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ON THE L,-SATURATION OF THE YE-ZHOU OPERATOR

ZOLTAN FINTA*

Abstract. We solve the saturation problem for a class of Ye-Zhou operator
To(f,2) = Pn(x)AnLy(f) with suitable sequence of matrices { Ay, },>1. The solu-
tion is based on the saturation theorem for the Kantorovich operator established
by V. Maier and S. D. Riemenschneider.
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1. INTRODUCTION
For f € C|0, 1] the nth Bernstein polynomial is defined by
Bu(f,2) =3 pan(@)f (5) =D (ak(t—a)yn*r (L),
k=0 k=0
D. X. Zhou showed in [6] for the Kantorovich operator
) Kalh0) = 3 pusenst) [ )
1 n(fiz) =) pap(x)(n+1 t) dt
= k/(n+1)
that if 0 < o <1 then wy(f,t) = O(t*) if and only if
K (f,2) = f(2)] < M(2(1 = x)/n+ 1/n*)*/2.

He also showed [6] that if 1 < a < 2 then there exist no functions
{‘Pn,a(-’ﬂ)}nzl such that

wa(f,t) = O(t%) = [Kn(f,2) — f(2)] < Mpp,a(z).

Thus we cannot characterize the second orders of Lipschitz functions by
the rate of convergence for the Kantorovich operators. To overcome this
difficulty, M. D. Ye and D. X. Zhou [5] introduced a new method of linear
approximation by means of matrices: let P,(x) = (ppo(x),...,pnn(z)) and
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Lo(f) = (Lno(f)s- -y Lnn(f))T, where {p,x(z)}7_, is a bases of the linear
space span{l,x,...,z"} and
(k+1)/(n+1)
Lnk(f) = (n+1) f(t) dt
k/(n+1)
are functionals on C|0, 1], respectively. Then, for any (n+ 1) X (n+ 1) matrix
A we get the so-called Ye-Zhou operator defined by

(2) To(f, ) = Pa(x) - A+ Ln(f).

The aim of the present paper is to solve the saturation problem for the
class of operator {T,,(f,z)}n>1 for a suitable sequence of matrices {4, }n>1.
By reason of , the saturation problem of the Ye-Zhou operator will be in
connection with the saturation condition of the Kantorovich operator (see [2],

3], E)-

2. THE CONSTRUCTION OF THE OPERATOR

Let A, = (ai )} j—o be an (n +1) X (n + 1) matrix with restriction a;; = 0
for |Z —j| > 2. We denote Qj5 = Aj,y Aj 541 = bi, Aiji—1 = C and set Cco = bn =0.
Now, we define the matrix A,, by
(3) 0<a;by,c;<1 for i=0,1,...,n,

(4) a;+b+c=1 for 1=0,1,...,n,

(5) a;+bi_1+cip1=1 for i=0,1,....,n (b_1=cny1=0),
(6) lib; — (i+1)e;| <& for i=1,2,....,n—1,

(7) b;

INIA

% and cig% for ¢=0,1,...,n,

with some absolute constant M > 0.
The existence of a matrix A, with the properties f@ is guaranteed by
the following numerical example:

2n37 2n3
_ i+l 4
az—l—bl—ci, bz 3 CI_W’ for 2—1,2, ,7’L—1,
— 1 _ 1
Unp, 1- 22 Cp = N2

Then the explicit expression of the Ye-Zhou operator will be the following:
(8) To(f.x) = pni(@)(Cilni—1(f) + ailni(f) + biLn,i+1(f)).
i=0

where a;,b;,¢; (i =0,1,...,n) satisfy the conditions (3)—(7).

THEOREM 2.1. Let A, and T, be defined as above. Then we have

(i) T5 is a positive operator on Ly[0,1];
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(ii) Th(f,z) = fol L, (x,t)f(t) dt, where the kernel

D=3 pusle)ln 1) (eon, () + an (8) + b, (1)

/thdx-/Lazt

with I; = (i/(n+1),(i+1)/(n+1)) and x;, the characteristic function
on I;, respectively.

satisfies

Proof. (i) it is a direct consequence of () and (3));
(ii) a simple calculation shows that

1
/pn,i(:r)dx:ﬁl for i=0,1,...,n
0

Then, by
n

/ Lo(z,t) de =Y (eix,_ (1) + aixa, (t) + bixr,, (1))

