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ON THE ASYMPTOTIC BEHAVIOR
OF Lp EXTREMAL POLYNOMIALS

YAMINA LASKRI∗ and RACHID BENZINE∗

Abstract. Let β denotes a positive Szegö measure on the unit circle Γ and
δzk denotes an anatomic measure (δ Dirac) centered on the point zk. We study,
for all p > 0, the asymptotic behavior of Lp extremal polynomials with respect
to a measure of the type

α = β +
∞∑
k=1

Akδzk ,

where {zk}∞k=1 is an infinite collection of points outside Γ.
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1. INTRODUCTION

Let α be a finite measure defined on the borel sets of C and of compact
support F. We denote by mn,p(α, F ), n ∈ N, p > 0 the extremal constants

mn,p(α, F ) = min
{
‖Qn‖Lp(α,F ) : Qn = zn + an−1z

n−1 + ...+ a0,

a0, ..., an−1 ∈ C

}
,

and by Tn,p(α, F ) the associated extremal polynomials (we suppose that zn ∈
Lp(α, F ), n ∈ N). The case p = 2 is the special case of L2(α, F ) monic orthog-
onal polynomials.

There are many interesting problems about orthogonal or extremal polyno-
mials. The most important and difficult ones are their asymptotic behavior
and zero distributions.

The study of the asymptotic behavior of orthogonal or extremal polynomials
contributed in the resolution of other important problems in Mathematics. We
especially mention:

(i) The convergence of Padé approximants (F = [−1,+1] ∪ {zk} , p =
2, see [7])

(ii) The spectral theory (F = [−1,+1] ∪ {zk} , p = 2, see [5], [22])
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(iii) The zero distribution of extremal polynomials (F = Γ = {z : |z| = 1} ,
p ≥ 1, see [16], F = Γ ∪ {zk} , p = 2, see [17]).

(iv) The theory of the representation of analytic functions by series of poly-
nomials (F = Γ or F = E, E being a smooth Jordan curve, see [24],
[25], [26] .

If we are interested in asymptotics of extremal constants mn,p(α, F ) and
Tn,p(α, F ) polynomials, then the cases studied are the following:

1) F = [−1,+1] , dα(x) = ρ(x)dx, ρ(x) is non negative and integrable.
For p = 2, we have the classical results of Szegö ([26], [27]). For 1 ≤ p ≤
∞, ρ(x) = t(x)�

√
1− x2 and log t(x) a Riemann integrable function,

Berstein [3] found the power asymptotic of the extremal constants
mn,p(α, F ). Lubinsky and Saff [18] generalized the result of Bernstein
by considering 1�ρ(x) ∈ Lr[−1,+1], r > 1.

2) F = E, E is a smooth closed Jordan Curve and α is absolutely con-
tinuous and satisfies the Szegö condition. The case 0 < p < ∞ was
studied by Gueronimus ([6]). The special case of the unit circle and
p = 2 has a long history of study (see, for example, [24], [26], [27].).

3) F =
⋃%
k=1Ek, Ek being a smooth closed Jordan curve. This case was

investigated by Widom ([28]).
For other studies on Lp extremal polynomials see [1], [19], [20], [21].
In this paper we shall study the strong asymptotics of mn,p(α, F ) and

Tn,p(α, F ) in the case where 0 < p < ∞, F = Γ
⋃
{zk}∞k=1 , Γ being the

unit circle, zk ∈ Ext(Γ), α = β + γ, with support(β) = Γ, dα = ρ(ξ) |dξ| on
Γ and γ =

∑∞
k=1Akδzk (δzk being the Dirac delta unit measure supported at

the point zk).
This work is a generalization of the one of Kaliaguine [9], as well as those

of [15] and [12]. In [9] Kaliaguine uses a measure concentrated on a rectifiable
Jordan curve plus a finite number of points {zk}lk=1 . The passage from a finite
number to an infinite number of points is a difficult problem and its resolution
required, in the case p = 2, several years (see [2], [8], [10], [11] and [29]). In
([15], [12]) the authors only consider the relatively simple case 1 ≤ p ≤ ∞. We
will get in this paper the asymptotic behavior of the Lp extremal polynomials
Tn,p,α (z), for 0 < p <∞.

