ON THE EXTENSION OF SEMI-LIPSCHITZ FUNCTIONS ON ASYMMETRIC NORMED SPACES

COSTICĂ MUSTĂŢA*

Abstract

Extension theorems for semi-Lipschitz functions and some properties of these extensions useful in approximation problems are presented. As illustration, a such problem is considered.

MSC 2000. 46A22, 26A16,41A50.
Keywords. Spaces with asymmetric seminorm, semi-Lipschitz function, extension and approximation.

1. PRELIMINARIES

Let X be a real linear space. A function $p: X \rightarrow[0, \infty)$ is called an asymmetric seminorm [2] if the following conditions hold for all $x, y \in X$:

$$
\begin{align*}
p(x) & \geq 0 \tag{AN1}\\
p(t x) & =t p(x), \quad t \geq 0 \tag{AN2}\\
p(x+y) & \leq p(x)+p(y)
\end{align*}
$$

The function $\bar{p}: X \rightarrow[0, \infty)$ defined by $\bar{p}(x)=p(-x), x \in X$, is also an asymmetric seminorm on X, called the conjugate seminorm to p. The functional

$$
p^{s}(x)=\max \{p(x), p(-x)\}, \quad x \in X
$$

is a seminorm on X. If p^{s} is a norm on X, then p is called an asymmetric norm. The term "asymmetric" is motivated by the fact that it is possible that $p(x) \neq p(-x)$ for some $x \in X$.

A pair (X, p) where X is a real linear space and p an asymmetric seminorm on X, is called an asymmetric seminormed space, respectively asymmetric normed space if p is an asymmetric norm on X. Some properties of such spaces are given in [3], 4], and the references therein.

An example is the following: let \mathbb{R} be the set of the real numbers and u : $\mathbb{R} \rightarrow[0, \infty), u(a)=\max \{a, 0\}, a \in \mathbb{R}$. Then the function u is an asymmetric norm on \mathbb{R}. The conjugate $\bar{u}: \mathbb{R} \rightarrow[0, \infty), \bar{u}(a)=u(-a), a \in \mathbb{R}$, is another

[^0]asymmetric norm on \mathbb{R}, because the function $u^{s}(a)=\max \{u(a), u(-a)\}=|a|$, $a \in \mathbb{R}$, is a norm on \mathbb{R} (see [4], [5]).

If (X, p) is an asymmetric seminormed space, one considers the following topologies on X :
(1) The topology τ_{p} generated by the families of forward open balls $B^{+}(x, \varepsilon)=\{z \in X: p(z-x)<\varepsilon\}, x \in X, \varepsilon>0 ;$
(2) The topology $\tau_{\bar{p}}$ generated by the families of backward open balls $B^{-}(x, \varepsilon)=\{z \in X: p(x-z)<\varepsilon\}, x \in X, \varepsilon>0 ;$
(3) The topology τ generated by the open balls $B(x, \varepsilon)=\{z \in X$: $\left.p^{s}(x-z)<\varepsilon\right\}=B^{+}(x, \varepsilon) \cap B^{-}(x, \varepsilon), x \in X, \varepsilon>0$.
For details on these topologies, see [1] and [3].

2. THE CONES OF SEMI-LIPSCHITZ FUNCTIONS

Let (X, p) be an asymmetric seminormed space and Y a subset of X. A function $f: Y \rightarrow \mathbb{R}$ is called p-semi-Lipschitz if there exists a constant $K \geq 0$ such that

$$
\begin{equation*}
f(u)-f(v) \leq K p(u-v) \tag{1}
\end{equation*}
$$

for all $u, v \in X$, (see [13]). Observe that a p-semi-Lipschitz function is upper semicontinuous.

The set of all p-semi-Lipschitz functions on Y is denoted by symbol p-SLip Y, i.e.

$$
\begin{equation*}
p-\mathrm{SLip} Y:=\{f: Y \rightarrow \mathbb{R}, f \text { is p-semi-Lipschitz }\} \tag{2}
\end{equation*}
$$

If $f \in p$-SLip Y, then the nonnegative number

$$
\begin{equation*}
\|\left. f\right|_{p}=\sup \left\{\frac{(f(u)-f(v)) \vee 0}{p(u-v)}: u, v \in Y, p(u-v)>0\right\} \tag{3}
\end{equation*}
$$

is the smallest p-semi-Lipschitz constant for F, i.e. the following inequality holds:

$$
f(u)-f(v) \leq \|\left. f\right|_{p} p(u-v),
$$

for all $u, v \in Y$ (see [10]).
The set p-SLip Y is closed with respect to pointwise addition of functions, and with respect to multiplication of a function by nonnegative scalar, i.e. $p-\mathrm{SLip} Y$ is a cone.

