AN APPROXIMATION OPERATOR OF STANCU TYPE

SILVIA TOADER*

Abstract

We study the behavior of Stancu-Goldman's operator on the second degree functions.

MSC 2000. 41A10, 60E05.
Keywords. Stancu's approximation operator, Friedman's distribution.

1. INTRODUCTION

Using the Pòlya-Eggenberger-Markov distribution, D. D. Stancu has defined in 4 a polynomial approximation operator, which today is bearing his name (see [1). The above distribution was generalized by B. Friedman in [2]. Using this new distribution, R. N. Goldman has defined in 3 an approximation operator of Stancu type for which has proved that it preserves the first degree functions. In this paper, we begin the study of the behavior of this operator on the second degree functions. This is necessary for the application of Popoviciu-Bohman-Korovkin approximation theorem (see [1]).

2. FRIEDMAN'S DISTRIBUTION

In [2] it is considered the following probabilistic model: an urn contains N balls, a of which are white and b black. A ball is draw out at random, its color noted and it is returned together with c balls of the same color and d balls of the opposite color. This procedure is repeated n times. We denote with $P(n, k)$ the probability that the total number of white balls chosen be k.

This model was studied in detail in [3] where the following recurrence relation

$$
P(n, k)=P(n-1, k-1) \cdot \frac{a+(k-1) \cdot c+(n-k) \cdot d}{N+(n-1) \cdot(c+d)}+P(n-1, k) \cdot \frac{b+(n-k-1) \cdot c+k \cdot d}{N+(n-1) \cdot(c+d)}
$$

is established. If we denote

$$
\frac{a}{N}=x, \frac{c}{N}=\alpha, \frac{d}{N}=\beta
$$

*Department of Mathematics, Technical University of Cluj-Napoca, Romania, e-mail: Silvia.Toader@math.utcluj.ro.
and $P(n, k)=P(n, k, x)$ the recurrence relation becomes

$$
\begin{aligned}
P(n, k, x)= & s(n-1, k-1, x) \cdot P(n-1, k-1, x) \\
& +t(n-1, k, x) \cdot P(n-1, k, x)
\end{aligned}
$$

where

$$
s(n, k, x)=[x+k \cdot \alpha+(n-k) \cdot \beta] \cdot \rho_{n}
$$

and

$$
t(n, k, x)=1-s(n, k, x)
$$

with

$$
\rho_{n}=\frac{1}{1+n \cdot(\alpha+\beta)}
$$

For $\beta=0$ we obtain the Pòlya-Eggenberger-Markov distribution with the explicit expression

$$
P(n, k, x)=\binom{n}{k} \frac{x^{(k,-\alpha)}(1-x)^{(n-k,-\alpha)}}{1^{(n,-\alpha)}},
$$

where

$$
x^{(k,-\alpha)}=x(x+\alpha) \ldots[x+(k-1) \alpha] .
$$

As we have shown in [5], such an expression seems to be impossible to obtain in the case $\beta \neq 0$.

3. THE DETERMINATION OF THE MOMENTS

Though the expressions of the distribution are missing, as it is shown in [3] we can calculate its moments of order r

$$
M_{r}(n, x)=\sum_{k=0}^{n} k^{r} \cdot P(n, k, x)
$$

Of course

$$
M_{0}(n, x)=1, M_{r}(1, x)=x
$$

For the calculation of other moments, the following recurrence relation

$$
M_{r}(n+1, x)=\sum_{i=0}^{r} M_{i}(n, x) \cdot \Gamma(r, n, x, i)
$$

is used, where

$$
\Gamma(r, n, x, i)=\Phi(r, n, i) \cdot x+\Psi(r, n, i)
$$

with

$$
\Phi(r, n, r)=0, \Psi(r, n, r)=1+r \cdot(\alpha-\beta) \cdot \rho_{n}
$$

and

$$
\Phi(r, n, i)=\binom{r}{i} \cdot \rho_{n}, \Psi(r, n, i)=\left[\binom{r}{i-1} \cdot(\alpha-\beta)+\beta \cdot n \cdot\binom{r}{i}\right] \cdot \rho_{n}, i<r .
$$

