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Abstract. Extension theorems for semi-Lipschitz functions and some proper-
ties of these extensions useful in approximation problems are presented. As
illustration, a such problem is considered.

MSC 2000. 46A22, 26A16,41A50.
Keywords. Spaces with asymmetric seminorm, semi-Lipschitz function, exten-
sion and approximation.

1. PRELIMINARIES

Let X be a real linear space. A function p : X — [0,00) is called an
asymmetric seminorm [2] if the following conditions hold for all z,y € X :

(AN1) p(z) >0,
(AN2) p(tx) =tp(z), t >0,
(AN3) ple+y) <p@)+p).

The function p : X — [0,00) defined by p(z) = p(—z),x € X, is also an
asymmetric seminorm on X, called the conjugate seminorm to p. The func-
tional

P’ (z) = max{p (z) ,p(-2)}, = €X,
is a seminorm on X. If p® is a norm on X, then p is called an asymmetric
norm. The term “asymmetric” is motivated by the fact that it is possible that
p(x) # p(—x) for some z € X.

A pair (X, p) where X is a real linear space and p an asymmetric seminorm
on X, is called an asymmetric seminormed space, respectively asymmetric
normed space if p is an asymmetric norm on X. Some properties of such
spaces are given in [3], [4], and the references therein.

An example is the following: let R be the set of the real numbers and u :
R — [0,00), u (a) = max{a,0},a € R. Then the function u is an asymmetric
norm on R. The conjugate @ : R — [0,00), U (a) = u(—a),a € R, is another
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asymmetric norm on R, because the function u*(a) = max {u(a),u(—a)} = |a|,
a € R, is a norm on R (see [4], [5]).

If (X,p) is an asymmetric seminormed space, one considers the following
topologies on X:

(1) The topology 7, generated by the families of forward open balls
Bt (z,e)={ze€ X :p(z—z)<e}lowe X,e>0;
(2) The topology 75 generated by the families of backward open balls
B (z,e)={z€ X :p(xr—2)<e}l,x € X,e >0
(3) The topology 7 generated by the open balls B (z,e) = {z € X :
p*(x—2)<e} =Bt (r,e) N B (z,6),z € X,e > 0.
For details on these topologies, see [I] and [3].

2. THE CONES OF SEMI-LIPSCHITZ FUNCTIONS

Let (X,p) be an asymmetric seminormed space and Y a subset of X. A
function f : Y — R is called p-semi-Lipschitz if there exists a constant K > 0
such that

(1) fu)—f) <Kpu—v),
for all u,v € X, (see [13]). Observe that a p-semi-Lipschitz function is upper
semicontinuous.

The set of all p-semi-Lipschitz functions on Y is denoted by symbol p-SLipY’,
ie.

(2) p-SLipY :={f:Y — R, fis p-semi-Lipschitz}.
If f ep-SLipY’, then the nonnegative number

u)—f(v))VO
(3) 11y = sup { LUV 4y 4 € Y, p (u—v) > 0}

is the smallest p-semi-Lipschitz constant for F, i.e. the following inequality
holds:

fu)=f @) <||flpp(u—2),
for all u,v € Y (see [10]).

The set p-SLipY is closed with respect to pointwise addition of functions,
and with respect to multiplication of a function by nonnegative scalar, i.e.
p-SLipY is a cone.

The functional |||, : p-SLipY" — [0, c0) defined by (3|) verifies the properties
(AN1)-(AN3) of an asymmetric seminorm.

Analogously, a function f :Y — R is called p-semi-Lipschitz if there exists
@ > 0 such that

(4) fW—=f)<Qplu—v)=Qpv—u),
for all u,v €Y.

The smallest constant @ in is denoted by ||f|z and the set of all p-
semi-Lipschitz functions on Y is denoted by symbol p-SLipY. The functional



3 The extension of semi-Lipschitz functions on asymmetric normed spaces 141

|| - |z :p-SLipY'— [0,00) defined by an expression analogue with is an
asymmetric norm on the cone p-SLipY.

The function f : Y — R is called p®-Lipschitz if there exits M > 0 such
that

(5) |f (w) = f(v)| < M p® (u—v),
for all u,v €Y.

