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APPROXIMATION PROPERTIES
OF A BIVARIATE STANCU TYPE OPERATOR
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Abstract. An extension of Stancu’s operator P
(α,β)
m to the case of bivariate

functions is presented and some approximation properties of this operator are
discussed.
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1. PRELIMINARIES

In 1968 (see [8]), D.D. Stancu constructed and studied a linear and positive
operator, depending on two positive parameters α and β which satisfy the
condition 0 ≤ α ≤ β. This operator, denoted by P

(α,β)
m , associates to any

function f ∈ C([0, 1]) the polynomial P (α,β)
m f, defined by:

(1)
(
P (α,β)
m f

)
(x) =

m∑
k=0

pmk(x) f
(
k+α
m+β

)
,

where pmk(x) are the fundamental Bernstein polynomials. In the monograph
by F. Allovave and M. Campiti [1] this operator is called ”the operator of
Bernstein Stancu”.

A first extensions of the operator (1) to the case of bivariate functions was
given by F. Stancu in her doctoral thesis (see [9]). The aim of the present paper
is to extend the operator (1) to the case of B-continuous (Bőgel continuous
functions). More exactly, we shall present a GBS (Generalized Boolean Sum)
operator of Stancu type and some properties of this operator.

The terminology of ”B-continuous function” was introduced by K. Bőgel
[5], [6]. A first result concerning the approximation of this kind of functions
is due to E. Dobrescu and I. Matei [7].

An important ”test function theorem”, (the analogous of the well known
Korovkin theorem), for the approximation of B-continuous functions by GBS
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operators was introduced by C. Badea and C. Cottin [3]. Approximation prop-
erties of the GBS operators were studied C. Badea, C. Cottin, H.H. Gonska,
D. Kacso and many others.

2. THE GBS OPERATOR OF STANCU TYPE

Let I = [0, 1] and let I2 = [0, 1]× [0, 1] be the unit square. The space of all
B-continuous functions on I2 will be denoted by Cb(I2).

Next, we consider four non-negative parameters α1, β1, α2,β2,satisfying the
conditions 0 ≤ α1 ≤ β1, 0 ≤ α2 ≤ β2. If f ∈ Cb(I2), the parametric extensions
of the operator P (α,β)

m are defined respectively by:(
xP

(α1,β1)
m f

)
(x, y) =

m∑
k=0

pmk(x)f
(
k+α1
m+β1

, y
)
,(2)

(
yP

(α2,β2)
n f

)
(x, y) =

n∑
l=0

pnl(y)f
(
x, l+α2

n+β2

)
.(3)

It is easy to see that xP
(α1,β1)
m and yP

(α2,β2)
n are linear and positive operators,

well defined on Cb(I2).
Let Lm,n : Cb(I2) → Cb(I2) be the tensorial product of xP

(α1,β1)
m and

yP
(α2,β2)
n , i.e.

(4) Lm,n =x P
(α1,β1)
my ◦ P (α2,β2)

n .

Then, Lm,n : Cb(I2) → Cb(I2) associates to any f ∈ Cb(I2) the bivariate
polynomial

(5) Lm,n f(x, y) =
m∑
k=0

n∑
l=0

pmk(x)pn,l(y)f
(
k+α1
m+β1

, l+α2
n+β2

)
.

It is well known (see for example [4] or [10]) that the operator (5) has the
following properties:

Lemma 1. If eij : I2 → R (i, j ∈ N, 0 ≤ i + j ≤ 2) are the test functions,
the following equalities hold

(i) (Lm,ne00)(x, y) = 1;
(ii) (Lm,ne10)(x, y) = x+ α1−β1x

m+β1
;

(iii) (Lm,ne01)(x, y) = y + α2−β2y
n+β2

;
(iv) (Lm,ne20)(x, y) = x2 + mx(1−x)+(α1−β1x)(2mx+β1x+α1)

(m+β1)2 ;
(v) (Lm,ne02)(x, y) = y2 + ny(1−y)+(α2−β2y)(2ny+β2y+α2)

(m+β2)2 ;

for any (x, y) ∈ I2.

Lemma 2. The operator (5) is linear and positive.
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Definition 1. Let Sm,n : Cb(I2)→ Cb(I2) be the boolean sum of xP (α1,β1)
m

and yP
(α2,β2)
n , i.e.

(6) Sm,n =x P
(α1,β1)
m +y P

(α2,β2)
n −x P (α1,β1)

m ◦y P (α2,β2)
n .

The operator Sm,n will be called GBS operator of Stancu type.

By direct computation, one obtains:

Lemma 3. If Sm,n : Cb(I2) → Cb(I2) is the GBS operator of Stancu type,
then

(Sm,nf) (x, y) =

(7)

=
m∑
k=0

n∑
l=0

pmk(x) pnl(y)
{
f
(
k+α1
m+β1

, y
)

+ f
(
x, l+α2

n+β2
, y
)
− f

(
k+α1
m+β1

, l+α2
n+β2

)}
for any f ∈ Cb(I2) and any (x, y) ∈ I2.