In the special case $r=1$ we obtain:

$$
M_{1}(n+1, x)=\left[1+(\alpha-\beta) \cdot \rho_{n}\right] \cdot M_{1}(n, x)+(x+\beta \cdot n) \cdot \rho_{n}
$$

which leads at

Lemma 1. There exist the constants $p_{n}>0, q_{n} \geq 0$, such that

$$
\begin{equation*}
M_{1}(n, x)=p_{n} \cdot x+q_{n}, n \geq 1 . \tag{1}
\end{equation*}
$$

The proof is done by mathematical induction, starting with the initial values

$$
p_{1}=1, q_{1}=0
$$

obtaining the recurrence relations

$$
p_{n+1}=\mu_{n} \cdot p_{n}+\rho_{n}>0
$$

and

$$
q_{n+1}=\mu_{n} \cdot q_{n}+\beta \cdot n \cdot \rho_{n} \geq 0,
$$

where

$$
\mu_{n}=[1+\alpha-\beta+(\alpha+\beta) \cdot n] \cdot \rho_{n} .
$$

To get explicit expressions we use the following
Lemma 2. If the sequence $\left(x_{n}\right)_{n \geq l}$ verifies the recurrence relation

$$
x_{n+1}=A_{n} \cdot x_{n}+B_{n}, n \geq l
$$

then it has the expression

$$
x_{n}=\sum_{i=l}^{n-1}\left(B_{i} \prod_{j=i+1}^{n-1} A_{j}\right)+x_{l} \prod_{i=l}^{n-1} A_{i}, n>l
$$

with the convention

$$
\prod_{j=n}^{n-1} \cdots=1
$$

We obtain
Theorem 1. The coefficients of the mean values (1) have the expressions

$$
p_{n}=\sum_{i=0}^{n-1}\left(\rho_{i} \prod_{j=i+1}^{n-1} \mu_{j}\right)
$$

and

$$
q_{n}=\beta \cdot \sum_{i=0}^{n-1}\left(i \cdot \rho_{i} \prod_{j=i+1}^{n-1} \mu_{j}\right) .
$$

Analogously, for the moments of order two we have
Theorem 2. There exist the positive constants u_{n}, v_{n}, w_{n} such that

$$
M_{2}(1, x)=x
$$

and

$$
\begin{equation*}
M_{2}(n, x)=u_{n} \cdot x^{2}+v_{n} \cdot x+w_{n}, n \geq 2, \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{n}=\sum_{i=1}^{n-1}\left(2 \cdot \rho_{i} \cdot p_{i} \cdot \prod_{j=i+1}^{n-1} \varphi_{j}\right) \\
& v_{n}=\sum_{i=1}^{n-1}\left[\left(2 \cdot \rho_{i} \cdot q_{i}+\psi_{i} \cdot p_{i}+\rho_{i}\right) \cdot \prod_{j=i+1}^{n-1} \varphi_{j}\right]+\prod_{i=1}^{n-1} \varphi_{i} \\
& w_{n}=\sum_{i=1}^{n-1}\left[\left(\psi_{i} \cdot q_{i}+\beta \cdot i \cdot \rho_{i}\right) \cdot \prod_{j=i+1}^{n-1} \varphi_{j}\right]
\end{aligned}
$$

with

$$
\varphi_{i}=[1+2 \cdot(\alpha-\beta)+(\alpha+\beta) \cdot i] \cdot \rho_{i}
$$

and

$$
\psi_{i}=(\alpha-\beta+2 \cdot \beta \cdot i) \cdot \rho_{i}
$$

Proof. For $r=2$ the recurrence relation is

$$
M_{2}(n+1, x)=\varphi_{n} \cdot M_{2}(n, x)+\left(2 \cdot \rho_{n} \cdot x+\psi_{n}\right) \cdot M(n, x)+\rho_{n} \cdot(x+\beta \cdot n) .
$$