The set of all p*-Lipschitz functions on Y is denoted by symbol p®-SLipY .
With respect to pointwise addition of functions and multiplication of functions

by real numbers, the set p°-SLipY is a linear space.
The functional ||-|| :p*-SLipY — [0, 00),

(6) 1 £1) = sup { LI 0y € ¥, p* (u—v) > 0}

p*(u—v)
is a seminorm on linear space p°-SLipY.
PROPOSITION 1. Let (X,p) be an asymmetric seminormed space and Y a
subset of X. Then
a) The sets p-SLipY and p-SLipY are convex cones in the space p*-SLipY’;
b) The function f is in p-SLipY if and only if —f is in p-SLipY . For
every f ep-SLipY, the following equality holds:
flp=1=Ffla=17l
Proof. a) Let f in p-SLipY. Then

fw) = f ) <||flppu—2v) <||flpp* (u—-0),
for all u,v €Y.
Changing the place of u and v, we obtain
f)=f) <|flppw—u)=|lflpp(u—v) <[[flpp°(u—-1),
for all u,v € Y. It follows that

|f (w) = @) < [flp p* (w =),
for all u,v € Y. Consequently f €p-SLipY" (and || f|| = || f]p)-
If f ep-SLipY’, one obtains
|f (w) = @) < |[flp p* (w =),
for all u,v €Y, i.e. f ep-SLipY, (it follows ||f|| = ||f|p)-
b) Let f ep-SLipY. By f(u) — f(v) < ||flp p(u—v), for all u,v € Y, it
follows

(=f) () = (=f) (W) <|flpp(uw—2v) =||flp P(v—u),
and then — f €p-SLipY. Moreover, it follows that || — f|z < || f|. Analogously,
f €p-SLipY implies

(=) W) = (=)W <[flpplu—2v)=|[flgpv—u),
for all u,v € Y. Consequently —f €p-SLipY and || — f|, < ||fl5.



142 Costica Mustata 4

Observe that for f ep-SLipY,

1l =1l = (=N <l = flp,
and for f €p-SLipY’, one obtains

Wfe=1=CENE<1 = flp
Finally, it follows
flp = Il = flp, V.f € p-SLipY,
and
1fl5 = Il = flp, Y € p-SLipY.. O

REMARKS. 1) By Proposition 1, a) it follows that for f €p-SLipY,
(9 €p-SLipY’) one obtains ||f|, = [|f||, (respectively ||g|z = |lg||) and con-
sequently

f e p-SLipY Np-SLipY = |[f, = |[flz = I F]l-

2) Let yo be a fixed element in Y. Denote

p°-SLipgY := {f € p*-LipY’, f(yo) =0},
p-SLipgY := {f € p-SLipY’, f(yo) =0},
p-SLipoY := {f € p-SLipY’, f (y0) =0} .

If f ep®-SLipgY, then || f|| = 0 implies f = 0. It follows that f € p-SLipoY' N
p-SLipgY implies f = 0 and || f|,, ||f|p are asymmetric norms on p-SLipgY
and p-SLipgY respectively.

3) Let Y be a subspace of asymmetric normed space (X,p) and ¢ : Y — R
a linear functional. If (R, u) is the asymmetric normed space with asymmetric
norm u (a) = max{a,0}, a € R and 7, is the topology associated to u, then
the functional ¢ : Y — R is called (p, u)-continuous if it is continuous in the
topologies 7, and 7. O

The linear functional ¢ : (Y,p) — (R, u) is called p-bounded if there exists
L > 0 such that

¢(y) < Lp(y),

for every y € Y.

The functional ¢ : (Y,p) — (R,u) is (p,u)-continuous if and only if ¢ is
p-bounded, (see [4]).

Every p-bounded linear functional on Y is p-semi-Lipschitz on Y.

Denote by Y;,b the set of all p-bounded functionals on Y. Then Y;,b Cp-SLipoY

(here yp = 0), and for ¢ € Y;,b,
v (y)

(7) |lolp = 21;13 o) P {e :yeY,py) <1},

The functional || - |, : Y; — [0, 00) defined by (7)) is an asymmetric norm, and
the pair (Y;f’, IE \p) is called asymmetric dual cone of (Y,p) [5].
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3. EXTENSION RESULTS

Let Y be a subset of asymmetric normed space (X,p). The function f :
Y — R is called bounded on Y if there exists the numbers m, M € R such that

m < f(y) <M,
for every y € Y.

