REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 34 (2005) no. 2, pp. 135–138 ictp.acad.ro/jnaat

ON THE MODIFIED BETA APPROXIMATING OPERATORS OF SECOND KIND

VASILE MIHEŞAN*

Abstract. We shall define a general linear operator from which we obtain as particular case the modified beta second kind operator

$$(T_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f\left(\frac{B(p,q)}{B(p+a,q-a)} u^a x\right) \mathrm{d}u.$$

We consider here only the case a = 1.

We obtain several positive linear operators as a particular case of this modified beta second kind operator.

MSC 2000. 41A36.

Keywords. Euler's beta function, the modified beta second kind operator, positive linear operators.

1. INTRODUCTION

Euler's beta function of second kind is defined for p > 0, q > 0, by the following formula

(1)
$$B(p,q) = \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} \mathrm{d}u.$$

The beta transform of the function f is defined by the following formula [6]

(2)
$$\mathcal{B}_{p,q}f = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f(u) \mathrm{d}u.$$

The modified beta operator is defined for $x \ge 0$ by the following formula

(3)
$$(\mathcal{B}_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f(ux) \mathrm{d}u.$$

We shall define a more general linear operator from which we obtain as a particular case the modified beta second kind operator.

For $a, b \in \mathbb{R}$ and $x \ge 0$ we define the (a, b)-modified beta operator

(4)
$$(\mathcal{B}_{p,q}^{(a,b)}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f\left(\frac{B(p,q)}{B(p+a,q+b)} \cdot \frac{u^a x}{(1+u)^{a+b}}\right) \mathrm{d}u,$$

^{*}Technical University of Cluj-Napoca, Department of Mathematics, 400020, Cluj-Napoca, Romania, e-mail: Vasile.Mihesan@math.utcluj.ro.

where $B(\cdot, \cdot)$ is the beta function (1) and f is any real measurable function defined on $(0,\infty)$ such that

$$(\mathcal{B}_{p,q}^{(a,b)}|f|)(x) < \infty$$

2. THE MODIFIED BETA SECOND KIND OPERATOR. CASE a = 1

Let us denote by $M[0,\infty)$ the linear space of functions defined for $t \ge 0$, bounded and Lebesgue measurable in each interval [c, d], where 0 < c < d < ∞

For a + b = 0 we obtain from (4) the modified beta second kind operator

(5)
$$(T_{p,q}^{(a)}f)(x) = (\mathcal{B}_{p,q}^{(a,-a)}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f\left(\frac{B(p,q)}{B(p+a,q-a)}u^a x\right) \mathrm{d}u$$

for $f \in M[0,\infty)$ such that $(T_{p,q}^{(a)}|f|)(x) < \infty$. One observes that $T_{p,q}^{(a)}$ is a positive linear operator and $(T_{p,q}^{(a)}(e_1)(x) = x)$. We consider here only the case a = 1.

If we choose in (5) a = 1 we obtain the modified beta second kind operator

(6)
$$(T_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f\left(\frac{q-1}{p}ux\right) \mathrm{d}u.$$

REMARK 1. For p = q = n we obtain the operator

(7)
$$(B_n f)(x) = \frac{1}{B(n,n)} \int_0^\infty \frac{u^{n-1}}{(1+u)^{2n}} f\left(\frac{n-1}{n} tx\right)$$

considered by V. Totik in [7].

REMARK 2. For $\frac{p}{q-1} = x$ or p = (q-1)x, x > 0, we obtain the operator

$$(T_q f)(x) = \frac{1}{B((q-1)x,q)} \int_0^\infty \frac{u^{(q-1)x-1}}{(1+u)^{(q-1)(x+1)}} f(u) \mathrm{d}u, \quad q > 2$$

considered by the author in [4].

REMARK 3. If we put a = -1 in (5) we obtain the following modified beta second kind operator

(8)
$$(T_{p,q}^{(-1)}f)(x) = (\mathcal{T}_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} f\left(\frac{p-1}{q}\frac{x}{u}\right) \mathrm{d}u$$

Denote v = 1/u, that is u = 1/v and $du = -dv/v^2$. We obtain

$$(\mathcal{T}_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{(1/v)^{p-1}}{(1+1/v)^{p+q}} f\left(\frac{p-1}{q}xv\right) \frac{\mathrm{d}v}{v^2}$$
$$= \frac{1}{B(p,q)} \int_0^\infty \frac{v^{p+q}}{v^{p+1}(1+v)^{p+q}} f\left(\frac{p-1}{q}vx\right) \mathrm{d}v$$
$$= \frac{1}{B(p,q)} \int_0^\infty \frac{v^{q-1}}{(1+v)^{p+q}} f\left(\frac{p-1}{q}vx\right) \mathrm{d}v$$

and we observe that $\mathcal{T}_{p,q}$ is similar with $T_{p,q}$.