We give in section 2 some basic definitions and lemmas in the Hp (G, ρ)
spaces and define extremal problems on these spaces. Our main result, Theo-
rem 3.1, is stated in section 3.

Let E be a Jordan closed rectifiable curve, Y = Ext (E) , G = {w ∈ C :
|w| > 1}, (∞ ∈ Y , ∞ ∈ G) and w = Φ (z) is the function that maps Y
conformally on G in such a manner that Φ (∞) =∞ and limz→∞ (Φ (z) /z) >
0. Let Ψ be the inverse function of Φ, Ψ : G→ Y .

The method used in this paper is applicable to the case of a contour instead
of a circle by considering the functions Φ(z) and Ψ(w). We shall give a result
in our future paper (see [15]).



3 On the asymptotic behavior of Lp extremal polynomials 127

2. EXTREMAL PROBLEMS IN THE HP (G, ρ) SPACES

In this section, we introduce some notations and definitions concerning the
Hp (G, ρ)spaces. Let G = Ext (Γ), G = {w ∈ C : |w| > 1} , (∞ ∈ G).

Let ρ (ξ) be an integrable non negative function on Γ. If the weight function
ρ (ξ) satisfies the Szegö condition

(1)
∫

Γ
(log ρ (ξ)) |dξ| > −∞,

then, one can construct the so-called Szegö function Dρ (z) associated with
the domain G and the weight function ρ (ξ) with the following properties:
Dρ (z) is analytic in G, Dρ (z) 6= 0 in G, Dρ (∞) > 0; Dρ (z) has limit values

on Γ and

(2) |Dρ (ξ)|p = ρ (ξ) , ξ ∈ Γ (a.e. on Γ),

where Dρ (ξ) = limz→ξDρ (z) , (a.e. on Γ). Define the function D as follows

D(w) = Dρ( 1
w ), w ∈ U \ {0} , U = {w : |w| < 1} ,(3)

D(0) = Dρ(∞)

One gets a construction and an explicit representation of D(w) in [26]

(4) D(w) = exp
{

1
2pπ

∫ 2π

0
log(ρ(eiθ)) eiθ+w

eiθ−wdθ
}
.

Let f be an analytic function in G. For p > 0, we say that f belongs
to Hp (G, ρ) if f.Dρ is a function from the space Hp (G). For a function F
analytic in G, we say that F ∈ Hp (G) if and only if F (1/w) ∈ Hp (U) . The
space Hp (U) is well known (see [4, 13, 23, 14]).

Each function f (z) from Hp (G, ρ) has limit values on Γ and

(5) ‖f‖pHp(G,ρ) =
∫

Γ
|f (ξ)|p ρ (ξ) |dξ| ,

where
f(ξ) = lim

z→ξ
f(z), a.e. on Γ.

If 1 ≤ p < ∞, then Hp (G, ρ) is a Banach space with the norm (5). For
0 < p < 1, Hp (G, ρ) is not a normed space, but it is a complete metric space
with the distance

d(f, g) = ‖f − g‖pHp(G,ρ) .

The following lemmas summarize some properties of the Hp (G, ρ) spaces.

Lemma 2.1. [9] If f (z) ∈ Hp (G, ρ) and K ⊂ G, K compact, then there
exists a constant C (K) (depending only on K) such that:

(6) sup
K
|f (z)| ≤ C(K) ‖f‖pHp(G,ρ) .
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Lemma 2.2. [9] Let {fn} be a sequence of functions in Hp (G, ρ) and
(i) fn → f uniformly on the compact sets of G.
(ii) ‖fn‖pHp(G,ρ) ≤M (const.) .
Then

(7) f ∈ Hp (G, ρ) and ‖f‖pHp(G,ρ) ≤ lim inf
n→∞

‖fn‖pHp(G,ρ) .

