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BOUNDS FOR THE REMAINDER IN THE BIVARIATE SHEPARD
INTERPOLATION OF LIDSTONE TYPE

TEODORA CĂTINAŞ∗

Abstract. We study the bivariate Shepard-Lidstone interpolation operator and
obtain new estimates for the remainder. Some numerical examples are provided.
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1. INTRODUCTION

As it is pointed out in [7] and [15], interpolation at nodes having no ex-
ploitable pattern is referred to as the case of scattered data and there are two
important methods of interpolation in this case: the method of Shepard and
the interpolation by radial basis functions.

Consider −∞ < a < b < ∞ and −∞ < c < d < ∞ and let ∆ : a =
x0 < x1 < . . . < xN+1 = b and ∆′ : c = y0 < y1 < . . . < yM+1 = d
denote uniform partitions of the intervals [a, b] and [c, d] with stepsizes h =
(b− a)/(N + 1) and l = (d− c)/(M + 1), respectively. Further, let ρ = ∆×∆′
be a rectangular partition of [a, b]×[c, d]. For the univariate function f and the
bivariate function g and each positive integer r we denote by Drf = dr f/dxr,
Dr
xg = ∂rg/∂xr and Dr

yg = ∂rg/∂yr.
According to [1] and [2], for a fixed ∆ denote the set Lm(∆) = {h ∈ C[a, b] :

h is a polynomial of degree at most 2m − 1 in each subinterval [xi, xi+1],
0 ≤ i ≤ N}.

Definition 1. [2] For a given function f ∈ C2m−2[a, b] we say that L∆
mf is

the Lidstone interpolant of f if L∆
mf ∈ Lm(∆) with

D2k(L∆
mf)(xi) = f (2k)(xi), 0 ≤ k ≤ m− 1, 0 ≤ i ≤ N + 1.

According to [2], for f ∈ C2m−2[a, b] the Lidstone interpolant L∆
mf uniquely

exists and on the subinterval [xi, xi+1], 0 ≤ i ≤ N , can be explicitly expressed
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as
(1)

(L∆
mf)|[xi,xi+1](x) =

m−1∑
k=0

[
Λk
(xi+1−x

h

)
f (2k)(xi) + Λk

(x−xi
h

)
f (2k)(xi+1)

]
h2k,

where Λk is the Lidstone polynomial of degree 2k + 1, k ∈ N on the interval
[0, 1].

We have the interpolation formula

f = L∆
mf +R∆

mf,

where R∆
mf denotes the remainder.

For a fixed rectangular partition ρ = ∆×∆′ of [a, b]× [c, d] the set Lm(ρ)
is defined as Lm(ρ) = Lm(∆)⊗ Lm(∆′) (see, e.g., [1] and [2]).

Definition 2. [2] For a given function f ∈ C2m−2,2m−2([a, b] × [c, d]) we
say that Lρmf is the two-dimensional Lidstone interpolant of f if Lρmf ∈ Lm(ρ)
with

D2µ
x D

2ν
y (Lρmf)(xi, yj) = f (2µ,2ν)(xi, yj), 0 ≤ i ≤ N + 1, 0 ≤ j ≤M + 1,

0 ≤ µ, ν ≤ m− 1.

According to [2], for f ∈ C2m−2,2m−2([a, b]× [c, d]), the Lidstone interpolant
Lρmf uniquely exists and can be explicitly expressed as

(2) (Lρmf)(x, y) =
N+1∑
i=0

m−1∑
µ=0

M+1∑
j=0

m−1∑
ν=0

rm,i,µ(x)rm,j,ν(y)f (2µ,2ν)(xi, yj),

where rm,i,j , 0 ≤ i ≤ N + 1, 0 ≤ j ≤ m − 1, are the basic elements of Lm(ρ)
satisfying

(3) D2υrm,i,j(xµ) = δiµδ2υ,j , 0 ≤ µ ≤ N + 1, 0 ≤ υ ≤ m− 1.

Lemma 3. [2] If f ∈ C2m−2,2m−2([a, b]× [c, d]), then

(Lρmf)(x, y) = (L∆
mL

∆′
m f)(x, y) = (L∆′

m L
∆
mf)(x, y).

