BOUNDS FOR THE REMAINDER IN THE BIVARIATE SHEPARD INTERPOLATION OF LIDSTONE TYPE

TEODORA CĂTINAŞ*

Abstract

We study the bivariate Shepard-Lidstone interpolation operator and obtain new estimates for the remainder. Some numerical examples are provided.

MSC 2000. 41A63, 41A80.
Keywords. Bivariate Shepard-Lidstone interpolation, remainder.

1. INTRODUCTION

As it is pointed out in [7] and [15], interpolation at nodes having no exploitable pattern is referred to as the case of scattered data and there are two important methods of interpolation in this case: the method of Shepard and the interpolation by radial basis functions.

Consider $-\infty<a<b<\infty$ and $-\infty<c<d<\infty$ and let $\Delta: a=$ $x_{0}<x_{1}<\ldots<x_{N+1}=b$ and $\Delta^{\prime}: c=y_{0}<y_{1}<\ldots<y_{M+1}=d$ denote uniform partitions of the intervals $[a, b]$ and $[c, d]$ with stepsizes $h=$ $(b-a) /(N+1)$ and $l=(d-c) /(M+1)$, respectively. Further, let $\rho=\Delta \times \Delta^{\prime}$ be a rectangular partition of $[a, b] \times[c, d]$. For the univariate function f and the bivariate function g and each positive integer r we denote by $D^{r} f=\mathrm{d}^{r} f / \mathrm{d} x^{r}$, $D_{x}^{r} g=\partial^{r} g / \partial x^{r}$ and $D_{y}^{r} g=\partial^{r} g / \partial y^{r}$.

According to [1] and [2], for a fixed Δ denote the set $L_{m}(\Delta)=\{h \in C[a, b]$: h is a polynomial of degree at most $2 m-1$ in each subinterval $\left[x_{i}, x_{i+1}\right]$, $0 \leq i \leq N\}$.

Definition 1. [2] For a given function $f \in C^{2 m-2}[a, b]$ we say that $L_{m}^{\Delta} f$ is the Lidstone interpolant of f if $L_{m}^{\Delta} f \in L_{m}(\Delta)$ with

$$
D^{2 k}\left(L_{m}^{\Delta} f\right)\left(x_{i}\right)=f^{(2 k)}\left(x_{i}\right), \quad 0 \leq k \leq m-1,0 \leq i \leq N+1
$$

According to $\left[2\right.$, for $f \in C^{2 m-2}[a, b]$ the Lidstone interpolant $L_{m}^{\Delta} f$ uniquely exists and on the subinterval $\left[x_{i}, x_{i+1}\right], 0 \leq i \leq N$, can be explicitly expressed

[^0]as
(1)
$$
\left.\left(L_{m}^{\Delta} f\right)\right|_{\left[x_{i}, x_{i+1}\right]}(x)=\sum_{k=0}^{m-1}\left[\Lambda_{k}\left(\frac{x_{i+1}-x}{h}\right) f^{(2 k)}\left(x_{i}\right)+\Lambda_{k}\left(\frac{x-x_{i}}{h}\right) f^{(2 k)}\left(x_{i+1}\right)\right] h^{2 k}
$$
where Λ_{k} is the Lidstone polynomial of degree $2 k+1, k \in \mathbb{N}$ on the interval $[0,1]$.

We have the interpolation formula

$$
f=L_{m}^{\Delta} f+R_{m}^{\Delta} f
$$

where $R_{m}^{\Delta} f$ denotes the remainder.
For a fixed rectangular partition $\rho=\Delta \times \Delta^{\prime}$ of $[a, b] \times[c, d]$ the set $L_{m}(\rho)$ is defined as $L_{m}(\rho)=L_{m}(\Delta) \otimes L_{m}\left(\Delta^{\prime}\right)$ (see, e.g., [1] and [2]).