1=0

=c¢i1ta;+bi1=1
fortel;,1=0,1,...,n, and

1 n
/0 Ln(z,t) dt = pni(x)(n+1) (n+1 +
i=0

)

n

=" pnil)(ci + ai + b;)
=0
=1
in view of . ]
THEOREM 2.2. For each f € L,[0,1], 1 < p < oo, we have
Tim [1T(f) = fllp = 0.
Proof. In view of , and we obtain
Tu(/f, 90) — Kn(f,2) =
Z pnz {cz n,i— 1( ) - Ln,l(f)] + bi[Ln,i-i—l(f) - Lnﬂ(f)]}
pr:oothenfor1<z<nonehas

|Ln,i(f)_Ln7i 1( )’

(i+1)/(n+1) i/ (n+1)
< @+ S dt+ o+ 1) [ 7)) de
i/(n+1) (i-1)/(n+1)

2 || flloo

IN
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and for0<i<n-1

|Lniv1(f) = Lni(f)] <

(i+2)/(n+1) (i+1)/(n+1)
< (41 £l de+ ) [ 7o) de
(i+1)/(n+1) i/(n+1)
< 2| fllee-
Thus we have for z € [0, 1]
T (f, ) — <D pai(@)(ei+ 1) 2 [|flloo < 55 [1fll

i=0
in view of . Hence
(9) T (f) = Kn(f)lloo < 2L | Fllco-
If p =1 then for 1 <+¢ < n one has
|Lni(f) = Lni—1(f)] <

(i+1)/(n+1) i/(n+1)
< e+ @l dt+ (1) [ 7)) de
i/(n+1) (i—=1)/(n+1)

(n+ D flh

and for 0 <i<n—1,

’Ln,i—l-l(f) - an(f)‘ <

IN

(i4+2)/(n+1) (i+1)/(n+1)
< (1) @l dt+(n+1) [ 7o) de
(i+1)/(n+1) i/(n+1)
< (n+ D[S
Again, by (7)), we have for z € [0, 1]
T (f, @) — Kn(f, 2)] SZ ) (e + b)) (n+ DI flln < 2L f]

In conclusion

(10) ITa(f) = Ku(H)llr < 55 (Ifll1-

By the interpolation theorem of Riesz-Thorin we get for 1 < p < oo that

ITa(f) = Kn(Hllp < 55 1F 1o

in view of @D and ([10)). Hence we obtain the assertion of the theorem, because

nll_{go”Kn(f)—f”pZO, 1<p< oo 0
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3. THE SATURATION RESULT

The matrix A, and the corresponding operators T;, are determined in Sec-
tion 2. We can now state our main result:

THEOREM 3.1. Let {T},}n>1 be defined as above.
(i) For f € Lp[0,1], 1 < p < oo, we have

1T (f) = fllp = O™

if and only if

flz)=k —I—/ ;2((13) du a.e. x€][0,1],

where a € (0,1), = z(1 —z), k is a constant and h(0) = h(1) =
0. For1 <p § 00, h is absolutely contmuous with b’ € Lyl0,1]; for
p=1, his of bounded variation on [0, 1].

(ii) Moreover, if |Tn(f) — fll, = o(n™1) then fis a.e. constant.

Proof. The proof is based on the ideas of the saturation theorems for Kan-
torovich polynomials established by Maier [2], [3] and Riemenschneider [4]
(see also [I, pp. 315-321]). Therefore we shall prove only the essential steps
regarding the operators T,,. To be more precise, a Maier-type inequality (see
[2, p. 225] or Il p. 315, Lemma 6.1]) and a property in connection with the
bilinear functional will be established (see [I, p. 320, Lemma 6.6]). O

LEMMA 3.2. Let gi(x) = Inz, 0 < < 1. Then there exists an absolute
constant C > 0 such that

o0

1) [Tl @) < Y 0 +cZ [toe + & pust@).
j=n+1
Proof. Let Sp =0 and S = E?:l 1/j (k=1,2,...). Then
(12) > (S0 = 8k) pag(z) =) (1 —a)f
k=0 k=1
(see also [2, p. 225]). Because

o0
gi(z) =lnz=In(1-(1-2)=-> +(1-2)F =z€(0,1],
k=1
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and b, = cg = 0, then, by , and , we obtain

Tn(g1,7) — g1(x) =

= Z P k() (el k—1(91) + axLn x(91) + Ln g+1(91))

+ZS — Si)pni(x) + Z =)

k=0 j=n+1

= zn: pn,k('r)ck{[/n,k—l(gl) + (Sn — Sk)}
k=1
+ Enj Prk(T)ar{Lnk(g91) + (Sp — Sk)}

