ON THE BOUNDENESS OF THE ASSOCIATED SEQUENCE OF MANN ITERATION FOR SEVERAL OPERATOR CLASSES WITH APPLICATIONS*

ŞTEFAN M. ŞOLTUZ ${ }^{\dagger}$

Abstract

We prove that the associated sequence of Mann iteration is decreasing and hence bounded provided that the operator satisfy minimal assumptions. In particular we obtain for a nonexpansive operator that the associated sequence of Ishikawa iteration is decreasing for a nonexpansive operator. Applications to the convergence of Mann iteration are given.

MSC 2000. 47H10.
Keywords. Ishikawa-Mann iteration, associated Mann sequence.

1. PRELIMINARIES

Let X be a real Hilbert space, let $B \subset X$ be a nonempty, convex set. Let $T: B \rightarrow B$ be a map. Let $x_{1} \in B$, be an arbitrary fixed point. We consider the iteration

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n} . \tag{1}
\end{equation*}
$$

The sequence $\left(\alpha_{n}\right)_{n}$ satisfies:

$$
\begin{equation*}
\left(\alpha_{n}\right)_{n} \subset(0,1), \sum_{n=1}^{\infty} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0 \tag{2}
\end{equation*}
$$

Iteration (1) is known as Mann iteration, see [2]. Supposing that T has a unique fixed point x^{*}, we can associated for (1), a nonnegative sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$, named the associated Mann sequence. Ishikawa iteration is given by, see [1]:

$$
\begin{align*}
u_{n+1} & =\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T v_{n}, \tag{3}\\
v_{n} & =\left(1-\beta_{n}\right) u_{n}+\beta_{n} T u_{n} .
\end{align*}
$$

The sequences $\left(\alpha_{n}\right)_{n},\left(\beta_{n}\right)_{n}$ are in $(0,1)$. Supposing again that T has a unique fixed point x^{*}, we can associated for Ishikawa iteration, a nonnegative sequence $\left(\left\|u_{n}-x^{*}\right\|\right)_{n}$. We will name this sequence the associated Ishikawa sequence.

[^0]When T is a nonexpansive map, the associated Ishikawa and Mann sequences are decreasing.

Proposition 1. Let X be a Banach space, let $B \subset X$ be a nonempty, convex set. Let $T: B \rightarrow B$ be a nonexpansive map (i.e. $\|T x-T y\| \leq\|x-y\|, \forall x, y \in$ $B)$, then the associated Ishikawa sequence is decreasing.

Proof. Let $x^{*}=T x^{*}$. For all $x, y \in B$ we have

$$
\begin{aligned}
& \left\|u_{n+1}-x^{*}\right\|= \\
& =\left\|\left(1-\alpha_{n}\right)\left(u_{n}-x^{*}\right)+\alpha_{n}\left(T v_{n}-T x^{*}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|T v_{n}-T x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|v_{n}-x^{*}\right\| \\
& =\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|\left(1-\beta_{n}\right)\left(u_{n}-x^{*}\right)+\beta_{n}\left(T v_{n}-T x^{*}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left(\left(1-\beta_{n}\right)\left\|u_{n}-x^{*}\right\|+\beta_{n}\left\|T u_{n}-T x^{*}\right\|\right) \\
& \leq\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left(\left(1-\beta_{n}\right)\left\|u_{n}-x^{*}\right\|+\beta_{n}\left\|u_{n}-x^{*}\right\|\right) \\
& =\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|+\alpha_{n}\left\|u_{n}-x^{*}\right\| \\
& =\left\|u_{n}-x^{*}\right\| .
\end{aligned}
$$

Setting $\beta_{n}=0, \forall n \in \mathbb{N}$, we get a similar result for Mann iteration.
Proposition 2. Let X be a Banach space, let $B \subset X$ be a nonempty, convex set. Let $T: B \rightarrow B$ be a nonexpansive map (i.e., $\|T x-T y\| \leq\|x-y\|$, $\forall x, y \in B)$, then the associated Mann sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is decreasing.

We need the following definition:
Definition 3. The map $T: B \rightarrow B$ is called strongly pseudocontractive if there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}, \quad \forall x, y \in B . \tag{4}
\end{equation*}
$$

In a real Hilbert space we have equivalently the following definition: T is strongly pseudocontractive map if there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\langle T x-T y, x-y\rangle \leq k\|x-y\|^{2}, \forall x, y \in B . \tag{5}
\end{equation*}
$$

If $k=1$ then T is a pseudocontractive map. Denote by I the identity map.
Remark 1. A map S is (strongly) accretive if and only if $I-S$ is (strongly) pseudocontractive.

The aim of this note is to prove that this sequence converges decreasing to zero when T is a strongly pseudocontraction. Also similar results hold for an accretive map and a strongly accretive map. This property will be a good tool, in order to prove the convergence of Mann iteration when the operator is with unbounded range.

The following result is proved in [1].