Corollary 4. [2] For a function f ∈ C2m−2,2m−2([a, b] × [c, d]), from
Lemma 3, we have that

f − Lρmf = (f − L∆
mf) + L∆

m(f − L∆′
m f)(4)

= (f − L∆
mf) + [L∆

m(f − L∆′
m f)− (f − L∆′

m f)] + (f − L∆′
m f).

With the previous assumptions we denote by L∆,i
m f the restriction of the

Lidstone interpolation polynomial L∆
mf to the subinterval [xi, xi+1], 0 ≤ i ≤ N,

given by (1), and in analogous way we obtain the expression of L∆′,i
m f, the

restriction of L∆′
m f, to the subinterval [yi, yi+1] ⊆ [c, d], 0 ≤ i ≤ N . We denote
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by SL the univariate combined Shepard-Lidstone operator, introduced by us
in [4]:

(SLf)(x) =
N∑
i=0
Ai(x)(L∆,i

m f)(x),

with Ai, i = 0, ..., N , given by

(5) Ai (x, y) =
N∏
j=0
j 6=i

rµj (x, y)
/(

N∑
k=0

N∏
j=0
j 6=k

rµj (x, y)
)

and

(6)
N∑
i=0
Ai = 1.

The univariate Shepard-Lidstone interpolation formula is

(7) f = SLf +RLf.

We consider f ∈ C2m−2,2m−2([a, b]× [c, d]) and the set of Lidstone functio-
nals

ΛiLi =
{
f(xi, yi), f(xi+1, yi+1), . . . , f (2m−2,2m−2)(xi, yi),

f (2m−2,2m−2)(xi+1, yi+1)
}
,

regarding each subrectangle [xi, xi+1] × [yi, yi+1], 0 ≤ i ≤ N, with
∣∣ΛiLi∣∣ =

4m, 0 ≤ i ≤ N . We denote by Lρ,im f the restriction of the polynomial given by
(2) to the subrectangle [xi, xi+1]×[yi, yi+1], 0 ≤ i ≤ N. This 2m−1 polynomial,
in each variable, solves the interpolation problem corresponding to the set ΛiLi,
0 ≤ i ≤ N and it uniquely exists.

We have
(Lρ,im f)(2ν,2ν)(xk, yk) = f (2ν,2ν)(xk, yk),

0 ≤ i ≤ N ; 0 ≤ ν ≤ m− 1; k = i, i+ 1.
The bivariate Shepard operator of Lidstone type SLi, introduced by us in

[5], is given by

(8) (SLif)(x, y) =
N∑
i=0
Ai(x, y)(Lρ,im f)(x, y).

We obtain the bivariate Shepard-Lidstone interpolation formula,

(9) f = SLif +RLif,

where SLif is given by (8) and RLif denotes the remainder of the interpolation
formula.

Next, we give an error estimation using the modulus of smoothness of order
k. For a function g defined on [a, b] we have

ωk(g; δ) = sup{|∆k
hg(x)| : |h| ≤ δ, x, x+ kh ∈ [a, b]},
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with δ ∈ [0, (b− a)/k] and

∆k
hg(x) =

k∑
i=0

(−1)k+i(k
i

)
g(x+ ih).

We consider the norm in the set C(X) of continuous functions defined on X by

‖f‖C(X) = max
x∈X
|f(x)| .

We recall first a result from [17]:

Theorem 5. [17] Let L be a bounded operator and let L(P ) = P for every
P ∈ Pk−1. Then for every bounded function f : [a, b] → R the following
inequality is fulfilled

‖f − L(f)‖C[a,b] ≤ (1 + ‖L‖[a,b])Wkωk
(
f ; b−ak

)
,

where Wk is Whitney’s constant.

We apply this result for the operators L∆
m and L∆′

m . For f ∈ C[a, b] and
g ∈ C[c, d] we have∥∥f − L∆

m(f)
∥∥
C[a,b] ≤ (1 + ‖L∆

m‖[a,b])W2mω2m
(
f ; b−a2m

)
,(10) ∥∥g − L∆′

m (g)
∥∥
C[c,d] ≤ (1 + ‖L∆′

m ‖[c,d])W2mω2m
(
g; d−c2m

)
.

Now we give an estimation of the remainder RLf from (7), in terms of the
modulus of smoothness.