—i—z P ()b { L g1(91) + (Sn — Sk)} + Z @

j=n+1

Z Prk(@)ck{ Lnk—1(91) + (Sn — Sk—1)} + i Pnk(x)ck(Sk—1 — Sk)
k=1

+ Z Pk (2)ax{Lnr(g1) + (Sn — Sk)}
+ Y pok(@)b{Lng+1(g1) + (Sn — Skt1)}
0

(13)  + Y pas(@bi(Ser — S+ Y
k=0

Jj=n+1
On the other hand, by [2, p. 225], one has

(k+1)/(n+1)

Lua(on) + (80 = S| = [02+1) [ Int dt + (5, — i)
k/(n+1)

5 1
(14) < 62 T o

where £k =1,2,...,n—1 and, by @ and ,

n—1

Z Prge(@)r(Sk—1 — Sk) + > Pok(@)bi(Sk1 — Sk)| =
k=0
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n
Y —% +Z 2 P k(@

n—1
_ ‘_c;;pn,n(mz (=% + 25) Pup(@) + bo puo(®)
k=1

kbi—(k+1)
< pnO Z [k~ k++1) Je| pn,k(l') + % pn,n(l')
n—1
< pn,O(l') + Z WI_H) pn,k(x) + % pn,n(x)
k=1
n—1
<

pn,0($) + Z ﬁ pn,k(x) + % pn,n(x)

(15) < Z k+12pnk )+%pn,n($)

Combining the relations , , and we arrive at . O

Here we mention that we can deduce for T}, similar statements to the lemmas
established in [I, pp. 316-318, Lemmas 6.2, 6.4 and 6.5] for K, from the
application of Theorem 1.

Furthermore, to prove the necessity in Theorem 3.1 (i), we have to employ
the bilinear functionals

(16) () = o [ [Tlh2) ~ FE) d

LEMMA 3.3. For each fized 1 € C?[0,1] and 1 < p < oo, the functionals
have bounded norm on Ly[0,1] :

(17) [An(, D)o < Cy.

Moreover, there exists the limit

n—oo

1
(18) lim  An(f,0) = /0 F@)(@*) (z) da

Proof. We have

Al = 20 [ Kl 0) = F@I0G) doton [ (T(5,0) Kl 2o
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Using [I, p. 320, Lemma 6.6] and we get

1
An(f0)] < \2n [ atsi0) = F@)() do

on [ T (f,2) — Kalf, 2) () da
0

C" || £l +8M [|¥]loo I f111
C Hf”P7

[VANVAN

with C' depending on . This inequality implies .
By [I, p. 320, (6.14)] we have

9t o [ Kah) — S de= [ R @) dr

n—oo

where f € Lp[0,1]. On the other hand, by , and ¢y = b, = 0, we obtain

| 2n [Tu(f,2) |<zn{zpm 2)¢i (| Ln it (D] + L))

+Z o) (L (D] + |Eni(1)D }
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<2 i) (Lnia ()] + L)
=1

n—1
(20) + X 0@ (Lnisa ()] + 1Lai D) |-
i=0
Furthermore, | Ly, ;(f)| < || f|loo for f € C[0,1]. Hence, by , one has
| 2n [Tn(f,2) = Ku(f,2)] | < 58 D pui(@) - [fllee = 535 11 f ]l
i=0

Thus

on [ T7) — Kol i 0) da

< 2n | Tn(f) = Kn(flloo - 14111

< M g - ol
which combined with imply
1 1
Jim 20 [ [T(f.a) ~ f@)o) do = [ f@) () (@) do =5 AL ).
0 0

This A(f,+) is a linear functional on L,[0,1]. By the Banach-Steinhaus
theorem (see e.g. [IL p. 29]), lim,, o0 An(f,9) exists for all f € L,[0,1] and is

given by the integral [} f(x)(¢%¢") () dz, that is . O
REFERENCES

[1] DEVORE, R. A. and LORENTZ, G. G., Constructive Approzimation, Springer-Verlag,
Berlin Heidelberg New York, 1993.

[2] MAIER, V., The Li-saturation class of the Kantorovich operator, J. Approx. Theory, 22,
pp- 223-232, 1978.

[3] MAIER, V., L,-approzimation by Kantorovich operators, Analysis Math., 4, pp. 289295,
1978.

[4] RIEMENSCHNEIDER, S. D., The L,-saturation of the Bernstein-Kantorovich polynomials,
J. Approx. Theory, 23, pp. 158-162, 1978.

[5] YE, M. D. and Zuou, D. X., A class of operators by means of three-diagonal matrices,
J. Approx. Theory, 78, pp. 239-259, 1994.

[6] ZHOU, D. X., On smoothness characterized by Bernstein type operators, J. Approx. The-
ory, 81, pp. 303-315, 1995.

Received by the editors: January 16, 2001.



	1. Introduction
	2. The construction of the operator
	3. The saturation result
	References

