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THE GENERALIZATION OF VORONOVSKAJA’S THEOREM
FOR A CLASS OF LINEAR AND POSITIVE OPERATORS
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Abstract. In this paper we generalize Voronovskaja’s theorem for a class of lin-
ear and positive operators, and then, through particular cases, we obtain state-
ments verified by the Bernstein, Schurer, Stancu, Kantorovich and Durrmeyer
operators.
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1. INTRODUCTION

In this section, we recall some notions and results which we will use in this
article.

Let m be a nonzero natural number and B, : C([0,1]) — C([0,1]) the
Bernstein operators, defined for any function f € C([0,1]) by

(1.1) (Binf)(@) =D pmge(2)f (),
k=0

where p,, () are the fundamental polynomials of Bernstein, defined as follows

(1.2) Pmi(x) = ()" (L —2)™F,

for any x € [0,1] and any k € {0,1,...,m}.
In 1932, E. Voronovskaja, proved the result contained in the following the-
orem.

THEOREM 1.1. ([13]) Let f € C([0,1]) be a two times derivable function at
the point x € [0,1]. Then the equality

(1.3) Tim m[(Bpf)(z) - f(@)] = 252 f(x)
holds.
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For the natural numbers m and p, m nonzero, F. Schurer (see [9]) introduced
and studied in 1962, the operators By, , : C([0,1 + p]) — C([0,1]), named
Bernstein-Schurer operators, defined for any function f € C([0,1+ p]) by

m—+p

(1.4) ,pf Z Pm, k

where pp, ;(z) denotes the fundamental Bernstein-Schurer polynomials, de-
fined as follows

(1'5) pm k( ) (mljp) k(l - x)m+p_k = pm-l—p,k:(x)

for any x € [0,1] and any k € {0,1,...,m + p}.
In 2002, D. Barbosu proved the result contained in the following theorem.

THEOREM 1.2. ([2]) Let f € C([0,1+ p]) be a two times derivable function
at the point x € [0,1]. Then the equality

(16)  lim (m+p) |[(Bupf)@) - f(@)] =paf/ (@) + 252 ()
holds.

Let m be a nonzero natural number and the operators M, : L1([0,1]) —
C([0,1]) are defined for any function f € L;([0,1]) by

(1.7) (M) mek ) [ st

for any x € [0, 1].

These operators were introduced in 1967 by J.L. Durrmeyer in [5] and were
studied in 1981 by M.M. Derriennic in [4], where the following theorem can
be found.

THEOREM 1.3. Let f € Li([0,1]), bounded on [0,1]. If f is a two times
derivable function at the point x € [0, 1], then

(18) Him m (M f) () — f(2)] = [2(1 — 2)f ()] .

If f is a two times derivable function on [0, 1] and the function f" is continuous
on [0,1], then the convergence from (1.8) is uniform on [0, 1].

For m be a nonzero natural number, let the operators K,, : L1([0,1]) —
C(]0,1]) defined for any function f € L1(]0,1]) by

(1.9) (Enf)(@) = (m+1) Y pms(x) [T f)at,
k=0 m+1

for any x € [0, 1].

The operators K,,, where m is a nonzero natural number, are named
Kantorovich operators, introduced and studied in 1930 by L.V. Kantorovich
(see [10]).
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For 0 < o < 8 and m a nonzero natural number, define P\™? : c([0,1]) —
C(]0,1]) for any function f € C([0,1]) by

(110 (PEIF) (@)= 3 pron(a)f (£23).
k=0

for any x € [0, 1].

The operators P&Q’B ), where m is a nonzero natural number, are named
Bernstein-Stancu operators, introduced and studied in 1969 by D.D. Stancu
in the paper [12].

In [12] is the result contained in the following theorem.

THEOREM 1.4. Let f € C([0,1]) be a two times derivable function at the
point x € [0,1]. Then the equality

(1.11) lim (m+ B) [P ) (z) = f (2)] = (o= Bo) £ (2) + “U72f" (x)
holds.

We consider I C R, I an interval and we shall use the function sets: E(I),
F(I) which are subsets of the set of real functions defined on I, B(I) = {f|f :
I - R, f bounded on I}, C(I) = {f|f:I— R, f continuous on I} and
Cp(I) = B(I)nC(I). For any = € I, let the functions ¢, ¥y : I — R,
oz(t) = |t — x|, Yu(t) =t —z, for any t € 1.