Definition 2. [2] For a given function $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$ we say that $L_{m}^{\rho} f$ is the two-dimensional Lidstone interpolant of f if $L_{m}^{\rho} f \in L_{m}(\rho)$ with

$$
\begin{aligned}
D_{x}^{2 \mu} D_{y}^{2 \nu}\left(L_{m}^{\rho} f\right)\left(x_{i}, y_{j}\right)=f^{(2 \mu, 2 \nu)}\left(x_{i}, y_{j}\right), \quad & 0 \leq i \leq N+1,0 \leq j \leq M+1 \\
& 0 \leq \mu, \nu \leq m-1
\end{aligned}
$$

According to [2], for $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$, the Lidstone interpolant $L_{m}^{\rho} f$ uniquely exists and can be explicitly expressed as

$$
\begin{equation*}
\left(L_{m}^{\rho} f\right)(x, y)=\sum_{i=0}^{N+1} \sum_{\mu=0}^{m-1} \sum_{j=0}^{M+1} \sum_{\nu=0}^{m-1} r_{m, i, \mu}(x) r_{m, j, \nu}(y) f^{(2 \mu, 2 \nu)}\left(x_{i}, y_{j}\right) \tag{2}
\end{equation*}
$$

where $r_{m, i, j}, 0 \leq i \leq N+1,0 \leq j \leq m-1$, are the basic elements of $L_{m}(\rho)$ satisfying

$$
\begin{equation*}
D^{2 v} r_{m, i, j}\left(x_{\mu}\right)=\delta_{i \mu} \delta_{2 v, j}, \quad 0 \leq \mu \leq N+1,0 \leq v \leq m-1 \tag{3}
\end{equation*}
$$

Lemma 3. [2] If $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$, then

$$
\left(L_{m}^{\rho} f\right)(x, y)=\left(L_{m}^{\Delta} L_{m}^{\Delta^{\prime}} f\right)(x, y)=\left(L_{m}^{\Delta^{\prime}} L_{m}^{\Delta} f\right)(x, y)
$$

Corollary 4. [2] For a function $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$, from Lemma 3, we have that

$$
\begin{align*}
f-L_{m}^{\rho} f & =\left(f-L_{m}^{\Delta} f\right)+L_{m}^{\Delta}\left(f-L_{m}^{\Delta^{\prime}} f\right) \tag{4}\\
& =\left(f-L_{m}^{\Delta} f\right)+\left[L_{m}^{\Delta}\left(f-L_{m}^{\Delta^{\prime}} f\right)-\left(f-L_{m}^{\Delta^{\prime}} f\right)\right]+\left(f-L_{m}^{\Delta^{\prime}} f\right)
\end{align*}
$$

With the previous assumptions we denote by $L_{m}^{\Delta, i} f$ the restriction of the Lidstone interpolation polynomial $L_{m}^{\Delta} f$ to the subinterval $\left[x_{i}, x_{i+1}\right], 0 \leq i \leq N$, given by (11), and in analogous way we obtain the expression of $L_{m}^{\Delta^{\prime}, i} f$, the restriction of $L_{m}^{\Delta^{\prime}} f$, to the subinterval $\left[y_{i}, y_{i+1}\right] \subseteq[c, d], 0 \leq i \leq N$. We denote
by S_{L} the univariate combined Shepard-Lidstone operator, introduced by us in (4):

$$
\left(S_{L} f\right)(x)=\sum_{i=0}^{N} A_{i}(x)\left(L_{m}^{\Delta, i} f\right)(x),
$$

with $A_{i}, i=0, \ldots, N$, given by

$$
\begin{equation*}
A_{i}(x, y)=\prod_{\substack{j=0 \\ j \neq i}}^{N} r_{j}^{\mu}(x, y) /\left(\sum_{\substack{k=0 \\ j \neq 0 \\ j \neq k}}^{N} \prod_{j}^{N} r_{j}^{\mu}(x, y)\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{N} A_{i}=1 \tag{6}
\end{equation*}
$$