PROPOSITION 2. Let (X,p) be an asymmetric normed space, Y a subset of
X and f:Y — R a bounded function. Let also K > 0 be arbitrary, but fixed.
Then the functions Fy, (f),Gp (f) : X — R defined by the formulas

Fp(f)(w)Zgg{f(y)Jer(x—y)}, T € X,
Gp(f)(x)ZZlelg{f(y)—Kp(y—m)}, reX,

satisfy the following relations:

(a) B ()W) <f) <G (f)y), Ve,
(b) Fp (f) (1) = Fp (f) (22) < K p (21 — 22), Van,22 € X,
(c) Gy (f) (z1) = Gp (f) (z2) < K p(x1 —x2), V1,20 € X.
Proof. Let f:Y — R and m, M € R such that m < f(y) < M for every

y € Y. It follows
m<fy)+Kplx—y),Vyey, veeX,
and
M=>f(y)—Kp(ly—x), VyeY, Vo € X.
Consequently, the set {f (y) + K p(x —y) |y € Y} is bounded from below for
every z € X and the set {f (y) — K p(y — z) |y € Y} is bounded from above

for every « € X. Then the functions F), (f) and G), (f) are well defined on X.
a) Let yo € Y be fixed. For every x € X,

nf {f () + Kp(z—y)} < f )+ Ep(z—w),

and for x =y it follows that

Fy, (f) (wo) < f (o) -
Analogously,

sup{f(y) —Kp(y—=z)} > f(yo) — K p(yo — ),

yey

and for x = yy, we obtain

f(yo) <Gy (f) (vo) -

Because yg is arbitrary in Y it follows that

F,(f)(y) < f(y) <Gy (f) (y),

for every y € Y.
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b) Let x1, 22 € X. Because for every y € Y we have
0<p(z1-y)
=p(r1 — 22+ 72 —Y)
<p(z1—w2) +p(r2—Y),
it follows the inequality
fW+EKp@—y) < fy)+EKp@—x2) + Kplxa—y),
and taking the infimum with respect to y € Y one obtain
Fy (f) (1) < Fp (f) (w2) + K p(x1 — 22).
Then

Fy (f) (21) = Fp (f) (22) < K p (21 — 22),
for every x1,z9 € X.

c¢) Using the inequalities
0<p(y—wz2) =py—z1+21—22) <
<p(y—mz)+p@—z2),
one obtains
f)—Kply—z2) 2 f(y) —Kply—z1) — Kp(x1— )
and taking the supremum with respect to y € Y we obtain
Gy (f) (z1) — Gp (f) (2) < K p(z1 — 22) . a

A subset Y of an asymmetric normed space (X, p) is called p-bounded, (p-
bounded) if there exists M > 0 (Q > 0) such that

plu—v) <M (p(u—v)<Q),

for all u,v €Y.
The set Y is called (p,p)-bounded if it is both p-bounded and p-bounded.

PROPOSITION 3. IfY is a (p,p)-bounded set of an asymmetric normed space
(X,p) and f €p-SLipY, then f is bounded.

Proof. Let yo € Y be fixed. Foreveryy €Y, f (y)—f (vo) <||flp p (v — v0) ,
implies f (y) < f (o) + |[flp P (¥ — o) -

Analogously,

Fwo)=f @) <Iflprwo—y)=IIflp 2y — ),
for every y € Y. Then

o) = flp Py —yo) < f () < fyo) +Iflpp(y—wo),
and because Y is (p,p) —bounded, it follows that f is bounded. O

REMARK 1. By Proposition 1, it follows that every g €p-SLipY is bounded,
if Y is (p,p)-bounded. For the symmetric case of Proposition 2, see [12]. O
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PROPOSITION 4. Let (X,p) be an asymmetric normed space, Y a (p,p)-
bounded subset of X and f €p-SLipY. Let ||f|, the smallest semi-Lipschitz
constant of f. Then the functions F, (f),Gp (f) : X — R defined as in Propo-
sition 2 with K = ||f|, satisfy the following properties:

p () (2) < Fp (f) (2),2 € X,
G (W) =F)=F()w,yeY,

2) G
b)

) NGy (1) lp = 11y = 11Gy (1) ]

d) Ifg: X - R and g €p-SLipX verifies gly = f and ||l = |l

then
Gy (f) (z) < g(x) < F, (f) (z),
for every x € X.

Proof. a) For Every u,v € Y and =z € X, the following inequalities are
fulfilled:

fw) = f @) <|[flppu—v) <|[flppuw—2)+[flplz—u0).
Then
fw)=lflppu—=z) < f)+p(z—v).
Taking the infimum with respect to v € Y and then with respect to u € Y, we
obtain

Gp (f) () < Fp (f) (2),
for every xz € X.
b) It follows from Proposition 2 a), Proposition 3 and the previous inequality
of a).
c¢) The following inequalities are obvious:

Gy (f) |p = (| flp and [[Fp (f) p = (| f]p-
Let now z1,29 € X and € > 0. Selecting y € Y such that

Fy (f)(x1) = f(y) + | flp p(z1 —y) — &,

one obtains:

Fy (f) (w2) = Fp (f) (1) <
<fW+Iflpp(x2—y) = (F (@) + 1 flpp (21 —y) — &)

