning tree of G′ using
edges in E

′
1 ∪ E

′
2 , by the definition of G′ .
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Suppose now that G′ contains a generalized spanning tree and let C be a
set of distinct nodes selected from the clusters, V ′2 , ..., V

′
k+1 in the tree, then

C is a node cover of G.
Therefore, we showed that a generalized spanning tree only using edges in

E
′
1 ∪ E

′
2 exists in G

′ if and only if G contains a node cover C.
If G contains C, then OPT (I) = |E|. Moreover, if G does not contain C,

then any generalized spanning tree of G′ should use at least one edge in E
′
3

and thus
OPT (I) ≥ |E| − 1 + α(|E|+ 1) > α|E|.

In particular if G contains a node cover C then the approximation algorithm
APP will produce a solution with value

APP (I) ≤ α|E| = αOPT (I),

i.e. the solution does not use any edge from E
′
3 and APP identifies a node

cover. �

However, under further assumptions, in the next section we present a posi-
tive result for the GMST problem.

4. AN APPROXIMATION ALGORITHM FOR THE GMST PROBLEM

In this section we provide a polynomial time approximation algorithm for
the metric GMST with bounded cluster size. I.e., we consider the case where
the cost function c : E → R+ satisfies the triangle inequality

cij ≤ cik + ckj (i, j, k ∈ V )

and the clusters are bounded by

|Vk| ≤ ρ, k ∈ K

for some ρ > 0. For this class of problem instances we can efficiently construct
a solution with cost at most 2ρ times the optimum (which is admittedly rather
poor for practical purposes).

Our approach is based on ideas from Slavik [16] where a similar type of
approximation algorithms is described for the so-called generalized TSP, the
problem of determining a shortest cycle through m nodes, one from each clus-
ter Vk. The additional difficulty we encounter in our situation (as compared
to the general TSP) is to compare the length of a minimum cost spanning tree
to the minimum of cTx over the cut polytope (or subtour elimination polytope
in the TSP terminology), cf. Lemma 3 in Section 5.

We consider the GMST problem on the graph G=(V,E) and assume that
the cluster size is bounded, |Vk| ≤ ρ, k ∈ K and that the cost function c
satisfies the triangle inequality. We introduce the binary variables x ∈ RE
and y ∈ RV with values xe = 1 if edge e is selected, xe = 0 otherwise and
yi = 1 if node i is selected, yi = 0 otherwise.
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The optimum value of the corresponding GMST can then be defined by the
following integer linear program

(ILP) z∗ILP = min cTx
x(δ(S)) ≥ yi, V1 ⊆ S ⊆ V \{i}
y(Vk) = 1, k ∈ K
x ∈ {0, 1}E , y ∈ {0, 1}V .

Here, as usual, δ(S) ⊆ E denotes the cut induced by S ⊆ V , i.e., the set
of edges joining S to its complement V \S. Furthermore, we use the general
shorthand notation

x(F ) =
∑
f∈F

xf resp. y(U) =
∑
u∈U

yu

for F ⊆ E resp. U ⊆ V . Thus y(Vk) = 1 means that exactly one node is
“picked” in each cluster. Furthermore, the cut constraints x(δ(S)) ≥ yi ensure
that x ∈ {0, 1}E connects all selected nodes (to the node v1 selected in the
“root cluster” V1).

Obviously the GMST’s of the instance defined by G, V = V1 ∪ . . .∪Vm and
c ∈ RE+ are in 1− 1 correspondence with optimum solutions of (ILP).

For each possible root v ∈ V1, we consider the corresponding rooted relax-
ation of (ILP)

(LP(v)) z∗(v) = min cTx
x(δ(S)) ≥ yi , v ∈ S ⊆ V \{i}
y(Vk) = 1 , k ∈ K
y(v) = 1
x, y ≥ 0.

By assumption, |V1| ≤ ρ, so there are at most ρ LP’s that we solve. Each of
these can be solved in polynomial time (relative to the input size of (GMST))
by means of the Ellipsoid Method (cf., e.g., [8]). (Note that we can check
whether a given (x, y) is feasible by computing a maximum v − i flow w.r.t.
edge capacities x ∈ RE+ for all i ∈ V ). Furthermore, clearly,

(2) min
v∈V1

z∗(v) ≤ z∗ILP

holds.
Assume that v1 ∈ V1 achieves the minimum in (2) and let (x∗, y∗) be an

optimal solution of (LP(v1)). Since |Vk| ≤ ρ holds by assumption, we may
choose in each cluster Vk a node vk ∈ Vk with

�(3) y∗(vk) ≥ 1/ρ.