The univariate Shepard-Lidstone interpolation formula is

$$
\begin{equation*}
f=S_{L} f+R_{L} f \tag{7}
\end{equation*}
$$

We consider $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$ and the set of Lidstone functionals

$$
\begin{aligned}
\Lambda_{L i}^{i}=\{ & f\left(x_{i}, y_{i}\right), f\left(x_{i+1}, y_{i+1}\right), \ldots, f^{(2 m-2,2 m-2)}\left(x_{i}, y_{i}\right), \\
& \left.f^{(2 m-2,2 m-2)}\left(x_{i+1}, y_{i+1}\right)\right\},
\end{aligned}
$$

regarding each subrectangle $\left[x_{i}, x_{i+1}\right] \times\left[y_{i}, y_{i+1}\right], 0 \leq i \leq N$, with $\left|\Lambda_{L i}^{i}\right|=$ $4 m, 0 \leq i \leq N$. We denote by $L_{m}^{\rho, i} f$ the restriction of the polynomial given by (2) to the subrectangle $\left[x_{i}, x_{i+1}\right] \times\left[y_{i}, y_{i+1}\right], 0 \leq i \leq N$. This $2 m-1$ polynomial, in each variable, solves the interpolation problem corresponding to the set $\Lambda_{L i}^{i}$, $0 \leq i \leq N$ and it uniquely exists.

We have

$$
\left(L_{m}^{\rho, i} f\right)^{(2 \nu, 2 \nu)}\left(x_{k}, y_{k}\right)=f^{(2 \nu, 2 \nu)}\left(x_{k}, y_{k}\right),
$$

$0 \leq i \leq N ; 0 \leq \nu \leq m-1 ; k=i, i+1$.
The bivariate Shepard operator of Lidstone type $S^{L i}$, introduced by us in [5], is given by

$$
\begin{equation*}
\left(S^{L i} f\right)(x, y)=\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\rho, i} f\right)(x, y) . \tag{8}
\end{equation*}
$$

We obtain the bivariate Shepard-Lidstone interpolation formula,

$$
\begin{equation*}
f=S^{L i} f+R^{L i} f \tag{9}
\end{equation*}
$$

where $S^{L i} f$ is given by (8) and $R^{L i} f$ denotes the remainder of the interpolation formula.

Next, we give an error estimation using the modulus of smoothness of order k. For a function g defined on $[a, b]$ we have

$$
\omega_{k}(g ; \delta)=\sup \left\{\left|\Delta_{h}^{k} g(x)\right|:|h| \leq \delta, x, x+k h \in[a, b]\right\},
$$

with $\delta \in[0,(b-a) / k]$ and

$$
\Delta_{h}^{k} g(x)=\sum_{i=0}^{k}(-1)^{k+i}\binom{k}{i} g(x+i h) .
$$

We consider the norm in the set $C(X)$ of continuous functions defined on X by

$$
\|f\|_{C(X)}=\max _{x \in X}|f(x)| .
$$

We recall first a result from [17]:
Theorem 5. 17] Let L be a bounded operator and let $L(P)=P$ for every $P \in \mathbb{P}_{k-1}$. Then for every bounded function $f:[a, b] \rightarrow \mathbb{R}$ the following inequality is fulfilled

$$
\|f-L(f)\|_{C[a, b]} \leq\left(1+\|L\|_{[a, b]}\right) W_{k} \omega_{k}\left(f ; \frac{b-a}{k}\right),
$$

where W_{k} is Whitney's constant.
We apply this result for the operators L_{m}^{Δ} and $L_{m}^{\Delta^{\prime}}$. For $f \in C[a, b]$ and $g \in C[c, d]$ we have

$$
\begin{align*}
\left\|f-L_{m}^{\Delta}(f)\right\|_{C[a, b]} & \leq\left(1+\left\|L_{m}^{\Delta}\right\|_{[a, b]}\right) W_{2 m} \omega_{2 m}\left(f ; \frac{b-a}{2 m}\right), \tag{10}\\
\left\|g-L_{m}^{\Delta^{\prime}}(g)\right\|_{C[c, d]} & \leq\left(1+\left\|L_{m}^{\Delta^{\prime}}\right\|_{[c, d]}\right) W_{2 m} \omega_{2 m}\left(g ; \frac{d-c}{2 m}\right) .
\end{align*}
$$

Now we give an estimation of the remainder $R_{L} f$ from (7), in terms of the modulus of smoothness.

