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EXTENSIONS OF CERTAIN RELATIONS
OF THE CLASSICAL ANALYSIS
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Abstract. In this work we deal with certain integrals which are convergent for
a set of values of a parameter but which become divergent for other values. We
extend some relations involving such integrals, replacing them by neutralized
ones.
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1. TWO USEFUL NEUTRICES

We consider the functions t 7→ t− p sin st, t 7→ t− p cos st defined for t ∈
]0,∞[, where s, p ∈]0,∞[ and the following well known relations:∫ ∞

0
t− p cos st dt = π s p−1

2 Γ(p) cos pπ2
, 0 < p < 1,(1) ∫ ∞

0
t− p sin st dt = π s p−1

2 Γ(p) sin pπ2
, 0 < p < 2.(2)

The integral of (1) becomes divergent if p ≥ 1 and the integral of (2) becomes
divergent if p ≥ 2, so that for these values of parameter p the relations (1)
and (2) lose their meaning. To deliver these relations from the restrictions
concerning the parameter p, we replace the integrals by neutralized ones, using
the neutrices N0+ and N∞ defined as follows.
N0+ is the set constituted by all the linear combinations of the functions

defined for ξ ∈]0,∞[, ξ 7→ ξ− q, q > 0, ξ 7→ C + ln ξ and o0+(1), whose
coefficients are arbitrary functions of s ∈]0,∞[. We have denoted by o0+(1)
a function which tends to 0, when ξ → 0, ξ > 0 and by C, the constant of
Euler.
N∞ is the set constituted by all the linear combinations of the functions

defined for η ∈]0,∞[, η 7→ ηq cos sη, η 7→ ηq sin sη, q ≥ 0, η 7→ ln η cos sη,
η 7→ ln η sin sη and o∞(1), whose coefficients are arbitrary functions of
s ∈]0,∞[. We have denoted by o∞(1) a function which tends to 0, as η →∞.

Proposition 1. The set N0+ considered above is a normal neutrix.
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Proof. A function of N0+ has the expression

(3) µ(s, ξ) =
m∑
k=1

Pk(s) ξ−qk + P0(s) (C + ln ξ) +R(s) o0+(1),

where 0 < q1 < · · · < qm, Pk(s), k ∈ {1, · · · ,m} and R(s) are arbitrary
functions of s ∈]0,∞[ and Pm is not identically zero.

The set N0+ is obviously an additive group. To verify the neutrix condition,
we suppose that µ ∈ N0+ and for any ξ ∈]0,∞[, the relation
(4) µ(s, ξ) = γ(s)
holds, where γ(s) is independent of ξ. We must show that for each s ∈]0,∞[,
γ(s) = 0.

Because Pm is not identically zero, then s0 ∈]0,∞[ exists so that Pm(s0) 6=
0. The relation (3) implies
(5) lim

ξ→0+
ξqm µ(s0, ξ) = Pm(s0)

and the supposition (4) implies
(6) lim

ξ→0+
ξqm µ(s0, ξ) = lim

ξ→0+
ξqmγ(s0) = 0.

Relations (5) and (6) imply Pm(s0) = 0, which is a contradiction. Therefore
for each s ∈]0,∞[, Pm(s) = 0, that is, Pm ≡ 0. In the same way we obtain
Pm−1 ≡ 0, · · · , P1 ≡ 0. It results that for each s ∈]0,∞[,

µ(s, ξ) = P0(s) (C + ln ξ) +R(s)o0+(1).
If P0 were not identically zero, then s0 ∈]0,∞[ would exist so that P0(s0) 6=

0. In this case, the limit of µ(s0, ξ), when ξ → 0, ξ > 0 would be not finite and,
according to (4), γ(s0) would be not finite, which is a contradiction. Therefore
P0 ≡ 0. From (4) it remains γ(s) = R(s)o0+(1) and hence γ(s) = 0.

The neutrixN0+ contains all the functions having the limit zero when ξ → 0,
ξ > 0 and if it contains a function µ, then it contains also the functions αµ,
for any number α. Therefore N0+ is a normal neutrix. �

Proposition 2. The set N∞ considered above is also a normal neutrix.
Proof. A function of N∞ has the expression

ν(s, η) =
m∑
k=0

( Pk(s) cos sη +Qk(s) sin sη ) ηqk(7)

+ (
∼
P (s) cos sη +

∼
Q(s) sin sη) ln η +R(s)o∞(1)

where 0 ≤ q0 < q1 < · · · < qm and Pk(s), Qk(s), k ∈ {0, · · · ,m},
∼
P (s),

∼
Q(s),

R(s) are arbitrary functions of s ∈]0,∞[.
The set N∞ is obviously an additive group. To verify the neutrix condition,

we suppose that ν ∈ N∞ and for any η ∈]0,∞[, relation
(8) ν(s, η) = γ(s)
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holds, where γ(s) is independent of η. We must show that for each s ∈]0,∞[,
γ(s) = 0.

