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ON THE Lp-SATURATION OF THE YE-ZHOU OPERATOR

ZOLTÁN FINTA∗

Abstract. We solve the saturation problem for a class of Ye-Zhou operator
Tn(f, x) = Pn(x)AnLn(f) with suitable sequence of matrices {An}n≥1. The solu-
tion is based on the saturation theorem for the Kantorovich operator established
by V. Maier and S. D. Riemenschneider.
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1. INTRODUCTION

For f ∈ C[0, 1] the nth Bernstein polynomial is defined by

Bn(f, x) =
n∑
k=0

pn,k(x)f
(
k
n

)
≡

n∑
k=0

(n
k

)
xk(1− x)n−kf

(
k
n

)
.

D. X. Zhou showed in [6] for the Kantorovich operator

(1) Kn(f, x) =
n∑
k=0

pn,k(x)(n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t) dt

that if 0 < α < 1 then ω2(f, t) = O(tα) if and only if

|Kn(f, x)− f(x)| ≤M(x(1− x)/n+ 1/n2)α/2.

He also showed [6] that if 1 < α < 2 then there exist no functions
{ϕn,α(x)}n≥1 such that

ω2(f, t) = O(tα)⇔ |Kn(f, x)− f(x)| ≤Mϕn,α(x).

Thus we cannot characterize the second orders of Lipschitz functions by
the rate of convergence for the Kantorovich operators. To overcome this
difficulty, M. D. Ye and D. X. Zhou [5] introduced a new method of linear
approximation by means of matrices: let Pn(x) ≡ (pn,0(x), . . . , pn,n(x)) and
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Ln(f) ≡ (Ln,0(f), . . . , Ln,n(f))T, where {pn,k(x)}nk=0 is a bases of the linear
space span{1, x, . . . , xn} and

Ln,k(f) = (n+ 1)
∫ (k+1)/(n+1)

k/(n+1)
f(t) dt

are functionals on C[0, 1], respectively. Then, for any (n+ 1)× (n+ 1) matrix
A we get the so-called Ye-Zhou operator defined by

(2) Tn(f, x) = Pn(x) ·A · Ln(f).

The aim of the present paper is to solve the saturation problem for the
class of operator {Tn(f, x)}n≥1 for a suitable sequence of matrices {An}n≥1.
By reason of (2), the saturation problem of the Ye-Zhou operator will be in
connection with the saturation condition of the Kantorovich operator (see [2],
[3], [4]).

2. THE CONSTRUCTION OF THE OPERATOR

Let An = (ai,j)ni,j=0 be an (n+ 1)× (n+ 1) matrix with restriction ai,j = 0
for |i− j| ≥ 2. We denote ai,i = ai, ai,i+1 = bi, ai,i−1 = ci and set c0 = bn = 0.
Now, we define the matrix An by

0 ≤ ai, bi, ci ≤ 1 for i = 0, 1, . . . , n,(3)
ai + bi + ci = 1 for i = 0, 1, . . . , n,(4)

ai + bi−1 + ci+1 = 1 for i = 0, 1, . . . , n (b−1 = cn+1 = 0),(5)
|ibi − (i+ 1)ci| ≤ 1

2 for i = 1, 2, . . . , n− 1,(6)
bi ≤ M

n2 and ci ≤ M
n2 for i = 0, 1, . . . , n,(7)

with some absolute constant M > 0.
The existence of a matrix An with the properties (3)–(7) is guaranteed by

the following numerical example:

a0 = 1− 1
2n3 , b0 = 1

2n3 ,

ai = 1− bi − ci, bi = i+1
2n3 , ci = i

2n3 , for i = 1, 2, . . . , n− 1,
an = 1− 1

2n2 , cn = 1
2n2 .

Then the explicit expression of the Ye-Zhou operator will be the following:

(8) Tn(f, x) =
n∑
i=0

pn,i(x)(ciLn,i−1(f) + aiLn,i(f) + biLn,i+1(f)),

where ai, bi, ci (i = 0, 1, . . . , n) satisfy the conditions (3)–(7).