Let W = {v1, . . . , vm} ⊆ V denote the resulting set of chosen nodes. We
now compute an MST on W (relative to the given cost function c) and claim
that this tree, say T = T (W ), has cost c(T ) at most 2ρ times the optimum
z∗ILP. More precisely, we show that
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Theorem 9. The tree T = T (W ) has cost at most 2ρ z∗(v1).

5. PROOF OF CORRECTNESS

Our crucial argument relies on the following result of [6] (extending earlier
work of [9]): Consider fixed connectivity requirements rij ≥ 0 (i, j ∈ V ) that
are symmetric in the sense that rij = rji for all i, j ∈ V . Then, for D ⊆ V ,
the linear programs

(RD) min cTx
x(δ(S)) ≥ rij , i ∈ S ⊆ V \{j}
x(δ({i})) = max

j 6=i
rij , i ∈ D

x ≥ 0

have all the same optimum value (independent of D ⊆ V ). This is referred to
as the parsimonious property (as we can force the least possible value of x on
each elementary cut δ({i})).

We use this result as follows. Let W = {v1, . . . , vm} ⊆ V be the set of
chosen nodes (cf. Section 2). Define

(4) rij :=
{

1/ρ i, j ∈W
0 else.

Then the optimum solution (x∗, y∗) of LP(v1) is a feasible solution of (R∅)
(relative to rij as in (4)): Indeed, let i, j ∈ V and i ∈ S ⊆ V \{j}. If either
i 6∈ W or j 6∈ W , then rij = 0 and x∗(δ(S)) ≥ 0 = rij holds trivially (since
x∗ ≥ 0). Thus assume i, j ∈ W , so rij = 1/ρ. Furthermore, assume w.l.o.g.
that v1 ∈ S (otherwise, replace S by V \S). The feasibility of (x∗, y∗) then
implies

x∗(δ(S)) ≥ y∗j ≥ 1/ρ = rij ,

as claimed.
Thus we conclude that (relative to rij as in (4)) the optimum value z∗ of

(R∅) –and hence of (RV )– is less than or equal to z∗(v1):

(5)

z∗(v1) ≥ z = min cTx
x(δ(S)) ≥ 1/ρ i ∈ S ⊆ V \{j}, i, j ∈W
x(δ({i})) = 0 i ∈ V \W
x(δ({i})) = 1/ρ i ∈W
x ≥ 0.

To prove Theorem 2, we are left to show that a min cost tree T in the (com-
plete) subgraph induced by W has cost c(T ) ≤ 2ρ z.

Lemma 10. A min cost tree T spanning all nodes in W has cost c(T ) ≤ 2ρ z.
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Proof. The value of a min cost spanning tree in the (complete) subgraph
(W,E(W )) induced by W is given by (cf. eg. Schrijver [15, (50.12)])

(MST) min cTx
x(E(S)) ≤ |S| − 1, ∅ 6= S ⊆W
x(E(W )) = |W | − 1,
x ≥ 0

Here, E(W ) is the set of edges induced by W and E(S) is the set of edges
induced by S ⊆ W . Furthermore, by slightly misusing the notation, the
vectors x and c in (MST) are restricted to the edges in E(W ).

To prove the claim of the lemma, it suffices to show that a feasible (optimal)
solution x ∈ RE of the LP in (5) (which obviously has its support contained
in E(W )) gives rise to a feasible solution

x̃ := 2ρ(1− 1
|W |) x|E(W ) ∈ RE(W )

of (MST), implying that the optimal tree cost is

c(T ) ≤ 2ρ(1− 1/|W |) z ≤ 2ρ z .

First note that the equality constraints in (5) imply

x(E) = x(E(W )) = 1
2
∑
i∈W

x(δ({i})) = 1
2ρ |W | ,

so
x̃(E(W )) = (1− 1

|W |)|W | = |W | − 1 ,

as required. Furthermore, if S ⊆ W , adding the constraints x(δ({i})) = 1/ρ
for i ∈ S, we get

2x(E(S)) + x(δ(S)) = |S|
ρ .

Hence x(δ(S)) ≥ 1/ρ yields x(E(S)) ≤ 1
2(|S| − 1)/ρ and consequently,

x̃(E(S)) ≤ (1− 1
|W |)(|S| − 1) ≤ |S| − 1 ,

and the claim follows. �

We finally comment on the variants of GMST were the clusters are non-
disjoint or where at least one node has to be selected per cluster. Our ap-
proximation algorithm applies to these variants as well. Indeed, for the first
case no change is necessary. For the second variant, one has to solve O(2ρ)
rooted relaxations (one for each possible choice of roots W1 ⊆ V1) with cut
constraints

x(δ(S))) ≥ yi, v ∈ S ⊆ V \{i}, v ∈W1

to ensure connectivity of supp(x) ⊆ E. All other arguments remain un-
changed.
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