The functional $\|\left.\cdot\right|_{p}: p$-SLip $Y \rightarrow[0, \infty)$ defined by (3) verifies the properties (AN1)-(AN3) of an asymmetric seminorm.

Analogously, a function $f: Y \rightarrow \mathbb{R}$ is called \bar{p}-semi-Lipschitz if there exists $Q \geq 0$ such that

$$
\begin{equation*}
f(u)-f(v) \leq Q \bar{p}(u-v)=Q p(v-u) \tag{4}
\end{equation*}
$$

for all $u, v \in Y$.
The smallest constant Q in (4) is denoted by $\left||f|_{\bar{p}}\right.$ and the set of all \bar{p} -semi-Lipschitz functions on Y is denoted by symbol \bar{p}-SLip Y. The functional
$\|\left.\cdot\right|_{\bar{p}}: \bar{p}$-SLip $Y \rightarrow[0, \infty)$ defined by an expression analogue with (3) is an asymmetric norm on the cone $\bar{p}-\operatorname{SLip} Y$.

The function $f: Y \rightarrow \mathbb{R}$ is called p^{s}-Lipschitz if there exits $M \geq 0$ such that

$$
\begin{equation*}
|f(u)-f(v)| \leq M p^{s}(u-v) \tag{5}
\end{equation*}
$$

for all $u, v \in Y$.
The set of all p^{s}-Lipschitz functions on Y is denoted by symbol p^{s} - $\operatorname{SLip} Y$. With respect to pointwise addition of functions and multiplication of functions by real numbers, the set p^{s} - $\mathrm{SLip} Y$ is a linear space.

The functional $\|\cdot\|: p^{s}-\operatorname{SLip} Y \rightarrow[0, \infty)$,

$$
\begin{equation*}
\|f\|=\sup \left\{\frac{|f(u)-f(v)|}{p^{s}(u-v)}: u, v \in Y, p^{s}(u-v)>0\right\} \tag{6}
\end{equation*}
$$

is a seminorm on linear space p^{s} - $\operatorname{SLip} Y$.
Proposition 1. Let (X, p) be an asymmetric seminormed space and Y a subset of X. Then
a) The sets $p-S L i p Y$ and \bar{p}-SLip Y are convex cones in the space $p^{s}-\mathrm{SLip} Y$;
b) The function f is in p-SLip Y if and only if $-f$ is in \bar{p}-SLip Y. For every $f \in p$-SLip Y, the following equality holds:

$$
\left\|\left.f\right|_{p}=\right\|-\left.f\right|_{\bar{p}}=\|f\|
$$

Proof. a) Let f in p-SLip Y. Then

$$
f(u)-f(v) \leq\left.\left\|\left.f\right|_{p} p(u-v) \leq\right\| f\right|_{p} p^{s}(u-v),
$$

for all $u, v \in Y$.
Changing the place of u and v, we obtain

$$
f(v)-f(u) \leq\left.\left\|\left.f\right|_{p} p(v-u)=\right\| f\right|_{p} \bar{p}(u-v) \leq \|\left. f\right|_{p} p^{s}(u-v)
$$

for all $u, v \in Y$. It follows that

$$
|f(u)-f(v)| \leq\left||f|_{p} p^{s}(u-v)\right.
$$

for all $u, v \in Y$. Consequently $f \in p^{s}$-SLip Y (and $\|f\|=\|\left. f\right|_{p}$).
If $f \in \bar{p}$-SLip Y, one obtains

$$
|f(u)-f(v)| \leq\left||f|_{p} p^{s}(u-v)\right.
$$

for all $u, v \in Y$, i.e. $f \in \bar{p}$ - $\operatorname{SLip} Y$, (it follows $\|f\|=\|\left. f\right|_{\bar{p}}$).
b) Let $f \in p-\operatorname{SLip} Y$. By $f(u)-f(v) \leq\left||f|_{p} p(u-v)\right.$, for all $u, v \in Y$, it follows

$$
(-f)(v)-(-f)(u) \leq\left.\left\|\left.f\right|_{p} p(u-v)=\right\| f\right|_{p} \bar{p}(v-u)
$$

and then $-f \in \bar{p}$-SLip Y. Moreover, it follows that $\|-\left.f\right|_{\bar{p}} \leq\left||f|_{p}\right.$. Analogously, $f \in \bar{p}$-SLip Y implies

$$
(-f)(v)-(-f)(u) \leq\left||f|_{\bar{p}} \bar{p}(u-v)=\| f\right|_{\bar{p}} p(v-u),
$$

for all $u, v \in Y$. Consequently $-f \in p$-SLip Y and $\|-\left.f\right|_{p} \leq\left||f|_{\bar{p}}\right.$.