DEFINITION 1.5. If I C R is a given interval and f € B(I), then the first
order modulus of smoothness of f is the function w; : [0,00) — R defined for
any 6 > 0 by
(1.12) wi(f;8) =sup{|f(z") — f(a")|: 2!, 2’ € I, |2’ —2"| <6}

In the following, we take into account the properties of the first order mod-
ulus of smoothness and the properties of the linear positive functional.

LeEMMA 1.6. If f € Cp(I), then wi(f;-) have the following properties
a) wi(f;0) =0;
b) wi(f;-) is increasing function;
¢) wi(f;-) is uniform continuous function;
for any § > 0, for any x,t € I, we have
d) wi(f;9a(t)) < [1+ 07 pu(t)] wi(f;0)

and
e) |f(t) = f(@)] < [L+0722()] wi(f30).
Proof. For proof see [10]. O

LEMMA 1.7. Let A: E(I) — R be a linear positive functional. Then
a) forany f,g € E(I) with f(z) < g(x), for any x € I, we have A(f) < A(g)
and

b) |A(H)| < A(IfD), for any f € E(I).
Proof. For proof consult [10]. O



82 Ovidiu T. Pop 4

2. PRELIMINARIES

THEOREM 2.1. Let I C R be an interval, a € I, n € N and the function
f: I — R, f isn times derivable at a. According to Taylor’s expansion
theorem for the function f around a, we have

= r—a k n

(2.1) f@) =3 T 19 (@) + (2 — )" u(x — a)
k=0

where 1 is a bounded function and %1_1({(11 u(x —a) =0.

If £ s continuous function on I, then for any & > 0

(22) (e —a)l < 3 [1+67 e —al|wn (17:9)
and

(2.3) iz =)l < & (145722 - a)?| wi (£0;9)
for any x € 1.

Proof. If n = 0, the proof is immediately. Let n be a nonzero natural
number. According to Taylor’s expansion with the Lagrange’s remainder, we
have

n—1 A n
(2.4) fla) =37 5 P a) + BT £ (9,

k=0
where ¢ is between a and z. From (2.1) and (2.4), we obtain u(z —a) =
1 {f(”)(f) - f(")(a)} and because [ — a| < |z — al, we have

RIGESI0]
sup | (w) = f ()]

u,vel
lu—v|<|z—al
= mon(f™; |z — al).
Taking Lemma 1.6 into account, the inequalities (2.2)) and (2.3)) follow. O

Let a,b,a’,b’ be real numbers, I C R interval, a < b, / < V', [a,b] C I,
[/, b'] C I and [a,b]N[d’,b'] # ¢. For any nonzero natural number m, consider
the functions ¢, : I — R with the property that ¢, () > 0 for any
x € [d,V] and any k € {0,1,,...,m} and the linear positive functionals
A E(Ja,b]) — R for any k € {0,1,...,m}.

3=

[z —a)| =

<

3=

DEFINITION 2.2. Let m be a nonzero natural number. Define the operator
Ly, : E([a,b]) — F(I) by

(2.5) (Linf)(@) = Y omn(@) Amp(f),
k=0

for any f € E([a,b]) and for any x € L.
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PROPOSITION 2.3. For m be a nonzero natural number, the L,, operators
are linear and positive on E([a,b] N [a’,V']).

Proof. The proof follows immediately. O

DEFINITION 2.4. Let m be a nonzero natural number and Ly, : E([a,b]) —
F(I) be an operator defined in ((2.5). For a natural number i, define T,

(26) (TriLm) (@) = m' (Lol) () = m Z k() A i (U1),
for any x € [a,b] N [da’,V'].

3. MAIN RESULTS

In the following, let s be a fixed natural number, s even and we suppose
that the operators (Lg,),,~; verify the conditions: there exists the smallest
Qs, sy € [0,00) so that

. T Lm)(x)
(3.1) lim % = Bj(z) eR
for any = € [a,b] N [d, V], j € {s,s+ 2} and
(3.2) Qgya < Qg+ 2.

THEOREM 3.1. Let f : [a,b] — R be a function.
If x € [a,b] N[, V] and f is a s times derivable function at x, the function
1) is continuous at x, then

: S—Qig f@(w * —
(3.3) n%gnoom { T (T ) (x)} =0.

