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BOUNDS FOR THE REMAINDER IN THE BIVARIATE SHEPARD
INTERPOLATION OF LIDSTONE TYPE

TEODORA CATINAS*

Abstract. We study the bivariate Shepard-Lidstone interpolation operator and
obtain new estimates for the remainder. Some numerical examples are provided.
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1. INTRODUCTION

As it is pointed out in [7] and [I5], interpolation at nodes having no ex-
ploitable pattern is referred to as the case of scattered data and there are two
important methods of interpolation in this case: the method of Shepard and
the interpolation by radial basis functions.

Consider —00 < a < b < oo and —00o < ¢ < d < oo and let A : a =
g < 11 < ... < axnyp =band A i c =y < y1 < ... < yyy1 = d
denote uniform partitions of the intervals [a,b] and [c, d] with stepsizes h =
(b—a)/(N+1)and ! = (d—c)/(M +1), respectively. Further, let p = A x A’
be a rectangular partition of [a, b] X [¢, d]. For the univariate function f and the
bivariate function g and each positive integer r we denote by D" f =d" f/dz",
Dyg=0"g/0x" and Dyg = 0"g/0y".

According to [I] and [2], for a fixed A denote the set L,,(A) = {h € C[a, ] :
h is a polynomial of degree at most 2m — 1 in each subinterval [z;,x;1],
0<i< N}

DEFINITION 1. [2] For a given function f € C?*™2[a,b] we say that L5 f is
the Lidstone interpolant of f if LY f € Ly (A) with

DMILA ) (i) = f®) (@), 0<k<m—1,0<i<N+1.

According to [2], for f € C*™~2%[a,b] the Lidstone interpolant L2 f uniquely
exists and on the subinterval [z;, z;1+1], 0 < i < N, can be explicitly expressed
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(L Nlzi i) (2 Z[ TELZT) FOR) (2) 4 Ay (552) fO9) (2ig0) | B,

where Ay is the Lidstone polynomial of degree 2k + 1, k € N on the interval
[0,1].
We have the interpolation formula

f=L5f+Ro T,

where R4 f denotes the remainder.
For a fixed rectangular partition p = A x A’ of [a,b] X [c,d] the set L., (p)
is defined as Ly, (p) = Lin(A) @ Ly, (A') (see, e.g., [1] and [2]).

DEFINITION 2. [2] For a given function f € C?™=22m=2([q,b] x [c,d]) we
say that LP f is the two-dimensional Lidstone interpolant of f if L? f € Ly (p)
with

DDy (L f) (i) = O (@iyyy), 0<i<N+1,0<j<M+1,

0< u,v<m—1.

According to [2], for f € C?™=22m=2([a,b] X [¢,d]), the Lidstone interpolant
L? f uniquely exists and can be explicitly expressed as

N4+1m—1M+4+1m—1 (2,20)
() LhhHly)= X X X Z Py (%) T, () f97 (@i, ),
=0 pu=0 j=0 v=0
where 7,5, 0 <1 < N +1,0 < j <m— 1, are the basic elements of L, (p)
satisfying
(3) DQU’I“m’i’j($M) = 5,5”521,0', 0< o’ <N + 1, 0<v<m-—1.
LeEMMA 3. [2] If f € C?™=22m=2([a,b] X [c,d]), then

(Lo f) (@ y) = (LinLin )@, y) = (L Lin f) (2, 9).
COROLLARY 4. [2] For a function f € C*™22m=2([q b] x [c,d]), from
Lemma 3] we have that
) S Lhf=(f~Lnh)+Lpf — Ly f)
= (f = L)+ [Lin(f = L ) = (f = L D]+ (f = L ).
With the previous assumptions we denote by L4 f the restriction of the
Lidstone interpolation polynomial Lﬁl f to the subinterval [z;, z;+1],0 < i < N,

given by , and in analogous way we obtain the expression of Lﬁl/”' f, the
restriction of L5 f, to the subinterval [y;, yi41] C [¢,d], 0 < i < N. We denote
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by S, the univariate combined Shepard-Lidstone operator, introduced by us
in [4]:

N
(Sp.f) (@) = D Aux) (L' f)(x),
i=0
with A;, i =0, ..., N, given by
o) Aiey) = Tt o) /(5 T ) )
1 Y _j:O J Y =070 i 'Y
i Gk
and
N
(6) S A=1
i=0

The univariate Shepard-Lidstone interpolation formula is

(7) f=8Lf+Rrf.

We consider f € C?"=22m=2([q, b] x [¢,d]) and the set of Lidstone functio-
nals

L= {f(% Yi)s F(@it1, Yis1)s s FEMT22M7D) (2 0,

f(2m—272m_2) (Tit1,Yiv1) }7

regarding each subrectangle [x;, z;11] X [yi,yi11],0 < @ < N, with |[AY,| =
4m, 0 < i < N. We denote by L f the restriction of the polynomial given by
to the subrectangle [z;, zi+1] X [ys, Yi+1], 0 < @ < N. This 2m—1 polynomial,
in each variable, solves the interpolation problem corresponding to the set AiLi,
0 <7 < N and it uniquely exists.