Theorem 6. If f ∈ C2m−2[a, b], then

(11) ‖RLf‖C[a,b] ≤ (1 +
∥∥∥L∆

m

∥∥∥
[a,b]

)W2mω2m
(
f ; b−a2m

)
.

Proof. We have

(RLf)(x) = f(x)−
N∑
i=0
Ai(x)(L∆,i

m f)(x)

=
N∑
i=0
Ai(x)f(x)−

N∑
i=0
Ai(x)(L∆,i

m f)(x)

=
N∑
i=0
Ai(x)[f(x)− (L∆,i

m f)(x)],

and taking into account (10) and that
N∑
i=0
|Ai(x)| = 1,

relation (11) follows. �

The next result provides an estimation of the error in formula (9).
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Theorem 7. If f ∈ C2m−2,2m−2([a, b]× [c, d]), then∥∥∥RLif∥∥∥
C[a,b]

≤
(
1 +

∥∥∥L∆
m

∥∥∥
C[a,b]

)
W2m max

y∈[c,d]
ω2m

(
f(·, y); b−a2m

)
+
(
1 +

∥∥∥L∆
m

∥∥∥
C[a,b]

)
W2m max

y∈[c,d]
ω2m

(
(f − L∆′

m f)(·, y); b−a2m
)

+
(
1 + ‖L∆′

m ‖C[c,d]
)
W2m max

x∈[a,b]
ω2m

(
f(x, ·); d−c2m

)
,

where Wk is Whitney’s constant.

Proof. Taking into account (8) and (6) we get

(RLif)(x, y) = f(x, y)− (SLif)(x, y)

= f(x, y)−
N∑
i=0
Ai(x, y)(Lρ,im f)(x, y)

=
N∑
i=0
Ai(x, y)f(x, y)−

N∑
i=0
Ai(x, y)(Lρ,im f)(x, y)

=
N∑
i=0
Ai(x, y)[f(x, y)− (Lρ,im f)(x, y)].

Next applying the results (4) given by Corollary 4 and (6) it follows that

(RLif)(x, y) =
N∑
i=0
Ai(x, y){(f − L∆,i

m f)(x, y)

+ [L∆,i
m (f − L∆′,i

m f)(x, y)− (f − L∆′,i
m f)(x, y)]

+ (f − L∆′,i
m f)(x, y)}

=
N∑
i=0
Ai(x, y)(f − L∆,i

m f)(x, y)

+
N∑
i=0
Ai(x, y)[L∆,i

m (f − L∆′,i
m f)(x, y)− (f − L∆′,i

m f)(x, y)]

+
N∑
i=0
Ai(x, y)(f − L∆′,i

m f)(x, y)

=
[
f(x, y)

N∑
i=0
Ai(x, y)−

N∑
i=0
Ai(x, y)(L∆,i

m f)(x, y)
]

−
N∑
i=0
Ai(x, y)[(f − L∆′,i

m f)(x, y)− L∆,i
m (f − L∆′,i

m f)(x, y)]

+
[
f(x, y)

N∑
i=0
Ai(x, y)−

N∑
i=0
Ai(x, y)(L∆′,i

m f)(x, y)
]
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and, finally,

(RLif)(x, y) =
[
f(x, y)−

N∑
i=0
Ai(x, y)(L∆,i

m f)(x, y)
]

−
N∑
i=0
Ai(x, y)[(f − L∆′,i

m f)(x, y)− L∆,i
m (f − L∆′,i

m f)(x, y)]

+
[
f(x, y)−

N∑
i=0
Ai(x, y)(L∆′,i

m f)(x, y)
]
.

Applying Theorem 6 three times the conclusion follows. �

Example 1. Let f : [−2, 2]× [−2, 2]→ R,

f(x, y) = xe−(x2+y2)

and consider the nodes z1 = (−1,−1), z2 = (−0.5,−0.5), z3 = (−0.3,−0.1),
z4 = (0, 0), z5 = (0.5, 0.8), z6 = (1, 1). In Figure 1 we plot the graphics of
f and SLif for µ = 1. In Figure 2 we plot the error (in absolute value) for
Shepard interpolation regarding these data, and also, the error for Shepard
interpolation of Lidstone type; we notice that in both cases, the maximum
value is 0.5.
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(a) Graph of f .
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Fig. 1. Graph of f and S
(2)
Li f .
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[3] T. Cǎtinaş, The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal.
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