Theorem 2.1. Let An and Tn be defined as above. Then we have
(i) Tn is a positive operator on Lp[0, 1];
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(ii) Tn(f, x) =
∫ 1
0 Ln(x, t)f(t) dt, where the kernel

Ln(x, t) =
n∑
i=0

pn,i(x)(n+ 1)
(
ciχIi−1(t) + aiχIi(t) + biχIi+1(t)

)
satisfies ∫ 1

0
Ln(x, t) dx =

∫ 1

0
Ln(x, t) dt = 1

with Ii = (i/(n+1), (i+1)/(n+1)) and χIi the characteristic function
on Ii, respectively.

Proof. (i) it is a direct consequence of (8) and (3);
(ii) a simple calculation shows that∫ 1

0
pn,i(x) dx = 1

n+1 for i = 0, 1, . . . , n.

Then, by (5),∫ 1

0
Ln(x, t) dx =

n∑
i=0

(
ciχIi−1(t) + aiχIi(t) + biχIi+1(t)

)
= ci+1 + ai + bi−1 = 1

for t ∈ Ii, i = 0, 1, . . . , n, and∫ 1

0
Ln(x, t) dt =

n∑
i=0

pn,i(x)(n+ 1)
(

ci
n+1 + ai

n+1 + bi
n+1

)
=

n∑
i=0

pn,i(x)(ci + ai + bi)

= 1

in view of (4). �

Theorem 2.2. For each f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, we have
lim
n→∞

‖Tn(f)− f‖p = 0.

Proof. In view of (8), (4) and (1) we obtain
Tn(f, x)−Kn(f, x) =

=
n∑
i=0

pn,i(x){ci[Ln,i−1(f)− Ln,i(f)] + bi[Ln,i+1(f)− Ln,i(f)]}.

If p =∞ then for 1 ≤ i ≤ n one has
|Ln,i(f)− Ln,i−1(f)| ≤

≤ (n+ 1)
∫ (i+1)/(n+1)

i/(n+1)
|f(t)| dt+ (n+ 1)

∫ i/(n+1)

(i−1)/(n+1)
|f(t)| dt

≤ 2 ‖f‖∞
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and for 0 ≤ i ≤ n− 1

|Ln,i+1(f)− Ln,i(f)| ≤

≤ (n+ 1)
∫ (i+2)/(n+1)

(i+1)/(n+1)
|f(t)| dt+ (n+ 1)

∫ (i+1)/(n+1)

i/(n+1)
|f(t)| dt

≤ 2 ‖f‖∞.

Thus we have for x ∈ [0, 1]

|Tn(f, x)−Kn(f, x)| ≤
n∑
i=0

pn,i(x)(ci + bi) 2 ‖f‖∞ ≤ 4M
n2 ‖f‖∞

in view of (7). Hence

(9) ‖Tn(f)−Kn(f)‖∞ ≤ 4M
n2 ‖f‖∞.

If p = 1 then for 1 ≤ i ≤ n one has

|Ln,i(f)− Ln,i−1(f)| ≤

≤ (n+ 1)
∫ (i+1)/(n+1)

i/(n+1)
|f(t)| dt+ (n+ 1)

∫ i/(n+1)

(i−1)/(n+1)
|f(t)| dt

≤ (n+ 1)‖f‖1

and for 0 ≤ i ≤ n− 1,

|Ln,i+1(f)− Ln,i(f)| ≤

≤ (n+ 1)
∫ (i+2)/(n+1)

(i+1)/(n+1)
|f(t)| dt+ (n+ 1)

∫ (i+1)/(n+1)

i/(n+1)
|f(t)| dt

≤ (n+ 1)‖f‖1.

Again, by (7), we have for x ∈ [0, 1]

|Tn(f, x)−Kn(f, x)| ≤
n∑
i=0

pn,i(x)(ci + bi)(n+ 1)‖f‖1 ≤ 4M
n ‖f‖1.

In conclusion

(10) ‖Tn(f)−Kn(f)‖1 ≤ 4M
n ‖f‖1.

By the interpolation theorem of Riesz-Thorin we get for 1 ≤ p ≤ ∞ that

‖Tn(f)−Kn(f)‖p ≤ 4M
n ‖f‖p

in view of (9) and (10). Hence we obtain the assertion of the theorem, because

lim
n→∞

‖Kn(f)− f‖p = 0, 1 ≤ p ≤ ∞. �
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3. THE SATURATION RESULT

The matrix An and the corresponding operators Tn are determined in Sec-
tion 2. We can now state our main result:

Theorem 3.1. Let {Tn}n≥1 be defined as above.