We suppose that ν(s, η) has the expression (7), with m ≥ 1, where at least
one of the functions Pm and Qm, is not identically 0. Relation (7) implies
(9) lim

η→∞

(
η− qm ν(s, η)

)
= lim

η→∞
(Pm(s) cos sη +Qm(s) sin sη)

and relation (8) implies
(10) lim

η→∞

(
η− qm ν(s, η)

)
= 0.

From (9) and (10) it results that the limit of the right member of (9) is 0. Let
s ∈]0,∞[ be an arbitrary but fixed number. The sequences (η′n)n∈N∗ , η′n = n·2π

s

and (η′′n)n∈N∗ , η′′n =
π
2 +n·2π

s tend to ∞ and

lim
n→∞

(
Pm(s) cos sη′n +Qm(s) sin sη′n

)
= Pm(s),(11)

lim
n→∞

(
Pm(s) cos sη

′′
n +Qm(s) sin sη

′′
n

)
= Qm(s).(12)

It results that Pm(s) = Qm(s) = 0. Because the number s ∈]0,∞[ was
arbitrarily chosen, it results Pm ≡ 0, Qm ≡ 0. In the same way, we obtain
Pm−1 ≡ 0, · · · , P1 ≡ 0 and Qm−1 ≡ 0, · · · , Q1 ≡ 0.

Relation (7) becomes

ν(s, η) = (
∼
P (s) cos sη +

∼
Q(s) sin sη) ln η

+ P0(s) cos sη +Q0(s) sin sη +R(s) o∞(1).
Replacing, according to (8), in this relation ν(s, η) by γ(s) and dividing the
obtained relation by ln η we obtain

lim
η→∞

(
∼
P (s) cos sη +

∼
Q(s) sin sη) = 0.

For an arbitrary fixed s using again the sequences (η′n)n∈N∗ , and (η′′n)n∈N∗ we
obtain P̃ ≡ 0 and Q̃ ≡ 0.

Relation (7) becomes
ν(s, η) = P0(s) cos sη +Q0(s) sin sη + R(s) o∞(1).

Besides the above sequences (η′n)n∈N∗ and (η′′n)n∈N∗ we consider also the se-
quences (η′′′n )n∈N∗ , η

′′′
n = (2n+1)π

s , and (ηivn )n∈N∗ , ηivn = −π2 +n·2π
s which all tend

to ∞. We obtain
lim
n→∞

(
P0(s) cos sη′n +Q0(s) sin sη′n

)
= P0(s),(13)

lim
n→∞

(
P0(s) cos sη

′′
n +Q0(s) sin sη

′′
n

)
= Q0(s),(14)

lim
n→∞

(
P0(s) cos sη

′′′
n +Q0(s) sin sη

′′′
n

)
= −P0(s),(15)

lim
n→∞

(
P0(s) cos sηivn +Q0(s) sin sηivn

)
= −Q0(s).(16)
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According to (8), for any s ∈]0,∞[, the function η 7→ ν(s, η) has the finite
limit γ(s), when η →∞. From the relations (13) and (15) it results P0(s) = 0.
From the relations (14) and (16) it results Q0(s) = 0. Because s ∈]0,∞[ was
arbitrarily chosen, it results P0 ≡ 0, Q0 ≡ 0.

For any s ∈]0,∞[ and η ∈]0,∞[ ν(s, η) = R(s)o∞(1), therefore γ(s) =
R(s) o∞(1). This equality may be true only if for each s ∈]0,∞[, γ(s) = 0.

The neutrixN∞ contains all the functions having the limit zero when ξ →∞
and if it contains a function ν, then it contains also the functions αν, for any
number α. Therefore N∞ is a normal neutrix. �

2. EXTENSION OF RELATIONS (1) AND (2)

For any r ∈ ]0,∞[ and s ∈]0,∞[ we consider the neutralized integrals

(17) Ir(s) =
∫ N∞

N0+
t− r cos st dt, Jr(s) =

∫ N∞

N0+
t− r sin st dt.

Proposition 3. For any positive real number r, which differs from an odd
integer, relation (1) can be prolonged by Ir(s), i.e.,

(18) Ir(s) = π
2

sr−1

Γ(r) cos r π2
and for any positive real number r, which differs from an even integer, the
relation (2) can be prolonged by Jr(s), i.e.,

(19) Jr(s) = π
2

sr−1

Γ(r) sin r π2
.