Theorem 6. If $f \in C^{2 m-2}[a, b]$, then

$$
\begin{equation*}
\left\|R_{L} f\right\|_{C[a, b]} \leq\left(1+\left\|L_{m}^{\Delta}\right\|_{[a, b]}\right) W_{2 m} \omega_{2 m}\left(f ; \frac{b-a}{2 m}\right) . \tag{11}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\left(R_{L} f\right)(x) & =f(x)-\sum_{i=0}^{N} A_{i}(x)\left(L_{m}^{\Delta, i} f\right)(x) \\
& =\sum_{i=0}^{N} A_{i}(x) f(x)-\sum_{i=0}^{N} A_{i}(x)\left(L_{m}^{\Delta, i} f\right)(x) \\
& =\sum_{i=0}^{N} A_{i}(x)\left[f(x)-\left(L_{m}^{\Delta, i} f\right)(x)\right],
\end{aligned}
$$

and taking into account 10) and that

$$
\sum_{i=0}^{N}\left|A_{i}(x)\right|=1,
$$

relation (11) follows.
The next result provides an estimation of the error in formula (9).

Theorem 7. If $f \in C^{2 m-2,2 m-2}([a, b] \times[c, d])$, then

$$
\begin{aligned}
\left\|R^{L i} f\right\|_{C[a, b]} \leq & \left(1+\left\|L_{m}^{\Delta}\right\|_{C[a, b]}\right) W_{2 m} \max _{y \in[c, d]} \omega_{2 m}\left(f(\cdot, y) ; \frac{b-a}{2 m}\right) \\
& +\left(1+\left\|L_{m}^{\Delta}\right\|_{C[a, b]}\right) W_{2 m} \max _{y \in[c, d]} \omega_{2 m}\left(\left(f-L_{m}^{\Delta^{\prime}} f\right)(\cdot, y) ; \frac{b-a}{2 m}\right) \\
& +\left(1+\left\|L_{m}^{\Delta^{\prime}}\right\|_{C[c, d]}\right) W_{2 m} \max _{x \in[a, b]} \omega_{2 m}\left(f(x, \cdot) ; \frac{d-c}{2 m}\right)
\end{aligned}
$$

where W_{k} is Whitney's constant.
Proof. Taking into account (8) and (6) we get

$$
\begin{aligned}
\left(R^{L i} f\right)(x, y) & =f(x, y)-\left(S^{L i} f\right)(x, y) \\
& =f(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\rho, i} f\right)(x, y) \\
& =\sum_{i=0}^{N} A_{i}(x, y) f(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\rho, i} f\right)(x, y) \\
& =\sum_{i=0}^{N} A_{i}(x, y)\left[f(x, y)-\left(L_{m}^{\rho, i} f\right)(x, y)\right] .
\end{aligned}
$$

Next applying the results (4) given by Corollary 4 and (6) it follows that

$$
\begin{aligned}
\left(R^{L i} f\right)(x, y)= & \sum_{i=0}^{N} A_{i}(x, y)\left\{\left(f-L_{m}^{\Delta, i} f\right)(x, y)\right. \\
& +\left[L_{m}^{\Delta, i}\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)-\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right] \\
& \left.+\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right\} \\
= & \sum_{i=0}^{N} A_{i}(x, y)\left(f-L_{m}^{\Delta, i} f\right)(x, y) \\
& +\sum_{i=0}^{N} A_{i}(x, y)\left[L_{m}^{\Delta, i}\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)-\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right] \\
& +\sum_{i=0}^{N} A_{i}(x, y)\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y) \\
= & {\left[f(x, y) \sum_{i=0}^{N} A_{i}(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\Delta, i} f\right)(x, y)\right] } \\
& -\sum_{i=0}^{N} A_{i}(x, y)\left[\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)-L_{m}^{\Delta, i}\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right] \\
& +\left[f(x, y) \sum_{i=0}^{N} A_{i}(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right]
\end{aligned}
$$

and, finally,

$$
\begin{aligned}
\left(R^{L i} f\right)(x, y)= & {\left[f(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\Delta, i} f\right)(x, y)\right] } \\
& -\sum_{i=0}^{N} A_{i}(x, y)\left[\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)-L_{m}^{\Delta, i}\left(f-L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right] \\
& +\left[f(x, y)-\sum_{i=0}^{N} A_{i}(x, y)\left(L_{m}^{\Delta^{\prime}, i} f\right)(x, y)\right] .
\end{aligned}
$$