Lemma 4. [1] Let X be a real Hilbert space, the following relation is true for all $x, y \in X$, and for all $\lambda \in(0,1)$:

$$
\begin{equation*}
\|(1-\lambda) x+\lambda y\|^{2}=(1-\lambda)\|x\|^{2}+\lambda\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} . \tag{6}
\end{equation*}
$$

We need the following inequality.
Lemma 5. If X is a real Hilbert space, then the following relation is true

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad \forall x, y \in X . \tag{7}
\end{equation*}
$$

Proof. For all $x, y \in X$ we have

$$
\begin{aligned}
\|x+y\|^{2} & =\|x\|^{2}+\|y\|^{2}+2\langle y, x\rangle \leq\|x\|^{2}+2\langle y, y\rangle+2\langle y, x\rangle \\
& \leq\|x\|^{2}+2\langle y, x+y\rangle
\end{aligned}
$$

Also we need the convergence of a sequence supplied by an inequality.
Lemma 6. [4] Let $\left(a_{n}\right)_{n}$ be a nonnegative sequence which satisfies the following inequality

$$
\begin{equation*}
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\sigma_{n}, \tag{8}
\end{equation*}
$$

where $\lambda_{n} \in(0,1), \forall n \in \mathbb{N}, \sum_{n=1}^{\infty} \lambda_{n}=\infty$, and $\sigma_{n}=o\left(\lambda_{n}\right)$. Then $\lim _{n \rightarrow \infty} a_{n}=$ 0.

2. MAIN RESULTS

Theorem 7. Let X be a real Hilbert space and let $B \subset X$ be a nonempty convex set, and $T: B \rightarrow B$ a strongly pseudocontractive operator with constant k. Then the associated Mann sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is decreasing.

Proof. Strongly pseudocontractivity assures the uniqueness of the fixed point. Thus the sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is well defined. Using (6), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T x_{n}-T x^{*}\right)\right\|^{2} \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}\left\|T x_{n}-x^{*}\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2} .
\end{aligned}
$$

If there exists the number k_{0} such that $\left\|x_{k_{0}}-x^{*}\right\|=0$, then $\left\|x_{n}-x^{*}\right\|=$ $0, \forall n \geq k_{0}$.

If $\left\|x_{n}-x^{*}\right\| \neq 0, \forall n \in N$, then we have

$$
\frac{\left\|x_{n+1}-x^{*}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}}=\left(1-\alpha_{n}\right)+\alpha_{n} \frac{\left\|T x_{n}-x^{*}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}}-\alpha_{n}\left(1-\alpha_{n}\right) \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} \leq 1 .
$$

The last inequality is equivalent to

$$
\begin{gather*}
-1+\frac{\left\|T x_{n}-x^{*}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}}-\left(1-\alpha_{n}\right) \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} \leq 0 \Leftrightarrow \\
\frac{\left\|T x_{n}-x^{*}\right\|}{\left\|x_{n}-x^{*}\right\|^{2}} \leq 1+\left(1-\alpha_{n}\right) \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} . \tag{9}
\end{gather*}
$$

The proof is complete if we are able to prove (9). From strongly pseudocontractivity we have

$$
\frac{\left\|T x_{n}-x^{*}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} \leq 1+k \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} .
$$

Because $\lim _{n \rightarrow \infty} \alpha_{n}=0$, there exists n_{0} such that for all $n \geq n_{0}$ we have $\alpha_{n} \leq 1-k$. Thus, we get

$$
1+k \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} \leq 1+\left(1-\alpha_{n}\right) \frac{\left\|T x_{n}-x_{n}\right\|^{2}}{\left\|x_{n}-x^{*}\right\|^{2}} .
$$

Hence (9) is true.
Consider the following equation

$$
S x=f,
$$

where S is a strongly accretive map and f is a given point in X. Consider the map $T x=f+(I-S) x, \forall x \in X$. A fixed point for T will be a solution for the equation $S x=f$. Remark 1 and Theorem 7 lead to the following result.

Corollary 8. Let X be a real Hilbert space and $S: X \rightarrow X$ a strongly accretive operator with constant k. Then the associated Mann sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is decreasing, where $\left(x_{n}\right)_{n}$ is given by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}(f+(I-S)) x_{n},
$$

with $\left(\alpha_{n}\right)_{n}$ satisfying (2), where x^{*} is a solution for $S x=f$.
Consider the following equation

$$
x+S x=f
$$

where S is an accretive map and f is a given point. Consider the map $T x=$ $f-S x, \forall x \in X$. A fixed point for T will be a solution for the equation $S x=f$.

Remark 2. [3] If S is accretive map then $T=f-S$ is strongly pseudocontractive map.

Remark 2 and Theorem 7 lead to the following result.
Corollary 9. Let X be a real Hilbert space and $S: X \rightarrow X$ an accretive operator. Then the associated Mann sequence $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is decreasing, where $\left(x_{n}\right)_{n}$ is given by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}(f-S) x_{n},
$$

with $\left(\alpha_{n}\right)_{n}$ satisfying (2).