So

$$
M_{2}(2, x)=2 \cdot \rho_{1} \cdot x^{2}+\left(\varphi_{1}+\psi_{1}+\rho_{1}\right) \cdot x+\beta \cdot \rho_{1}
$$

thus (2) is verified for $n=2$. If we assume it to be valid for a given n, we deduce

$$
\begin{aligned}
M_{2}(n+1, x)= & \left(u_{n} \cdot x^{2}+v_{n} \cdot x+w_{n}\right) \cdot \varphi_{n} \\
& +\left(p_{n} \cdot x+q_{n}\right) \cdot\left(2 \cdot \rho_{n} \cdot x+\psi_{n}\right)+\rho_{n} \cdot(x+\beta \cdot n)
\end{aligned}
$$

We have so (2) for $n+1$, with

$$
\begin{aligned}
u_{n+1} & =\varphi_{n} \cdot u_{n}+2 \cdot \rho_{n} \cdot p_{n} \\
v_{n+1} & =\varphi_{n} \cdot v_{n}+2 \cdot \rho_{n} \cdot q_{n}+\psi_{n} \cdot p_{n}+\rho_{n}
\end{aligned}
$$

and

$$
w_{n+1}=\varphi_{n} \cdot w_{n}+\psi_{n} \cdot q_{n}+\beta \cdot n \cdot \rho_{n}
$$

For ending the proof it is sufficient to apply the last lemma with the initial values

$$
u_{1}=0, v_{1}=1 \text { and } w_{1}=0
$$

4. THE DEFINITION OF THE APPROXIMATION OPERATOR

Using Friedman's distribution, the following operator

$$
U_{n}: C[a, b] \rightarrow C[0,1]
$$

was defined in [3] by

$$
\begin{equation*}
\left(U_{n} f\right)(x)=\sum_{k=0}^{n} P(n, k, x) \cdot f\left(x_{n, k}\right) \tag{3}
\end{equation*}
$$

where

$$
a \leq x_{n, 0}<x_{n, 1}<\ldots<x_{n, n} \leq b
$$

This operator is linear, positive, of polynomial type, and with the property that

$$
U_{n} e_{0}=e_{0}
$$

where

$$
e_{k}(x)=x^{k}, k=0,1,2, \ldots
$$

To apply Korovkin's approximation theorem (see [1]) the knots $x_{n, k}$ must be determined so that

$$
U_{n} e_{k} \rightarrow e_{k}, n \rightarrow \infty, k=1,2
$$

As it is stated in [3, Ch. Micchelli had the idea of choosing the knots as follows.

Theorem 3. If the interval of definition of the functions verifies the condition

$$
[a, b] \supseteq\left[-\frac{q_{n}}{p_{n}}, \frac{n-q_{n}}{p_{n}}\right],
$$

where p_{n}, q_{n} are from (1), then choosing the knots

$$
x_{n, k}=\frac{k-q_{n}}{p_{n}}, k=0,1, \ldots, n,
$$

the operator (3) reproduces the linear functions such as it has the property

$$
U_{n} e_{1}=e_{1}
$$

The proof is done by direct computation. In a similar way we obtain
THEOREM 4. In the conditions of the above theorem, we have

$$
U_{n} e_{2}=\frac{1}{p_{n}^{2}} \cdot\left[u_{n} \cdot e_{2}+\left(v_{n}-2 \cdot q_{n} \cdot p_{n}\right) \cdot e_{1}+\left(w_{n}-q_{n}^{2}\right) \cdot e_{0}\right]
$$

Proof. Step by step we have

$$
\begin{aligned}
\left(U_{n} e_{2}\right)(x) & =\sum_{k=0}^{n}\left(\frac{k-q_{n}}{p_{n}}\right)^{2} \cdot P(n, k, x) \\
& =\frac{1}{p_{n}^{2}} \cdot\left[M_{2}(n, x)-2 \cdot q_{n} \cdot M_{1}(n, x)+q_{n}^{2}\right] \\
& =\frac{1}{p_{n}^{2}} \cdot\left[u_{n} \cdot x^{2}+v_{n} \cdot x+w_{n}-2 \cdot q_{n} \cdot\left(p_{n} \cdot x+q_{n}\right)+q_{n}^{2}\right]
\end{aligned}
$$

which gives the desired result.