For 0 < p <∞, define µ(β), µ (α) and µ (αl) as the extremal values of the
following extremal problems respectively

(8) µ(β) = inf
{
‖ϕ‖pHp(G,ρ) , ϕ ∈ Hp (G, ρ) , ϕ (∞) = 1

}
,

(9)

µ (α) = inf
{
‖ϕ‖pHp(G,ρ) , ϕ ∈ H

p (G, ρ) , ϕ (∞) = 1 and ϕ (zk) = 0,
k = 1, 2, ...

}
,

(10)

µ (αl) = inf
{
‖ϕ‖pHp(G,ρ) , ϕ ∈ H

p (G, ρ) , ϕ (∞) = 1 and ϕ (zk) = 0,
k = 1, 2, ..., l

}
,

We denote by ϕ∗ and ψ∗ the extremal functions of the problems (8) and (9)
respectively. We have

Lemma 2.3. ([2], [9], [10]) The extremal functions ϕ∗ and ψ∗ are connected
by

(11) ψ∗(z) = ϕ∗(z).
∞∏
k=1

z − zk
z.zk − 1 ·

|zk|2

zk

and

(12) µ (α) =
( ∞∏
k=1
|zk|

)p
· µ (β) ,

where

(13) µ (β) = ‖ϕ∗‖pHp(G,ρ) =
∥∥∥∥∥Dρ(∞)

Dρ

∥∥∥∥∥
p

Hp(G,ρ)
= [Dρ(∞)]p = [D(0)]p .

3. MAIN RESULTS

We now study the asymptotic behavior of the extremal polynomials
{Tn,p,α (z)}. As previously let α = β + γ be a finite positive measure defined
on the Borelian σ-algebra of C and concentrated on the set F = Γ∪ {zk}∞k=1 ,
where Γ = {z : |z| = 1}, {zk}∞k=1 be an infinite set of points which lay at the
exterior of Γ, β and γ are defined as follows:
β is a measure concentrated on Γ and is absolutely continuous with respect

to the Lebesgue measure |dξ| on the arc, i.e.:

(14) dβ (ξ) = ρ (ξ) |dξ| , ρ : Γ→ R+ and

∫
Γ
ρ (ξ) |dξ| < +∞
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and γ is a discrete measure with masses Ak at the points zk ∈ Ext(Γ), k =
1, 2, ..., i.e.:

(15) γ =
∞∑
k=1

Akδzk , Ak > 0 and
∞∑
k=1

Ak <∞,

where δzkdenotes the (Dirac delta) unit measure supported at the point zk.
By Pn,1 we denote the set of monic polynomials of degree n.

For 0 < p < ∞, define mn,p(α), mn,p(α`), mn,p(β), Tn,p,α (z) = zn + ... ∈
Pn,1, Tn,p,α` (z) ∈ Pn,1 and Tn,p,β (z) ∈ Pn,1 as follows:
(16) mn,p(α) = ‖Tn,p,α‖Lp(α,F ) = inf

Qn∈Pn,1
‖Qn‖Lp(α,F ) ,

mn,p(α`) = ‖Tn,p,α`‖Lp(α`,F`) = inf
Qn∈Pn,1

‖Qn‖
Lp(α`,F`)

,

mn,p(β) = ‖Tn,p,β‖Lp(β,Γ) = inf
Qn∈Pn,1

‖Qn‖
Lp(β,Γ)

,

where

α` = β +
∑̀
k=1

Akδzk and F` = Γ ∪ {zk}`k=1 ,

Definition 3.1. Let α = β + γ, we say that the measure α belongs to the
class BA (denoted by α ∈ BA) if the absolute and discrete parts of α, satisfy
in addition to the natural relations (1), (14) and (15), the following conditions

(17)
( ∞∑
k=1
|zk| − 1

)
<∞,

and
(18) lim sup

n→∞
mn,p(α) ≤ (µ (α))1/p ; 0 < p <∞

Condition (17) guarantees the convergence of the Blaschke product B∞ (z)
associated to the points {zk}∞k=1

(19) B∞ (z) =
∞∏
k=1

z − zk
z.zk − 1 ·

|zk|2

zk
.