If f is a s times derivable function on [a,b], the function ) s continuous
on [a,b] and there exists m(s) € N and kj € R so that for any natural number
m, m > m(s) and for any x € [a,b] N [d’,b] we have

(T ilm) @)

m®i — I

(3.4)

where j € {s,s+ 2}, then the convergence given in (3.3)) is uniform on [a,b] N
[a,b] and

(3.5) m® % |(

fijjz, (Tilm) ()] <
< L (ks +ks+2)w1(f(s)5 \/ﬁ )

for any x € [a,b] N [a',b], for any natural number m ,m > m(s).
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Proof. Let m be a nonzero natural number. According to Taylor’s theorem
for the function f around z, we have

(3.6) £ =3 ED (O () 1 (¢ — ) ult - x),

where (1 is a bounded function and %gn pu(t —x) = 0.
xr

Taking that A, is the linear positive functional into account, from (3.6)
we have

o : .
5= 5 A (v2) + A (W30).
=0
Where ,U/x . [a, b] —>, /"Ll'(t) = /’L(t — :1:)7 fOI- any t c [a7b] ﬂ [a/’b/]'

Multiplying by ¢, k(z) and summing after k, where k € {0,1,...,m}, we
obtain

T) = Z % (Lmq/};;) + Z Pm, k(z m k (Vahtz)
1=0

from which

37 m T [Cwh)@) =3 5 (T ilm) (@)] = (Rnf)(@),

1=0
where
(38) ( mf =m’" % Z Pm, k: %;Mx) .
Then

|(Bon f) ()] <m” Zsomk ) [ Am i (Vg 12)]

and taking Lemma 1.7 into account, we obtain

(3.9) (R f) ()] < m?~ Zsomk At (V3] ) -

According to the relation (£2.3)), for any 6 > 0 and for any ¢ € [a,b] N [a’, V],
we have

e ()] = [t = 2)] < & [1+6262(0)| wi (£;9),

and so

(3.10) (i la]) (8) < & [03(0) + 6720372 (0)] wi (£1;6).
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From (3.9) and (3.10)), it results that
(R f) ()] < 5ym® [Z‘Pmk Ak (b3) +

#5723 nale) s (4272 |on (19:8),
thus

mes mSs+2

(R f)(z)] < sl'{(TmLM)(I) e 2 (T spalm)(@) —2—as+a5+2]wl(f(s);5).

Considering § = ————— the inequality above becomes
v m2tez—ast2

T;:LsLm .Z‘) m,s Lm (w) S
BA) |(Bnf)(o)] < & [Pl Ciagpd O (500 ),

Taking (3.1)) and (3.2)) into account and considering the fact that

' (). 1 ) _ ().0) =
Jim (f ; ﬁ%as—%w) = w1 (f ,0> =0,

we have that

(3.12) lim (R f)(z) =

m— 00

From and ([3.12 . ) follows.
If in add1t1on l.i takes place, then (3.11]) becomes

(3.13) (R f)(@)] < 55 (ks + ksy2) w1 <f © ﬁ)

for any natural number m, m > m(s) and for any = € [a,b] N [d/,V], from
which, the convergence from (3.3) is uniform on [a,b] N [a/,¥']. From (3.8)) and

B13). (3:6) follows. 0

COROLLARY 3.2. Let f : [a,b] = R be a function. If x € [a,b] N [d’, V'] and
fis s times derivable and the function f® is continuous at x, then

(3.14) Jim (L f)(z) = f(2)
if s=0 and

.
e 9 ()
(3.15)  lim m (me)(l‘)—; i

(TiLom) (m)] = 196 B (a)

if s > 2.
If f is a s times derivable function on [a,b] N [a/, V'], the function f()
contmuous on [a bl N [a,b] and ( . ) takes place, then the convergences from

and are umform on [a,b] N [d’,b'].

Proof. 1t results from Theorem 3.1. g



86 Ovidiu T. Pop 8

In the following, consider that ¢y, 1 = py, x for any m, k an natural numbers,
m#0and k€ {0,1,...,m}.