Applying Theorem 6 three times the conclusion follows.
Example 1. Let $f:[-2,2] \times[-2,2] \rightarrow \mathbb{R}$,

$$
f(x, y)=x e^{-\left(x^{2}+y^{2}\right)}
$$

and consider the nodes $z_{1}=(-1,-1), z_{2}=(-0.5,-0.5), z_{3}=(-0.3,-0.1)$, $z_{4}=(0,0), z_{5}=(0.5,0.8), z_{6}=(1,1)$. In Figure 1 we plot the graphics of f and $S^{L i} f$ for $\mu=1$. In Figure 2 we plot the error (in absolute value) for Shepard interpolation regarding these data, and also, the error for Shepard interpolation of Lidstone type; we notice that in both cases, the maximum value is 0.5 .

Fig. 1. Graph of f and $S_{L i}^{(2)} f$.

REFERENCES

[1] R. Agarwal, P.J.Y. Wong, Explicit error bounds for the derivatives of piecewiseLidstone interpolation, J. of Comput. Appl. Math., 58, pp. 67-88, 1993.
[2] R. Agarwal, P.J.Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[3] T. CǍtinaş, The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal. Numér. Théor. Approx., 32, no. 1, pp. 11-20, 2003. 즈
[4] T. CǍtinAŞ, The combined Shepard-Lidstone univariate operator, Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May $21-25$, pp. 3-15, 2003.

Fig. 2. Errors.
[5] T. CĂtinaş, The combined Shepard-Lidstone bivariate operator, Trends and Applications in Constructive Approximation (Eds. M.G. de Bruin, D.H. Mache and J. Szabados), International Series of Numerical Mathematics, 151, Birkhäuser Verlag, Basel, pp. 77-83, 2005.
[6] T. CǍtinaş, The Lidstone interpolation on tetrahedron, J. Appl. Funct. Anal., 1, no. 1, Nova Science Publishers, Inc., New York, 2006 (to appear).
[7] E. W. Cheney, Multivariate Approximation Theory, Selected Topics, CBMS51, SIAM, Philadelphia, Pennsylvania, 1986.
[8] W. Cheney and W. Light, A Course in Approximation Theory, Brooks/Cole Publishing Company, Pacific Grove, 2000.
[9] Gh. Coman, The remainder of certain Shepard type interpolation formulas, Studia Univ. "Babeş-Bolyai", Mathematica, XXXII, no. 4, pp. 24-32, 1987.
[10] Gh. Coman, Shepard operators of Birkhoff type, Calcolo, 35, pp. 197-203, 1998.
[11] Gh. Coman, T. Cǎtinaş, M. Birou, A. Oprişan, C. Oşan, I. Pop, I. Somogyi, I. Todea, Interpolation operators, Ed. "Casa Cǎrţii de Ştiinţǎ", Cluj-Napoca, 2004 (in Romanian).
[12] Gh. Coman and R. Trîmbiţaş, Combined Shepard univariate operators, East Jurnal on Approximations, 7, 4, pp. 471-483, 2001.
[13] F.A. Costabile and F. Dell'Accio, Lidstone approximation on the triangle, Appl. Numer. Math., 52, no. 4, 339-361, 2005.
[14] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, 1993.
[15] N. Dyn, D. Leviatan, D. Levin, A. Pinkus (Eds.), Multivariate Approximation and Applications, Cambridge University Press, 2001.
[16] R. FARWIG, Rate of convergence of Shepard's global interpolation formula, Math. Comp., 46, no. 174, pp. 577-590, 1986.
[17] B. Sendov and A. Andreev, Approximation and Interpolation Theory, in Handbook of Numerical Analysis, vol. III, ed. P.G. Ciarlet and J.L. Lions, 1994.

Received by the editors: March 10, 2004.

[^0]: *"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Department of Applied Mathematics, 400084 Cluj-Napoca, Romania, e-mail: tcatinas@math.ubbcluj.ro.