5. A SPECIAL CASE

Choosing $\beta=0$ we obtain Stancu's operator. Let us study the case $\alpha=0$. We have first of all

$$
\rho_{n}=\frac{1}{1+\beta \cdot n} \text { and } \mu_{n}=\frac{1+\beta \cdot(n-1)}{1+\beta \cdot n}
$$

As

$$
\prod_{j=i+1}^{n-1} \mu_{j}=\frac{1+\beta \cdot i}{1+\beta \cdot(n-1)}
$$

it follows that

$$
p_{n}=\frac{n}{1+\beta \cdot(n-1)} \text { and } q_{n}=\frac{\beta \cdot n \cdot(n-1)}{2 \cdot[1+\beta \cdot(n-1)]}
$$

Then

$$
\varphi_{n}=\frac{1+\beta \cdot(n-2)}{1+\beta \cdot n} \text { and } \psi_{n}=\frac{\beta \cdot(2 \cdot n-1)}{1+\beta \cdot n}
$$

So

$$
\prod_{j=i+1}^{n-1} \varphi_{j}=\frac{[1+\beta \cdot(i-1)] \cdot(1+\beta \cdot i)}{[1+\beta \cdot(n-2)] \cdot[1+\beta \cdot(n-1)]}
$$

which gives

$$
\begin{aligned}
& u_{n}=\frac{n \cdot(n-1)}{[1+\beta \cdot(n-2)] \cdot[1+\beta \cdot(n-1)]} \\
& v_{n}=\frac{n \cdot[\beta \cdot n \cdot(n-2)+1]}{[1+\beta \cdot(n-2)] \cdot[1+\beta \cdot(n-1)]}
\end{aligned}
$$

and

$$
w_{n}=\frac{\beta \cdot n \cdot(n-1) \cdot\left[\beta \cdot\left(3 \cdot n^{2}-5 \cdot n-2\right)+6\right]}{12 \cdot[1+\beta \cdot(n-2)] \cdot[1+\beta \cdot(n-1)]}
$$

We deduce that

$$
\frac{u_{n}}{p_{n}^{2}} \rightarrow 1, n \rightarrow \infty
$$

and

$$
\frac{v_{n}-2 \cdot p_{n} \cdot q_{n}}{p_{n}^{2}} \rightarrow 0, n \rightarrow \infty
$$

but

$$
\frac{w_{n}-q_{n}^{2}}{p_{n}^{2}} \rightarrow \infty, n \rightarrow \infty
$$

so $U_{n} e_{2}$ does not converge.
It remains as an open problem that of determination of the parameters α and β such that

$$
U_{n} e_{2} \rightarrow e_{2}, n \rightarrow \infty
$$

REFERENCES

[1] Altomare, F. and Campiti, M., Korovkin-type approximation theory and its application, Walter de Gruyter, Berlin-New York, 1994.
[2] Friedman, B., A simple urn model, Comm. Pure Appl. Math., 2, pp. 59-70, 1949.
[3] Goldman, R. N., Urn models, approximations, and splines, J. Approx. Theory, 54, pp. 1-66, 1988.
[4] Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Revue Roum. Math. Pures Appl., 13, pp. 1173-1194, 1969.
[5] Toader, S., A generalization of Polya distribution, Bull. Applied \& Comput. Math (Budapest), 86A, pp. 477-484, 1998.

Received by the editors: November 19, 1999.