We have
(LB )2 (g, i) = FO2) (@, ),
0<i1<N; 0<v<m-—-1;k=14,i+ 1.
The bivariate Shepard operator of Lidstone type S, introduced by us in
[5], is given by

. N .
(8) (SYf)(x,y) = ,;)Ai(w,y)(Lfﬁzf)(x,y)-
We obtain the bivariate Shepard-Lidstone interpolation formula,
(9) f =S+ RIS,

where S f is given by (8)) and R f denotes the remainder of the interpolation
formula.

Next, we give an error estimation using the modulus of smoothness of order
k. For a function g defined on [a, b] we have

wi(g;0) = sup{\A’ng(azﬂ c b <0, x,x+ kh € [a,b]},
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with 6 € [0, (b — a)/k] and
k

Afg(z) = > (1) (%) g(x + ih).

i=0
We consider the norm in the set C'(X) of continuous functions defined on X by
IFlloce = max| ()]
We recall first a result from [17]:

THEOREM 5. [I7] Let L be a bounded operator and let L(P) = P for every
P € Py_y. Then for every bounded function f : [a,b] — R the following
inequality is fulfilled

1f = L)l opagy < 1+ [l Wi (13 552)
where Wy, is Whitney’s constant.

We apply this result for the operators L2 and L2'. For f € Cla,b] and
g € Cle,d] we have

(10) 17 = L5l < O+ 1E o) Wamenm (£:5:2)

l9 = I ) logeay < O 1L ) Wameenm (9555 -

Now we give an estimation of the remainder Ry f from , in terms of the
modulus of smoothness.

THEOREM 6. If f € C*™2[a,b], then
A .b—a
(11) IR fl gy < (1+ \LmH[a’bl)meQm (£:%2).

Proof. We have

N .
(Bof)(x) = f(z) - E()Ai(x)(Lﬁ”f)(x)

N N ;

= > A (@) = X AL @)
N .

= S A@)f (@) - (L) (@)

and taking into account and that
N
> |Ai(x)] =1,
i=0

relation follows. OJ

The next result provides an estimation of the error in formula @
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THEOREM 7. If f € C?*™=22m=2([q b] x [c,d]), then

[ 50+ 1R s o (05
+ (1 + HL”% Clab) JWer yeled wan(f = L N0 55

A’ e
+ (1 + HLm HC[c,d])WZm mrg[%ﬁ] Wom, (f(a;‘7 -); %) ,

where Wy, is Whitney’s constant.

Proof. Taking into account and (@ we get

(RLZf)(x7y) = f(x7y) - (SLZf)(x7y)

= f(@.9) — & Ao ) (L2 D))

N N ,
= LAz y)f(z,y) - 3 A, y)(Lnl f)(2,9)

N

- ZAi(:U,y)[f(x,y) - (Lglbzfxx’y)]

1=0

Next applying the results given by Corollary {4f and @ it follows that

(RY ) (. ) =Z§O A ) {(f — I3 ) ()

+ LA = L ) (y) = (f — L5 f) (2, y)]
+(f = LY f)(a,y)}

N .
=3 Az y)(f = L' f) (@, y)
+ iAi(w,y)[Lﬁ’i(f — LY ) (,y) — (f — LY )z, y)]

N ;.
+ ;Az(xvy)(f - L?n 7’L.}c)(‘r?y)

=0 . .
- [f(x7y)l§ Al(xa y) - i;)Ai(x7y)(LrAnlf)(xvy)]
N L
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and, finally,

Li _ _ X . A
(R f)(x,y) = [f(x,y) goAz(ﬂf,y)(Lm f)(ﬂxy)]
- é Ai(z,y)[(f = L"), y) — L' (f = Ly ' f)(z,v)]

N /s
+ [f(x,y) - i%Ai(x,y)(La 7Zf)(xvy)] :

Applying Theorem [f] three times the conclusion follows. O
EXAMPLE 1. Let f:[-2,2] x [-2,2] — R,
f(w,y) = ze )

and consider the nodes z; = (—1,—1), 2o = (—0.5,-0.5), z3 = (—0.3,-0.1),
z4 = (0,0), z5 = (0.5,0.8), z6 = (1,1). In Figure |1l we plot the graphics of
f and S¥f for y = 1. In Figure [2| we plot the error (in absolute value) for
Shepard interpolation regarding these data, and also, the error for Shepard
interpolation of Lidstone type; we notice that in both cases, the maximum
value is 0.5.
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(a) Graph of f. (b) The interpolant S\*f, u =
1.
Fig. 1. Graph of f and S’(LQ.)f.
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(a) Error for the Shepard inter- (b) Error for Shepard interpola-
polation. tion of Lidstone type.

Fig. 2. Errors.
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