(i) For f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, we have

‖Tn(f)− f‖p = O(n−1)

if and only if

f(x) = k +
∫ x

a

h(u)
ϕ2(u) du a.e. x ∈ [0, 1],

where a ∈ (0, 1), ϕ(x) =
√
x(1− x), k is a constant and h(0) = h(1) =

0. For 1 < p ≤ ∞, h is absolutely continuous with h′ ∈ Lp[0, 1]; for
p = 1, h is of bounded variation on [0, 1].

(ii) Moreover, if ‖Tn(f)− f‖p = o(n−1) then f is a.e. constant.

Proof. The proof is based on the ideas of the saturation theorems for Kan-
torovich polynomials established by Maier [2], [3] and Riemenschneider [4]
(see also [1, pp. 315–321]). Therefore we shall prove only the essential steps
regarding the operators Tn. To be more precise, a Maier-type inequality (see
[2, p. 225] or [1, p. 315, Lemma 6.1]) and a property in connection with the
bilinear functional (16) will be established (see [1, p. 320, Lemma 6.6]). �

Lemma 3.2. Let g1(x) = ln x, 0 < x ≤ 1. Then there exists an absolute
constant C > 0 such that

(11) |Tn(g1, x)− g1(x)| ≤
∞∑

j=n+1

(1−x)j

j + C
n∑
k=0

[
1

(k+1)2 + 1
n

]
pn,k(x).

Proof. Let S0 = 0 and Sk =
∑k
j=1 1/j (k = 1, 2, . . .). Then

(12)
n∑
k=0

(Sn − Sk) pn,k(x) =
n∑
k=1

1
k (1− x)k

(see also [2, p. 225]). Because

g1(x) = ln x = ln(1− (1− x)) = −
∞∑
k=1

1
k (1− x)k, x ∈ (0, 1],
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and bn = c0 = 0, then, by (8), (4) and (12), we obtain

Tn(g1, x)− g1(x) =

=
n∑
k=0

pn,k(x) (ckLn,k−1(g1) + akLn,k(g1) + Ln,k+1(g1))

+
n∑
k=0

(Sn − Sk)pn,k(x) +
∞∑

j=n+1

(1−x)j

j

=
n∑
k=1

pn,k(x)ck{Ln,k−1(g1) + (Sn − Sk)}

+
n∑
k=0

pn,k(x)ak{Ln,k(g1) + (Sn − Sk)}

+
n−1∑
k=0

pn,k(x)bk{Ln,k+1(g1) + (Sn − Sk)}+
∞∑

j=n+1

(1−x)j

j

=
n∑
k=1

pn,k(x)ck{Ln,k−1(g1) + (Sn − Sk−1)}+
n∑
k=1

pn,k(x)ck(Sk−1 − Sk)

+
n∑
k=0

pn,k(x)ak{Ln,k(g1) + (Sn − Sk)}

+
n−1∑
k=0

pn,k(x)bk{Ln,k+1(g1) + (Sn − Sk+1)}

+
n−1∑
k=0

pn,k(x)bk(Sk+1 − Sk) +
∞∑

j=n+1

(1−x)j

j .(13)

On the other hand, by [2, p. 225], one has

|Ln,k(g1) + (Sn − Sk)| =
∣∣∣∣(n+ 1)

∫ (k+1)/(n+1)

k/(n+1)
ln t dt+ (Sn − Sk)

∣∣∣∣
≤ 5

6k2 + 1
n+1 ,(14)

where k = 1, 2, . . . , n− 1 and, by (6) and (3),

∣∣∣∣ n∑
k=1

pn,k(x)ck(Sk−1 − Sk) +
n−1∑
k=0

pn,k(x)bk(Sk+1 − Sk)
∣∣∣∣ =
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=
∣∣∣∣ n∑
k=1
− ck

k pn,k(x) +
n−1∑
k=0

bk
k+1 pn,k(x)

∣∣∣∣
=

∣∣∣∣− cn
n pn,n(x) +

n−1∑
k=1

(
− ck

k + bk
k+1

)
pn,k(x) + b0 pn,0(x)

∣∣∣∣
≤ pn,0(x) +

n−1∑
k=1

|kbk−(k+1)ck|
k(k+1) pn,k(x) + 1

n pn,n(x)