Proof. First, we consider the integrals Ir and Jr, where r = p+n, p ∈]0, 1[
and n ∈ N∗. To obtain recurrence relations between these neutralized integrals,
we will use the neutralized formula of integration by parts:

Ip+n(s) =
[
− 1
p+n−1 t

− p−n+1 cos st
]N∞
N0+

− s
p+n−1 Jp+n−1(s),(20)

Jp+n(s) =
[
− 1
p+n−1 t

− p−n+1 sin st
]N∞
N0+

+ s
p+n−1 Ip+n−1(s).(21)

Because
N∞ lim η−p−n+1 cos sη = 0, N0+ lim ξ−p−n+1 cos sξ = 0,
N∞ lim η−p−n+1 sin sη = 0, N0+ lim ξ−p−n+1 sin sξ = 0,

relations (20) and (21) become
(22) Ip+n(s) = − s

p+n−1 Jp+n−1(s), Jp+n(s) = s
p+n−1 Ip+n−1(s).

Starting from relations (1) and (2) and using (22), we obtain

Ip+n(s) = π
2

sp+n−1

Γ(p+n) cos (p+n)π2
;

Jp+n(s) = π
2

sp+n−1

Γ(p+n) sin (p+n)π2
.

These relations can be easily verified by induction.
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To find the expressions of I2k(s), k ∈ N∗, and of J2k+1(s), k ∈ N, we use
the recurrence relations

I2k(s) = − s
2k−1 J2k−1, J2k+1(s) = s

2k I2k

and the relation J1(s) = π
2 . We obtain

I2k(s) = (−1)k π2
s2k−1

(2k−1)! = π
2

s2k−1

Γ(2k) cos 2k π2
,(23)

J2k+1(s) = (−1)k π2
s2k

(2k)! = π
2

s2k

Γ(2k+1) sin (2k+1)π2
(24)

which completes the proof. �

Now we calculate the values of the neutralized integrals Ir(s) and Jr(s) for
the values of r excepted in Proposition 3.

Proposition 4. For any n ∈ N∗, the following relations hold

I2n+1(s) = (−1)n s2n

(2n)!

( 2n∑
k=1

1
k − ln s

)
,(25)

J2n(s) = (−1)n−1 s2n−1

(2n−1)!

(2n−1∑
k=1

1
k − ln s

)
.(26)

Proof. First we calculate the neutralized integral I1(s).

I1(s) =
∫ N∞

N0+
t−1 cos st dt =

∫ N∞

N0+
t−1 cos st dt

= N0+ lim
∫ ∞
ξ

t−1 cos st dt = N0+ lim
∫ ∞
sξ

x−1 cos x dx.

To evaluate the last N0+limit, we will use the well know property of the func-
tion “cosine integral”

(27) Ci (z) =
∫ z

∞
x−1 cos x dx, lim

z→ 0+
(Ci (z)− ln z) = C.

where C denotes the Euler’s constant. Relations (27) imply
Ci (z) = C + ln z + o0+(1),∫ ∞

sξ
x−1 cos x dx = − Ci (sξ) = −C − ln ξ − ln s+ o0+(1),

N0+ lim
∫ ∞
sξ

x−1 cos x dx = − ln s,

I1(s) = − ln s(28)
Using the neutralized formula of integration by parts for I2n+1(s) and J2n(s),
n ∈ N∗, we obtain the following recurrence relations:

I2n+1(s) = 1
2n

(
(−1)ns2n

(2n)! − s J2n(s)
)
,(29)

J2n(s) = 1
2n−1

(
(−1)n−1s2n−1

(2n−1)! − s I2n−1(s)
)
.(30)
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From (28), (29) and (30) the relations (25) and (26) result. �

3. APPLICATIONS

Remark 1. Formulas (18), (19), (25), (26) give us the values of Ir(s) and
of Jr(s) for each r ∈]0,∞[ and s ∈]0,∞[. Further, for each r ∈]0,∞[ and
a, b ∈]0,∞[, we can easily find the values of the following Froullani-type
integrals

Fr(a, b) =
∫ N∞

N0+
t− r (cos bt − cos at) dt,

Gr(a, b) =
∫ N∞

N0+
t− r (sin bt − sin at) dt

using the additivity of neutralized integrals. As example,

Fr(a, b) = π
2 Γ(r) cos r π2

(
br−1 − ar−1

)
, if r 6= 2n+ 1, n ∈ N,(31)

Gr(a.b) = π
2 Γ(r) sin r π

2
(br−1 − ar−1), if r 6= 2n, n ∈ N∗,(32)

F1(a, b) = ln a− ln b.(33)
Formula (33) is true also if instead of the neutralized integral we have a

classical one. Similarly, for r = 2, the relation
F2(a, b) = π

2 (a− b)
is also true if we use the classical integral. But these relations can’t be obtained
using the additivity of classical integrals because the integrals∫ ∞

0
t− r cos st dt

are divergent, for r = 1 and r = 2. That illustrate one of the advantages of
using neutralized integrals. �
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