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Abstract. We study the behavior of Stancu-Goldman’s operator on the second
degree functions.
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1. INTRODUCTION

Using the Pòlya-Eggenberger-Markov distribution, D. D. Stancu has defined
in [4] a polynomial approximation operator, which today is bearing his name
(see [1]). The above distribution was generalized by B. Friedman in [2]. Using
this new distribution, R. N. Goldman has defined in [3] an approximation
operator of Stancu type for which has proved that it preserves the first degree
functions. In this paper, we begin the study of the behavior of this operator on
the second degree functions. This is necessary for the application of Popoviciu-
Bohman-Korovkin approximation theorem (see [1]).

2. FRIEDMAN’S DISTRIBUTION

In [2] it is considered the following probabilistic model: an urn contains N
balls, a of which are white and b black. A ball is draw out at random, its color
noted and it is returned together with c balls of the same color and d balls
of the opposite color. This procedure is repeated n times. We denote with
P (n, k) the probability that the total number of white balls chosen be k.

This model was studied in detail in [3] where the following recurrence rela-
tion

P (n, k) = P (n− 1, k − 1) · a+(k−1)·c+(n−k)·d
N+(n−1)·(c+d) + P (n− 1, k) · b+(n−k−1)·c+k·d

N+(n−1)·(c+d)

is established. If we denote
a
N = x, c

N = α, d
N = β
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and P (n, k) = P (n, k, x) the recurrence relation becomes
P (n, k, x) = s(n− 1, k − 1, x) · P (n− 1, k − 1, x)

+ t(n− 1, k, x) · P (n− 1, k, x),
where

s(n, k, x) = [x+ k · α+ (n− k) · β] · ρn
and

t(n, k, x) = 1− s(n, k, x)
with

ρn = 1
1+n·(α+β) .

For β = 0 we obtain the Pòlya-Eggenberger-Markov distribution with the
explicit expression

P (n, k, x) =
(n
k

)x(k,−α)(1−x)(n−k,−α)

1(n,−α) ,

where
x(k,−α) = x(x+ α)...[x+ (k − 1)α].

As we have shown in [5], such an expression seems to be impossible to obtain
in the case β 6= 0.

3. THE DETERMINATION OF THE MOMENTS

Though the expressions of the distribution are missing, as it is shown in [3]
we can calculate its moments of order r

Mr(n, x) =
n∑
k=0

kr · P (n, k, x).

Of course
M0(n, x) = 1, Mr(1, x) = x.

For the calculation of other moments, the following recurrence relation

Mr(n+ 1, x) =
r∑
i=0

Mi(n, x) · Γ(r, n, x, i)

is used, where
Γ(r, n, x, i) = Φ(r, n, i) · x+ Ψ(r, n, i)

with
Φ(r, n, r) = 0, Ψ(r, n, r) = 1 + r · (α− β) · ρn

and
Φ(r, n, i) =

(r
i

)
· ρn, Ψ(r, n, i) =

[( r
i−1
)
· (α− β) + β · n ·

(r
i

)]
· ρn, i < r.

In the special case r = 1 we obtain:
M1(n+ 1, x) = [1 + (α− β) · ρn] ·M1(n, x) + (x+ β · n) · ρn

which leads at
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Lemma 1. There exist the constants pn > 0, qn ≥ 0 , such that

(1) M1(n, x) = pn · x+ qn, n ≥ 1.

The proof is done by mathematical induction, starting with the initial values

p1 = 1, q1 = 0

obtaining the recurrence relations

pn+1 = µn · pn + ρn > 0

and
qn+1 = µn · qn + β · n · ρn ≥ 0,

where
µn = [1 + α− β + (α+ β) · n] · ρn.

To get explicit expressions we use the following

Lemma 2. If the sequence (xn)n≥l verifies the recurrence relation

xn+1 = An · xn +Bn, n ≥ l

then it has the expression

xn =
n−1∑
i=l

(
Bi

n−1∏
j=i+1

Aj

)
+ xl

n−1∏
i=l

Ai, n > l

with the convention
n−1∏
j=n
· · · = 1.

We obtain

Theorem 1. The coefficients of the mean values (1) have the expressions

pn =
n−1∑
i=0

(
ρi

n−1∏
j=i+1

µj

)
and

qn = β ·
n−1∑
i=0

(
i · ρi

n−1∏
j=i+1

µj

)
.