3. APPLICATIONS TO THE CONVERGENCE OF MANN ITERATION

Theorem 10. Let X be a real Hilbert space and $B \subset X$ a nonempty convex closed set. Let $T: B \rightarrow B$ be a completely continuous and strongly pseudocontractive map with fixed points. Then $(x)_{n}$ given by (1) strongly converges to the fixed point of T namely x^{*}.

Proof. Strongly pseudocontractivity assures the uniqueness of the fixed point. Inequalities (7) and (5) lead us to,

$$
\begin{aligned}
& \| x_{n+1}-x^{*} \|^{2}= \\
&=\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T x_{n}-x^{*}\right)\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T x_{n}-x^{*}, x_{n+1}-x^{*}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T x_{n}-x^{*}, x_{n}-x^{*}\right\rangle \\
& \quad+2 \alpha_{n}\left\langle T x_{n}-x^{*},\left(x_{n+1}-x^{*}\right)-\left(x_{n}-x^{*}\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k\left\|x_{n}-x^{*}\right\|^{2} \\
&+2 \alpha_{n}\left\langle T x_{n}-x^{*}, x_{n+1}-x_{n}\right\rangle \\
& \leq\left(1-2(1-k) \alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\|T x_{n}-x^{*}\right\|\left\|x_{n+1}-x_{n}\right\| \\
& \leq\left(1-2(1-k) \alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left(\left\|T x_{n}\right\|+\left\|x^{*}\right\|\right) \alpha_{n}\left\|T x_{n}-x_{n}\right\| \\
& \leq\left(1-2(1-k) \alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}^{2}\left(\left\|T x_{n}\right\|+\left\|x^{*}\right\|\right)\left(\left\|T x_{n}\right\|+\left\|x_{n}\right\|\right) .
\end{aligned}
$$

The map T is strongly pseudocontractive. Theorem 7 assures that $\left(\left\|x_{n}-x^{*}\right\|\right)_{n}$ is decreasing, hence it is bounded, i.e. $\left(x_{n}\right)_{n}$ is bounded. The map T is completely continuous and $\left(x_{n}\right)_{n}$ is bounded, so $\left(\left\|T x_{n}\right\|\right)_{n}$ is bounded. Thus, there exists a strict positive $M>0$ such that

$$
\left\|x_{n+1}-x^{*}\right\|^{2} \leq\left(1-2(1-k) \alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2} M
$$

Condition $\lim _{n \rightarrow \infty} \alpha_{n}=0$ assures the existence of a rank n_{0} such that for all $n \geq n_{0}$, we have $(1-k) \geq \alpha_{n}$, thus

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2} & \leq\left(1-2(1-k) \alpha_{n}+\alpha_{n}^{2}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2} M \\
& \leq\left(1-2(1-k) \alpha_{n}+(1-k) \alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2} M \\
& =\left(1-(1-k) \alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2} M
\end{aligned}
$$

Denote by

$$
\begin{aligned}
a_{n} & :=\left\|x_{n}-x^{*}\right\|^{2} \\
\lambda_{n} & :=(1-k) \alpha_{n} \in(0,1) \\
\sigma_{n} & :=\alpha_{n}^{2} M
\end{aligned}
$$

Remark that $\sigma_{n}=o\left(\lambda_{n}\right)$ and inequality (8) is satisfied. From Lemma 6, we get $\lim _{n \rightarrow \infty} a_{n}=0$, that is $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Corollary 8 and Theorem 10 lead to the following result.
Corollary 11. Let X be a real Hilbert space and $B \subset X$ a nonempty convex closed set. Let $T: B \rightarrow B$ be a completely continuous and strongly accretive map with fixed points. Then $(x)_{n}$ given by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}(f+(I-S)) x_{n},
$$

with $\left(\alpha_{n}\right)_{n}$ satisfying (2), strongly converges to the solution of $S x=f$.
Corollary 9 and Theorem 10 lead to the following result.
Corollary 12. Let X be a real Hilbert space and $B \subset X$ a nonempty convex closed set. Let $T: B \rightarrow B$ be a completely continuous and accretive map with fixed points. Then $(x)_{n}$ given by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}(f-S) x_{n},
$$

with $\left(\alpha_{n}\right)_{n}$ satisfying (2), strongly converges to the solution of $x+S x=f$.
Remark 3. Usually, for the convergence of Mann iteration, either the set B or the sequence $\left(\left\|T x_{n}\right\|\right)_{n}$ is bounded. From the above results one can see that in a Hilbert space both assumptions are redundant.

REFERENCES

[1] Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147-150, 1974.
[2] Mann, W.E., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953.
[3] Rhoades, B.E., Şoltuz, Ş.M., The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci., 2003, pp. 2645-2652, 2003.
[4] Weng, X., Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 113, pp. 727-731, 1991.

Received by the editors: January 04, 2005.

[^0]: *This work has been supported by the Romanian Academy under Grant no. 14/2005.
 \dagger "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 400110 Cluj-Napoca, Romania, e-mail: soltuzul@yahoo.com.