Condition (18) was proven by Khaldi and Benzine [11] and Perherstorfer and
Yuditskii ([29], pp. 3217–3219 ) for the case p = 2. To arrive at their results,
Khaldi and Benzine used properties of orthogonality of the polynomials Tn,2,α,
but the proof by Perherstorfer and Yuditskii ([29]) is essentially based in many
points on the extremal properties of the polynomials Tn,2,α.

We conclude this section by formulating the main result of this paper.

Theorem 3.1. If p > 0 and α ∈ BA, then
(i) limn→∞mn,p (α) = (µ (α))1/p

(ii) limn→∞
∥∥∥Tn,p,α(z)

zn − ψ∗ (z)
∥∥∥
Hp(G,ρ)

= 0
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(iii) Tn,p,α (z) = zn [ψ∗ (z) + εn (z)] , εn (z)→ 0 uniformly on the compact
sets of G.

Proof. (i) p > 0 and α ∈ L, then

(20) lim sup
n→∞

mn,p(α) ≤ (µ (α))1/p .

It remains us to show
(21) (µ (α))1/p ≤ lim inf

n→∞
mn,p (α) .

We will present two proofs of this inequality.
First proof of (21).
The extremal property of Tn,p,α (z) and Tn,p,α` (z) imply

(22) mn,p(α) = ‖Tn,p,α‖Lp(α,F ) ≥ ‖Tn,p,α‖Lp(α`,F`)

≥ ‖Tn,p,α`‖Lp(α`,F`) = mn,p (α`) ,
(22) implies
(23) mn,p (α) ≥ mn,p (α`) , ∀p > 0, ∀`.

Using this result and theorem 2.2 of [9] , we obtain

(24) lim inf
n→∞

(mn,p (α)) ≥ (µ (α`))1/p , ∀p > 0, ∀`.

Now, using the fact that

µ (α`) = µ (β) ·
(∏̀
k=1
|zk|

)p
,

(see [9], formula (1.9)) we obtain when `→∞

(25) lim inf
n→∞

(mn,p (α)) ≥ ·µ (β)1/p ·
( ∞∏
k=1
|zk|

)
= (µ (α))1/p .

Second proof of (21).
Putting

(26) φ∗n,p = Tn,p,α (z) /zn,
and using (20) we get:

(27)
∥∥∥φ∗n,p∥∥∥

Hp(G,ρ)
≤M = const.

Let M∗ = lim infn→∞
∥∥∥φ∗n,p∥∥∥p

Hp(G,ρ)
, we have

(28) M∗ = lim
n→∞, n∈N1

∥∥∥φ∗n,p∥∥∥p
Hp(G,ρ)

.

This result and lemma 2.1 imply that
{
φ∗n,p, n ∈ N1

}
is a normal family

in G. So that we can find a function ψ (z) that is the uniform limit (on the
compact subsets ofG) of some subsequence

{
φ∗n,p, n ∈ N2

}
of
{
φ∗n,p, n ∈ N1

}
.
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From Lemma 2.2, we get ψ ∈ Hp (G, ρ) and

(29) ‖ψ‖pHp(G,ρ) ≤ lim inf
n→∞

∥∥∥φ∗n,p∥∥∥p
Hp(G,ρ)

.

On the other hand ψ (∞) = 1 and ψ (zk) = 0, k = 1, 2, . . . .
We have finally from (26) that

(30) µ (α) ≤ ‖ψ‖pHp(G,ρ) ≤ lim inf
n→∞

∥∥∥φ∗n,p∥∥∥p
Hp(G,ρ)

≤ lim inf
n→∞

(mn,p (α))p ,

(18) and (30) imply

(µ (α))1/p ≤ lim inf
n→∞

mn,p (α) ≤ lim sup
n→∞

mn,p (α) ≤ (µ (α))1/p ,

and (i) follows. (ii) For the functions

Ψn = 1
2

(
φ∗n,p + ψ∗

)
,

where
‖ψ∗‖pHp(G,ρ) = µ (α) ,

we have

Ψn (∞) = 1 and lim
n→∞

Ψn (zk) = 0, for k = 1, 2, . . . .