= flplp (z2 —y) —p(z1 —y)] +¢

< |Iflpp (22 — 21)
(since p(z2 —y) —p(r1 —y) <p(re — 1) <= p (2 —y) = p(x2 — 1+ 1 —
y) <plxz—a1) +p (21 —y))

The number ¢ > 0 being arbitrarily chosen, it follows
Fy (f) (w2) = Fp (f) (z1) < |[flp p (w2 — 71),

for all 21,29 € X, and then ||F, (f) |, < || flp-
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Analogously, we obtain ||Gy, (f) |, < ||f]p, and consequently

Gy (f) |p = I f1p = [[Fp (f) |p-
d) Let g ep-SLipX such that gy = f, and ||g|, = ||f|p. For every y € Y
and x € X we have
Fy)—g9@) =9 —g@) <llglppy—=),

and then

Fw) =llglpp(y—z) <g(z).
Taking the supremum with respect to y € Y we obtain

Gp (f) (z) < g (x),

for every x € X.
Analogously,

g@)=fW) =9@) -9 <llghpz—y)=Ilflppl=-y),
implies
g9(x) < f ) +Iflpp(x—y)
and taking the infimum with respect to y € Y, it follows

g(x) < Fp(f)(2),
for every z € X. ]

REMARKS. 1) In Proposition 4 the condition “Y is a (p,p)-bounded set” is
not necessary.

Indeed, for a nonvoid set Y and f €p-SLipY’, the functions F), (f) and G), (f)
are well defined. For this, let yo € Y and x € X. For every y € Y,
f @)+ flpp (@ —y) = f (o) + | flpp (= y) = (f (o) — [ (¥))
> f (o) + Iflplp (& = y) = p (o — y)]
= f (o) — lflplp (o —y) —p (z — y)].

But p(yo —y) —p(z —y) <p(yo —2) =P (2 — yo), and then the set {f (y) +
|| flpp (x —y) : y € Y} is bounded below and there exists

Fp (f) (@) = inf {f () + [ flpp (= = 9)},

for every xz € X.
Analogously, the function

Gp (f) () = zgg{f () = llflpp (y = )}

is well defined for every x € X.

2) A proposition similar to Proposition 4 is valid for the functions of cone
p-SLipY.

3) For f ep-SLipY (f €p-SLipY) let

E, (f,Y) ={g € p-SLipX : gly = f and |[g], = |[f]p},
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and respectively
Ep (f,Y) = {h € p-SLipX : hly = f and [|hlz = || f|5},

the sets of extensions preserving the asymmetric seminorms || f|, (respectively
|| f]p). We have the following inclusions:

Ep (f,Y) € ST(0,]1flp) = {g € p-SLipX : |lglp = || f],},
Ep (£,Y) €57 (0,|[flp) = {h € p-SLipX : [|hly = [|f[p}-

4) By Theorem of McShane [6], for every f €p®-SLipY there exists F' €p®-SLip X,
such that
Fly = fand ||F|[ = [|f]],

where || f|| is defined by formulas (6)) and ||F|| analogously.
Denote by

Eps (f,Y) ={F € p*-SLipX : Fly = f and ||F|| = |||},
the set of all extensions of f €p®-SLipY” preserving the Lipschitz constant ||f||.
By Proposition 1, if f ep-SLipY’, then f ep®-SLipY and because ||f|, <

| f]], it follows that

Fp(f) (@) < F(f) (), zeX,
where

F(f) (@) = nf{f @) + /1] 2° (= = y)}-

If f €p-SLipY, then —f €p-SLipY and

Fy(=f) (@) < F(=f)(z),z € X.
But

Fp (=f) (@) = inf{=f () +[| = flop (+ = 9)}

= —;gg{f(y) — || = flpp (z — y)}
= —Sgg{f(y) == flgp(z —y)}
=—G5(f) (2),

for every xz € X.
Analogously, if f €p-SLipY, then —f €p-SLipY’, and

Fr(—f)(x) = =G, (f) (x), VYazeX.
If G (f) (z) = supyey {f (y) — || = fIl p* (z — )}, then
F(~f)(z)=~-G(f)(z), z€X,
and then
~Gy(f) (x) < ~G(f) (),

and
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It follows that, if f ep-SLipY, then
G(f)<Gp(f) < Fp(f) <F(f) on X,
and for f ep-SLipY’,

G(f)<Gp(f) < Fp(f) < F(f) on X.