Analogously, for the moments of order two we have

Theorem 2. There exist the positive constants un, vn, wn such that

M2(1, x) = x

and

(2) M2(n, x) = un · x2 + vn · x+ wn, n ≥ 2,
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where

un =
n−1∑
i=1

(
2 · ρi · pi ·

n−1∏
j=i+1

ϕj

)
,

vn =
n−1∑
i=1

[
(2 · ρi · qi + ψi · pi + ρi) ·

n−1∏
j=i+1

ϕj

]
+
n−1∏
i=1

ϕi,

wn =
n−1∑
i=1

[
(ψi · qi + β · i · ρi) ·

n−1∏
j=i+1

ϕj

]
,

with
ϕi = [1 + 2 · (α− β) + (α+ β) · i] · ρi

and
ψi = (α− β + 2 · β · i) · ρi.

Proof. For r = 2 the recurrence relation is
M2(n+ 1, x) = ϕn ·M2(n, x) + (2 · ρn · x+ ψn) ·M(n, x) + ρn · (x+ β · n).

So
M2(2, x) = 2 · ρ1 · x2 + (ϕ1 + ψ1 + ρ1) · x+ β · ρ1,

thus (2) is verified for n = 2. If we assume it to be valid for a given n, we
deduce

M2(n+ 1, x) = (un · x2 + vn · x+ wn) · ϕn
+ (pn · x+ qn) · (2 · ρn · x+ ψn) + ρn · (x+ β · n).

We have so (2) for n+ 1 , with
un+1 = ϕn · un + 2 · ρn · pn,
vn+1 = ϕn · vn + 2 · ρn · qn + ψn · pn + ρn

and
wn+1 = ϕn · wn + ψn · qn + β · n · ρn.

For ending the proof it is sufficient to apply the last lemma with the initial
values

u1 = 0, v1 = 1 and w1 = 0. �

4. THE DEFINITION OF THE APPROXIMATION OPERATOR

Using Friedman’s distribution, the following operator
Un : C[a, b]→ C[0, 1]

was defined in [3] by

(3) (Unf)(x) =
n∑
k=0

P (n, k, x) · f(xn,k),
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where

a ≤ xn,0 < xn,1 < ... < xn,n ≤ b.

This operator is linear, positive, of polynomial type, and with the property
that

Une0 = e0,

where

ek(x) = xk, k = 0, 1, 2, ...

To apply Korovkin’s approximation theorem (see [1]) the knots xn,k must be
determined so that

Unek → ek, n→∞, k = 1, 2.

As it is stated in [3], Ch. Micchelli had the idea of choosing the knots as
follows.

Theorem 3. If the interval of definition of the functions verifies the con-
dition

[a, b] ⊇
[
− qn
pn
, n−qn

pn

]
,

where pn, qn are from (1), then choosing the knots

xn,k = k−qn
pn

, k = 0, 1, ..., n,

the operator (3) reproduces the linear functions such as it has the property

Une1 = e1.

The proof is done by direct computation. In a similar way we obtain

Theorem 4. In the conditions of the above theorem, we have

Une2 = 1
p2
n
·
[
un · e2 + (vn − 2 · qn · pn) · e1 + (wn − q2

n) · e0
]
.

Proof. Step by step we have

(Une2)(x) =
n∑
k=0

(
k−qn
pn

)2
· P (n, k, x)

= 1
p2
n
·
[
M2(n, x)− 2 · qn ·M1(n, x) + q2

n

]
= 1

p2
n
·
[
un · x2 + vn · x+ wn − 2 · qn · (pn · x+ qn) + q2

n

]
which gives the desired result. �
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5. A SPECIAL CASE

Choosing β = 0 we obtain Stancu’s operator. Let us study the case α = 0.
We have first of all

ρn = 1
1+β·n and µn = 1+β·(n−1)

1+β·n .

As
n−1∏
j=i+1

µj = 1+β·i
1+β·(n−1)

it follows that
pn = n

1+β·(n−1) and qn = β·n·(n−1)
2·[1+β·(n−1)] .

Then
ϕn = 1+β·(n−2)

1+β·n and ψn = β·(2·n−1)
1+β·n .

So
n−1∏
j=i+1

ϕj = [1+β·(i−1)]·(1+β·i)
[1+β·(n−2)]·[1+β·(n−1)] ,

which gives

un = n·(n−1)
[1+β·(n−2)]·[1+β·(n−1)] ,

vn = n·[β·n·(n−2)+1]
[1+β·(n−2)]·[1+β·(n−1)]

and
wn = β·n·(n−1)·[β·(3·n2−5·n−2)+6]

12·[1+β·(n−2)]·[1+β·(n−1)] .

We deduce that
un
p2
n

→ 1, n→∞,

and
vn − 2 · pn · qn

p2
n

→ 0, n→∞,

but
wn − q2

n

p2
n

→∞, n→∞,

so Une2 does not converge.
It remains as an open problem that of determination of the parameters

α and β such that
Une2 → e2, n→∞.
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