 $\mathbf{2}$

 $\mathrm{d}t$

EXAMPLE 1. A double sequence of positive linear operators (names beta operators by Uprety [8], see also [1]) defined as

$$(F_{m,n}f)(x) = \frac{1}{B(m,n)} \int_0^\infty \frac{x^n u^{n-1}}{(1+ux)^{m+n}} f\left(\frac{n}{mu}\right) \mathrm{d}u$$

or, equivalently,

(9)
$$(F_{m,n}f)(x) = \frac{1}{B(m,n)} \int_0^\infty \frac{u^{n-1}}{(1+u)^{m+n}} f\left(\frac{nx}{mu}\right) \mathrm{d}u,$$

(10)
$$(F_{m,n}f)(x) = \frac{1}{B(m,n)} \int_0^\infty \frac{u^{m-1}}{(1+u)^{m+n}} f\left(\frac{n}{m}xu\right) du$$

is similar with (8), and respectively with (6).

THEOREM 1. The moment of order k $(1 \le k < q)$ of the operator $T_{p,q}$ has the following value

$$(T_{p,q}e_k)(x) = \left(\frac{q-1}{p}\right)^k \frac{p(p+1)\dots(p+k-1)}{(q-1)\dots(q-k)}, \quad 1 \le k < q,$$

$$(T_{p,q}e_1)(x) = x; \quad (T_{p,q}e_2)(x) = \frac{(p+1)(q-1)}{p(q-2)}x^2, \quad q > 2,$$

$$T_{p,q}((t-x)^2; x) = \frac{p+q-1}{p(q-2)}x^2, \quad q > 2.$$

Proof.

$$(T_{p,q}e_k)(x) = \frac{1}{B(p,q)} \int_0^\infty \frac{u^{p-1}}{(1+u)^{p+q}} \left(\frac{q-1}{p}\right)^k u^k x^k \mathrm{d}u$$
$$= \left(\frac{q-1}{p}\right)^k \frac{x^k}{B(p,q)} \int_0^\infty \frac{u^{p+k-1}}{(1+u)^{p+q}} \mathrm{d}u$$
$$= \left(\frac{q-1}{p}\right)^k \frac{B(p+k,q-k)}{B(p,q)} x^k$$
$$= \left(\frac{q-1}{p}\right)^k \frac{\Gamma(p+k)\Gamma(q-k)}{\Gamma(p+q)} \cdot \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^k$$
$$= \left(\frac{q-1}{p}\right)^k \frac{p(p+1)\dots(p+k-1)}{(q-1)\dots(q-k)} x^k.$$

For k = 1, 2, we obtain $(T_{p,q}e_1)(x) = x$,

$$(T_{p,q}e_2)(x) = \left(\frac{q-1}{p}\right)^2 \frac{2p(p+1)}{(q-1)(q-2)} x^2 = \frac{(p+1)(q-1)}{p(q-2)} x^2$$

and

$$T_{p,q}((t-x)^2;x) = \left(\frac{(p+1)(q-1)}{p(q-2)} - 1\right)x^2 = \frac{pq-p+q-1-pq+2p}{p(q-2)}x^2 = \frac{p+q-1}{p(q-2)}x^2.$$

Particular case

For q = p + 1 we obtain the positive linear operator

(11)
$$(T_p f)(x) = \frac{1}{B(p,p+1)} \int_0^\infty \frac{n^{p-1}}{(1+u)^{2p+1}} f(ux) \mathrm{d}u$$

considered by S. M. Mazhar [2] for p = n (see also [3]).

COROLLARY 2. The moment of order k $(1 \le k < p+1)$ of the operator T_p has the following value

$$(T_p e_k)(x) = \frac{(p+1)\dots(p+k-1)}{(p-1)\dots(p-k+1)} x^k, \quad 1 \le k < p+1,$$

$$(T_p e_2)(x) = \frac{p+1}{p-1} x^2, \quad T_p((t-x)^2; x) = \frac{2x^2}{p-1}.$$

Proof. It is obtained from Theorem 1 for q = p + 1.

REMARK 4. For p = n we obtain

$$T_n((t-x)^2;x) = \frac{2x^2}{n-1}.$$

REFERENCES

- KHAN, M. R., Approximation properties of Beta operators, in Progress in Approximation Theory, Academic Press, New York, pp. 483–495, 1991.
- MAZHAR, B. M., Approximation by positive operators on infinite interval, Mathematica Balkanica, New Series, vol. 5, pp. 99–104, 1991.
- [3] MIHEŞAN, V., Approximation of continuous functions by means of linear positive operators, Ph. D. Thesis, "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj-Napoca, 1997.
- [4] MIHEŞAN, V., The beta approximating operators of the second kind, Studia Univ. Babeş-Bolyai, Mathematica, 49, no. 2, pp. 79–88, 2004.
- [5] MIHEŞAN, V., On the modified beta approximating operators of first kind, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 67–71, 2004.
- [6] STANCU, D. D., On the Beta approximating operators of second kind, Rev. Anal. Numér. Théor. Approx., 24, nos. 1–2, pp. 231–239, 1995.
- [7] TOTIK, V., Uniform approximation by positive operators on infinite interval, Analysis Mathematica, 10, pp. 163–182, 1984.
- [8] UPRETI, R., Approximation properties of beta operators, J. Approx. Theory, 45, pp. 85–89, 1985.

Received by the editors: February 18, 2004.