APPLICATION 3.3. We consider a = o' = 0, b = b = 1.For any nonzero

natural number m, let the functionals Ay, - C([0,1]) = R, A, k1 (f) = f (ﬁ),

m
for any k € {0,1,...,m} and for any f € C([0,1]). In this application, we
obtain the Bernstein operators and if i is a natural number, then

(3.16) (T3.:Bn) (@) = m! mek ) (& - x)l = Tpilx)

for any x € [0,1] (see [6] or [10]).
In [6] are the results contained in the following theorem.

THEOREM 3.4. If i is a natural number, then

(3.17) Tim_ (Tmﬁ)” = [2(1 — o)) [5) @iz + b)),
ml2
for any x € [0, 1], where
0, if iis even or i =1
(3.18) a; = .
—— DY SR if iis odd, i >3
k=1
and
L, if i=0
0, if i=1
(3.19) b =4 (=1, if i is even, i > 2

2—1

2 ,,, if s odd, i > 3.

i mes

If s is a natural number, s even and j € {s,s + 2}, then a; = 0,

b 1, it 7=0

Tl G- i >2
and then from (3.17) it results that there exists a natural number m (s) so
that

(3.20) \7”’ ;Bm)(@)

(w1~ )% | <1

=

for any x € [0, 1] and for any natural number m, m > m(s). But z(1 —z) <
for any x € [0,1] and then (3.20) becomes

m?2
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for any x € [0,1] and for any natural number m, m > m(s), where j €
{s,s +2}.

Because the conditions and take place, where o; = %, je{s,s+
2}, Theorem 3.1 and Corollary 3.2 are enounced thus:

THEOREM 3.5. Let f :[0,1] — R be a function. If x € [0,1] and f is a s
times derivable function at x and the function f®) is continuous at x, then

(3.22) im_ (B f)(x) = £(x)

ifs=0,

(3.23) Tim_m (B f)(x) - - 106 (TiBim) ()] =0
=0

if s is a natural number and

(3.24)
s—1
iy (B f) @) = 32 LR (T5,0Bm) ()] = S5 o= )3 7O@)
=0
if s > 2.

If f is a s times derivable function on [0,1], the function ) s continuous
on [0,1], then the convergences from (3.22)—(3.24) are uniform on [0,1].

REMARK 3.1. For s =2 in (3.24]) we obtain the Voronovskaja’s theorem.

APPLICATION 3.6. Consider a = a' = 0, b =V = 1. For any nonzero
natural number m, let the functionals Ay, 1 @ L1([0,1]) = R,

1
Api(f) = (m + 1) /0 P k(1) F(£)dE,

for any k € {0,1,...,m} and for any f € L1([0,1]). In this case, we obtain
the Durrmeyer operators. With calculus, for m a nonzero natural number, we
have

(TroMm) (@) = 1,

(Tpa M) (@) = =038,
% _ 22(m—3)z(1—x)+2
(Tm,ZMm) (x) = m22mipllons

and

* _ o 412(m2—21m+10)[z(1—2)]2+12(6m—10)z(1—x)+24
(Tm 4Mm> (z) =m (mt2)(m+3) (T 4) (m¥5) ;
for any x € [0,1].
Then as =1, ay = 2,

(T;QMm)(:p)

(3.25) <

[\G][WV]

)
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(T;;LAMm)(x)

(3.26) — < %
or anym € N, m >3, any x € |0,1] and
Jor any ; y ;
(3.27) lim_ Taal)@) gy g,

Then, according to Corollary 3.2, Theorem 1.3 takes place.
If m,i are natural numbers, let

_ m 1 '
(3.28) Tonsl@) = 3 @) | prus(t)(a = 0y
k=0

for any x € [0,1] (see [4]). Then (T;,‘“Mm> () = m* (Mpbt) (z), so

(3.29) (TriMin) () = (~1)'m (m + 1) T 1)
for any m,i € N and any x € [0, 1].
In [4] the result contained in the following corollary can be found.

COROLLARY 3.7. For any natural number j, j even, there ewists k; € R so
that

(3.30) mEHT,, i (x) <k
for any m € N, for any x € [0,1] and

. 3 = i 3
(3.31) Agnoom2+1Tm,j(x) = (173' [z(1 — )]

2
From 7, there exists k; € so that

(T M) (@)

<k

(3.32)

<.

m?2

for any m €, for any = € [0, 1], where j € {s, s+ 2} and

(3.33) Tim (Tm#’”m - (j)‘ (1 — 2)]? .
2

According to the Corollary 3.2, we have:

THEOREM 3.8. Let f :[0,1] — R be a function. If x € [0,1], f is s times
derivable at x and the function f) is continuous at x, then

(3.34) Jim (M, f) () = f(x)

if s=0,

(335)  lim mi|(Myf)(x) - - 206 (T M) <w>] =0
=0
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if s is a natural number and

(3.36)
s—1
1 3 @) (z * () (g s
im m2 | (M f)(z) - z%) o) (Tm,iMm) (@1 - f(7§> (1 — 2)]3
if s > 2.