As in (i), we have

(31) lim inf
n→∞

‖Ψn‖pHp(G,ρ) ≥ µ (α) .

Proof of ii), 1 ≤ p ≤ ∞. We obtain ii) by using the Clarkson inequality.
More precisely 1 ≤ p ≤ 2.[∫

Γ

∣∣∣12 (φ∗n,p + ψ∗
)∣∣∣p ρ (ξ) |dξ|

]1/p−1
+
[∫

Γ

∣∣∣12 (φ∗n,p − ψ∗)∣∣∣p ρ (ξ) |dξ|
]1/p−1

≤

≤
[

1
2

∫
Γ

∣∣∣φ∗n,p∣∣∣p ρ (ξ) |dξ|+ 1
2

∫
Γ
|ψ∗|p ρ (ξ) |dξ|

]1/p−1
,

2 ≤ p <∞,∫
Γ

∣∣∣12 (φ∗n,p + ψ∗
)∣∣∣p ρ (ξ) |dξ|+

∫
Γ

∣∣∣12 (φ∗n,p − ψ∗)∣∣∣p ρ (ξ) |dξ| ≤

≤ 1
2

∫
Γ

∣∣∣φ∗n,p∣∣∣p ρ (ξ) |dξ|+ 1
2

∫
Γ
|ψ∗|p ρ (ξ) |dξ| .

0 < p < 1.
We use the extension of Keldysh theorem (see theorem 2 pp. 430–431 of [1]).

More precisely if one notes that in our case the singular part of the measure
β is equal to zero and if one takes in consideration the transformation z → 1

z ,
we obtain the following version of theorem 2 of [1].
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Lemma 3.1. ([1]) Let {zk}∞k=1 be a set of points in G, α = β + γ such that
α ∈ BA and {fn} ⊂ Hp (G, ρ) , 0 < p <∞. If we note:

f̃n = fn
ϕ∗
, where ϕ∗(z) = Dρ(∞)

Dρ(z)
,

and if
(a) limn→∞ f̃n(∞) = 1,
(b) limn→∞ f̃n(zk) = 0, k = 1, 2, ...,
(c)

∑∞
k=1 (|zk| − 1) < +∞,

(d) limn→∞ ‖fn‖Hp(G,ρ) = Dρ(∞)
∏∞
k=1 |zk| ,

then we have

lim
n→∞

∥∥∥∥∥fn −
∞∏
k=1

z − zk
z.zk − 1 ·

|zk|2

zk
.ϕ∗
∥∥∥∥∥
Hp(G,ρ)

= lim
n→∞

‖fn − (B∞.ϕ∗)‖Hp(G,ρ) = 0.

We get (ii) by applying Lemma 3.1 to the sequence
{
fn = φ∗n,p

}
⊂ Hp (G, ρ) .

Effectively we have:
φ∗n,p(∞) = 1 and ϕ∗(∞) = 1,

then (a) follows. In the other hand (b) is the consequence of the fact that
ϕ∗(zk) 6= 0 and

lim
n→∞

φ∗n,p(zk) = 0, k = 1, 2, ...;
(c) is exactly the condition (17). We obtain (d) by considering (12), (13) and
the fact that

lim
n→∞

∥∥∥φ∗n,p∥∥∥
Hp(G,ρ)

= lim
n→∞

mn,p (α) = (µ (α))1/p (see Theorem 3.1 ).

(iii) we apply lemma 2.1 for the function

(32) εn (z) = Tn,p,α (z)
zn

− ψ∗ (z) .

Then for all compact K ⊂ G, we have
(33) sup

z∈K
|εn (z)| ≤ C(K) ‖εn‖pHp(G,ρ) →n→∞ 0.

This completes the proof of Theorem 3.1. �
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naux associés à une mesure concentrée sur un contour plus une partie discrète finie, [An
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