Remark 1. For α1 = β1 = α2 = β2 = 0, the GBS operator of Stancu
type is reduced to the GBS operator of Bernstein type, which interpolates any
function f ∈ Cb(I2) on the boundary of the unit square I2. If α1 = β1 = 0 and
α2 6= 0, β2 6= 0, the corresponding operator interpolates any f ∈ Cb(I2) on
the left and respectively on the right side of the boundary of unit square I2.
Other particular cases of the GBS operator of Stancu type can be discussed
in a similar way. �

Theorem 1. For any f ∈ Cb(I2),the sequence {Sm,nf}m,n∈N converges to
f, uniformly on I2 as m and n tend to infinity.

Proof. Let us to introduce the following notations

um(x) =α1−β1x
m+β1

,

vn(y) =α2−β2y
n+β2

,

wm, n(x, y) =x2 + y2 + mx(1−x)+(α1−β1x)(2mx+β1+α1)
(m+β1)2

+ ny(1−y)+(α2−β2y)(2ny+β2+α2)
(n+β2)2 .

Then the results contained in Lemma 1 can be written in the form

(Lm,ne00) (x, y) = 1;
(Lm,ne10) (x, y) = x+ um(x);
(Lm,ne01) (x, y) = y + vn(y);

(Lm,n (e20 + e02)) (x, y) = x2 + y2 + wm,n(x, y),

for any (x, y) ∈ I2.



20 Dan Bărbosu 4

Because the sequences {um(x)}m∈N, {vn(x)}n∈N and {wm,n(x)}m,n∈N tend
to zero, uniformly on I2 asm and n tend to infinity, we can apply the Korovkin-
type theorem for the approximation of B-continuous functions due C. Badea,
I. Badea and H.H. Gonska (see [2]). Applying this theorem, it follows that
Sm,nf tend to f , uniformly on I2, for any f ∈ Cb(I2) as m and n tend to
infinity. �

Next the approximation order of any function f ∈ Cb(I2) by Sm,nf will be
established, using the mixed modulus of smoothness (see [3]). We need the
following result, due to C. Badea and C. Cottin (see [3]).

Theorem 2. Let X and Y be compact real intervals. Furthermore, let
L : Cb(X,Y ) → Cb(X,Y ) be a positive linear operator and U the associated
GBS operator. Then, for all f ∈ Cb(X,Y ) , (x, y) ∈ X × Y and δ1,δ2 > 0 the
inequality

|(f − Uf)(x, y)| ≤(8)
≤ |f(x, y)| · |1− L(x;x, y|+

+ {L(1;x, y) + 1
δ1

√
L((x− ◦)2;x, y) + 1

δ2

√
L((y − ∗)2;x, y)

+ 1
δ1δ2

√
L((x− ◦)2(y − ∗)2;x, y) }ωmixed(δ1, δ2)

holds.

Lemma 4. The bivariate operator of Stancu verifies the following equalities:

Lm,n((x− ◦)2;x, y) =mx(1−x)+(α1−β1x)2

(m+β1)2 ;

Lm,n((y − ∗)2;x, y) =ny(1−y)+(α2−β2y)2

(n+β2)2 ;

Lm,n((x− ◦)2(y − ∗)2 = 1
(m+β1)2(n+β2)2

{
mx(1− x) + (α1 − β1x)2

}
×
{
ny(1− y) + (α2 − β2y)2

}
.

Proof. The equalities follow from the linearity of Lmn and Lemma 1. �

Theorem 3. The GBS operators of Stancu Smn verifies the inequality:

|Sm,nf(x, y)− f(x, y)| ≤(9)

≤
{

1
δ1 ·

1
m+β1

√
m
4 + (α1 − β1x)2 + 1

δ2

√
n
4 + (α2 − β2y)2+

+ 1
δ1δ2
· 1

(m+β1)(n+β2)

√
{m4 + (α1 − β1x)2}{n4 + (α2 − β2y)2} }×

× ωmixed(δ1δ2),

for any δ1, δ2 > 0 and any (x, y) ∈ I2.

Proof. We apply Lemma 4 and the inequalities x(1− x) ≤ 1
4 , y(1− y) ≤ 1

4
for any(x, y) ∈ I2. �
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Remark 2. The inequality (9) gives us the order of the local approximation
of f by Sm,nf. �

The order of the global approximation of f ∈ Cb(I2) by Sm,nf is expressed
in

Theorem 4. The GBS operator of Stancu verify the following inequality:

(10) |Sm,nf(x, y)− f(x, y)| ≤ 9
4ωmixed

(√
m+4α2

1
m+β1

,

√
n+4α2

2
n+β2

)
.

Proof. Taking into account that (α1− β1x)2 ≤ α2
1 and (α2− β2y)2 ≤ α2

1 for
any (x, y) ∈ I2, from Theorem 3, we get:

|Sm,nf(x, y)− f(x, y)| ≤

≤
{

1
2δ1

√
m+4α2

1
m+β1

+ 1
2δ2

√
n+4α2

2
n+β2

+
√

(m+4α2
1)(n+4α2

2)
4δ1δ2(m+β1)(m+β2)

}
· ωmixed(δ1δ2).

Choosing then
δ1 =

√
m+4α2

1
m+β1

; δ2 =
√
n+4α2

2
n+β2

;
it follows (10) and the proof ends. �

Remark 3. The inequality (10) can be further refined, taking into account
of the values of α1, α2 with respect β1 and β2. �
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