If f is a s times derivable function on [0,1] and the function ) is contin-

uous on [0,1], then the convergence from (3.34)—(3.36]) are uniform on [0, 1].

APPLICATION 3.9. We consider a = a' =0, b =10 = 1. For any nonzero
natural number m, let the functionals Ay, 1 : L1(]0,1]) — R,

sy

m-+1

Api(f) = (m+ 1)/k

m+1

ft)dt,

for any k € {0,1,...,m} and for any f € L1([0,1]). In this case, we obtain
the Kantorovich operators. If i is a natural number and x € [0, 1], then

k1l
Ak (1/1?,;) = (m+1) /’:“ (t —z)'dt
m41
_ lel (%_m)i—kl_ (mL_H_$>i+1

- m {[(k —mz) + (1 —z)]"" = [(k — ma) + (—:z:)”l} ,

wherefrom

(T3 iKom) (@) =

= mLH i 24%1 ipm,k(x) § (1—51) (k — mm)j (1— x)i-ﬁ-l—j . (—:L‘)H_l_j ’
k=0 =

7=0
(3.37)
i+1 ] . . . .
(T Kom) (@) = () o 30 (F) T () [(1 = 2) 177 = (=) 1]
j=0
Then

(Trokom) (@) = 1.
(T:;LJKm) (r) = (mﬁ1)2<1—w)3+w3;3mx(1—x)

and taking into account that (1 — )17 — (—z)T1=7 < 2 for any x € [0,1],
as =1 and oy = 2, we have

(3.38)

1-2z),

(17, o Kom) (@)

<1,
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(339) (T;:LAKW)(Z') < % ’

m2

for any m € N, m > 3 and for any = € [0, 1].
According to the Corollary 3.2, we have:

THEOREM 3.10. Let f € Ly([0,1]), bounded on [0,1]. If f is a two times
derivable function at the point x € [0,1] and the function f” is continuous at
x, then

(3.40 i m (K f)(@) = (@) = § [ =)/ (@)

If f is a two times derivable function on [0,1] and the function f” is con-
tinuous on [0, 1], then the convergence from (3.40) is uniform on [0, 1].

For any nonzero natural number m, let the functionals Ay, : [0,1] —

Api(f) = f(rﬁi%), for any k € {0,1,...,m} and for any f € C([0,1]). In
this case, we obtain the Stancu operators. With calculus, the conditions in

Corollary 3.2 are verified and we have:

APPLICATION 3.11. We consider a = da' =0, b=V =1, 0 < a < f.
R

THEOREM 3.12. Let f € C([0,1]). If f is a two times derivable function at
the point x € [0,1] and the function f” is continuous at x, then

(841)  lim m[(PEPDS) (@) = f()] = (@ = Ba)f'(2) + L5 w1 - @),

If f is a two times derivable function on [0,1] and the function f" is con-
tinuous on [0, 1], then the convergence from (3.41) is uniform on [0, 1].

APPLICATION 3.13. Let p be a natural number, m be a nonzero natural
number, a =0, b= 1+p,a’ = 0,0 =1 and the functional Ay,+pi(f) = f (ﬁ),

for any k € {0,1,...,m+ p} and for any f € C([0,1+ p|). In this case, we
obtain the Schurer operators (see (1.4) and (1.5)). With calculus, the conditions

of Corollary 3.2 are verified and we have:

THEOREM 3.14. Let p be a natural number and f € C ([0,1+ p]). If f is
a two time derivable function at the point x € [0,1] and the function f" is
continuous at x, then

(842)  lim (m+p) [(Bupf) @) = f(@)] = paf’ (@) + 252 f" ().

If f is a two times derivable function on [0, 1] and the function f" is continuous
on [0,1], then the convergence from (3.42) is uniform on [0, 1].
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