≤ pn,0(x) +
n−1∑
k=1

1
2k(k+1) pn,k(x) + 1

n pn,n(x)

≤ pn,0(x) +
n−1∑
k=1

1
(k+1)2 pn,k(x) + 1

n pn,n(x)

≤
n−1∑
k=0

1
(k+1)2 pn,k(x) + 1

n pn,n(x).(15)

Combining the relations (13), (14), (15) and (3) we arrive at (11). �

Here we mention that we can deduce for Tn similar statements to the lemmas
established in [1, pp. 316–318, Lemmas 6.2, 6.4 and 6.5] for Kn from the
application of Theorem 1.

Furthermore, to prove the necessity in Theorem 3.1 (i), we have to employ
the bilinear functionals

(16) An(f, ψ) = 2n
∫ 1

0
[Tn(f, x)− f(x)]ψ(x) dx.

Lemma 3.3. For each fixed ψ ∈ C2[0, 1] and 1 ≤ p ≤ ∞, the functionals
(16) have bounded norm on Lp[0, 1] :

(17) ‖An(·, ψ)‖p ≤ Cψ.

Moreover, there exists the limit

(18) lim
n→∞

An(f, ψ) =
∫ 1

0
f(x)(ϕ2ψ′)′(x) dx.

Proof. We have

An(f, ψ) = 2n
∫ 1

0
[Kn(f, x)−f(x)]ψ(x) dx+2n

∫ 1

0
[Tn(f, x)−Kn(f, x)]ψ(x)dx.
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Using [1, p. 320, Lemma 6.6] and (10) we get

|An(f, ψ)| ≤
∣∣∣∣2n ∫ 1

0
[Kn(f, x)− f(x)]ψ(x) dx

∣∣∣∣
+
∣∣∣∣2n ∫ 1

0
[Tn(f, x)−Kn(f, x)]ψ(x) dx

∣∣∣∣
≤ C ′ ‖f‖1 + 8M ‖ψ‖∞ ‖f‖1
≤ C ‖f‖p,

with C depending on ψ. This inequality implies (17).
By [1, p. 320, (6.14)] we have

(19) lim
n→∞

2n
∫ 1

0
[Kn(f, x)− f(x)]ψ(x) dx =

∫ 1

0
f(x)(ϕ2ψ′)′(x) dx,

where f ∈ Lp[0, 1]. On the other hand, by (4), (7) and c0 = bn = 0, we obtain

∣∣ 2n [Tn(f, x)−Kn(f, x)]
∣∣ ≤2n

{ n∑
i=1

pn,i(x)ci (|Ln,i−1(f)|+ |Ln,i(f)|)

+
n−1∑
i=0

pn,i(x)bi (|Ln,i+1(f)|+ |Ln,i(f)|)
}
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≤2M
n

{ n∑
i=1

pn,i(x) (|Ln,i−1(f)|+ |Ln,i(f)|)

+
n−1∑
i=0

pn,i(x) (|Ln,i+1(f)|+ |Ln,i(f)|)
}
.(20)

Furthermore, |Ln,i(f)| ≤ ‖f‖∞ for f ∈ C1[0, 1]. Hence, by (20), one has

| 2n [Tn(f, x)−Kn(f, x)] | ≤ 8M
n

n∑
i=0

pn,i(x) · ‖f‖∞ = 8M
n ‖f‖∞.

Thus∣∣∣∣ 2n
∫ 1

0
[Tn(f, x)−Kn(f, x)]ψ(x) dx

∣∣∣∣ ≤ 2n ‖Tn(f)−Kn(f)‖∞ · ‖ψ‖1

≤ 8M
n ‖f‖∞ · ‖ψ‖1

which combined with (19) imply

lim
n→∞

2n
∫ 1

0
[Tn(f, x)− f(x)]ψ(x) dx =

∫ 1

0
f(x)(ϕ2ψ′)′(x) dx =: A(f, ψ).

This A(f, ψ) is a linear functional on Lp[0, 1]. By the Banach-Steinhaus
theorem (see e.g. [1, p. 29]), limn→∞An(f, ψ) exists for all f ∈ Lp[0, 1] and is
given by the integral

∫ 1
0 f(x)(ϕ2ψ′)′(x) dx, that is (18). �
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