5) Let Y be a subspace of asymmetric normed space (X,p) and let g
a bounded linear functional <g00 € Y;’) . By Proposition 3.1 [4] there exists
Y E Xg such that

¢ly = o and [[¢]p = [[¢olp-
Let
E, (o) = {v € X : ¢ly = wo and [l = [Ivoly}

be the set of all extensions of ¢ which preserves the asymmetric norm ||g|,.

In this case Ypb Cp-SLipgY and for every ¢ € E, (¢o) the following inequal-
ities hold:

Gp () (2) < ¢ (2) < Fp(p) (), zeX.
If pg € Ypb but ¢o ¢ Yg’, then

w0 (B* (0,1)) = (=00, 7[l¢olp), 7> 0.
If g € Y%’ but g ¢ Y;:, then

o (B™(0,7)) = (=00, 7[tolp), > 0.
IfgoeY%’ﬂ};b’,then

o (B Or) —rllglp rllelp), T >0,
¢ (B~ (0,7)) = (=7|l¢lp, 7lllp), > 0. 0

ExXAMPLE 1. [I1] (see also [9]) Let (R, u) be the asymmetric normed space
with u (a) = max {a,0},a € R. Then @ (a) = max{—a,0} and v® (a) = |a|, a €
R. Let Y =[-1,2]and f: Y = R, f(y) = 4y — y>. Because f (y1) — f (y2) <
6 max{y; —y2,0} for all y1,y2 € [—1,2], it follows that f €u-SLipY and ||f|, =
6. Then the functions

-5, x € (—o0,—1),
F,(f)(z)= { dr — 2%, z€[-1,2],
6r—8, x€(2,00)
and
6x+1, x¢€(—o0,—1),
Gu (f) (l’) = { dx _$27 S [_172}7
4, x € (2,00)
are the maximal and minimal extensions of f on (R, u) with the asymmetric
norms
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If one considers the normed space (R, u*), then the functions
F(f) (@)= inf {f(y)+6lx—yl}, zeR,
yE[—l,Q}

G(f)(x)= sup {f(y)+6lz—yl}, zeR
y€([—1,2]

are Lipschtiz extensions for f and
G(f) (@) <Gu(f) (@) < Fu(f)(x) < F(f)(x), z€R
4. APPLICATION

Let (X, p) be an asymetric normed space, and p*-SLipgX the normed space
of all p*-Lipschitz real functions on X, vanishing at 0 € X, with the norm
defined by (6).

If Y is a subset of X with 0 € Y let also the normed space p*-SLipgY’, with
the norm ||| .

By the McShane theorem [6] for every f €p®-SLipoY there exists at least
one function F' €p®-SLippX such that F|y = f and || F| = || f]] .

Let also

Yyt = {G € p*-SLipp X : G‘y = 0},
the annihilator of Y with respect to p*-SLipoX.

Consider the following best approximation problem: for F' €p®-SLipgX, find
an element Go € Y1 such that

|F = Gol =d(F,y) =inf {|F - G| : Ge Y}

An element Gy € Y=+ such that the above infimum is attained is called best
approximation element for F in Y. If every F' €p*-SLipoX has at least a best
approximation element, then Y+ is called proximinal.

The following result appears in [7] (see also [§]).

PROPOSITION 5. In the above notations, the following properties hold:
(a)
d(F,Y") =||Fly|, VF € p*-SLipoX;
(b) the set of all best approximation elements of F in Y+ is F—Eps(Fly,Y),
where Eys(Fly,Y) = {H € p*-SLippX : H|y = Fly and ||H| =
IF Ty I}

Proof. (a) Let F €p*-SLipgY. Then for every G € Y4, |Fly| =
|Fly — Gly| < ||F —G||, and taking the infimum with respect to G € Y+ one
obtains

IFly] < d(FY™).
For F|y, by the McShane theorem [6], there exists H € Eps(F|y,Y’) such that
Fly = H|y and |H| = ||F|y|| - Then

IFIyll = |IF = (F — H)| > d(F,Y™).
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(b) Obviously, for every best approximation element G of F in Y+,
(F' = Go)ly = Fly and ||[F = Gol| = [|F|y |l
It follows that F' — Go € F — E,s(Fly,Y), and so Gy € F — E,s(Fly,Y).

Let now Gy € F — Eps(F|y,Y). Then there exists H € E,s(Fly,Y) such
that Go = F' — H. But then

|F = Goll = | H]| = | Flyll = d(F,Y). m
REMARK 2. If F' €p-SLipgX then || F|| = ||F'|, and F|y €p-SLipyY, ||F|y|| =
[Elylp = [l = Flv |5
It then follows
d(F, YY) =d(-F, YY) = | Fly|,, VF € p-SLipoX. O
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