Observe that for $f \in p$-SLip Y,

$$
\left\|\left.f\right|_{p}=\right\|-\left.(-f)\right|_{p} \leq \|-\left.f\right|_{\bar{p}}
$$

and for $f \in \bar{p}$-SLip Y, one obtains

$$
\left\|\left.f\right|_{\bar{p}}=\right\|-\left.(-f)\right|_{\bar{p}} \leq \|-\left.f\right|_{p}
$$

Finally, it follows

$$
\left\|\left.f\right|_{p}=\right\|-\left.f\right|_{\bar{p}}, \forall f \in p-\operatorname{SLip} Y
$$

and

$$
\left\|\left.f\right|_{\bar{p}}=\right\|-\left.f\right|_{p}, \forall f \in \bar{p}-\operatorname{SLip} Y
$$

Remarks. 1) By Proposition 1, a) it follows that for $f \in p-\operatorname{SLip} Y$, $(g \in \bar{p}$-SLip $Y)$ one obtains $\left\|\left.f\right|_{p}=\right\| f \|$, (respectively $\left.\left\|\left.g\right|_{\bar{p}}=\right\| g \|\right)$ and consequently

$$
f \in p-\operatorname{SLip} Y \cap \bar{p}-\left.\operatorname{SLip} Y \Rightarrow| | f\right|_{p}=\left\|\left.f\right|_{\bar{p}}=\right\| f \|
$$

2) Let y_{0} be a fixed element in Y. Denote

$$
\begin{aligned}
p^{s}-\operatorname{SLip}_{0} Y & :=\left\{f \in p^{s}-\operatorname{Lip} Y, f\left(y_{0}\right)=0\right\} \\
p-\operatorname{SLip}_{0} Y & :=\left\{f \in p-\operatorname{SLip} Y, f\left(y_{0}\right)=0\right\} \\
\bar{p}-\operatorname{SLip}_{0} Y & :=\left\{f \in \bar{p}-\operatorname{SLip} Y, f\left(y_{0}\right)=0\right\} .
\end{aligned}
$$

If $f \in p^{s}-\operatorname{SLip}_{0} Y$, then $\|f\|=0$ implies $f \equiv 0$. It follows that $f \in p-\operatorname{SLip}_{0} Y \cap$ $\bar{p}-\operatorname{SLip}_{0} Y$ implies $f \equiv 0$ and $\|\left. f\right|_{p},\left||f|_{\bar{p}}\right.$ are asymmetric norms on $p-\operatorname{SLip}_{0} Y$ and $\bar{p}-\mathrm{SLip}_{0} Y$ respectively.
3) Let Y be a subspace of asymmetric normed space (X, p) and $\varphi: Y \rightarrow \mathbb{R}$ a linear functional. If (\mathbb{R}, u) is the asymmetric normed space with asymmetric norm $u(a)=\max \{a, 0\}, a \in \mathbb{R}$ and τ_{u} is the topology associated to u, then the functional $\varphi: Y \rightarrow \mathbb{R}$ is called (p, u)-continuous if it is continuous in the topologies τ_{p} and τ_{u}.

The linear functional $\varphi:(Y, p) \rightarrow(\mathbb{R}, u)$ is called p-bounded if there exists $L \geq 0$ such that

$$
\varphi(y) \leq L p(y)
$$

for every $y \in Y$.
The functional $\varphi:(Y, p) \rightarrow(\mathbb{R}, u)$ is (p, u)-continuous if and only if φ is p-bounded, (see [4]).

Every p-bounded linear functional on Y is p-semi-Lipschitz on Y.
Denote by Y_{p}^{b} the set of all p-bounded functionals on Y. Then $Y_{p}^{b} \subset p-\operatorname{SLip}_{0} Y$ (here $y_{0}=0$), and for $\varphi \in Y_{p}^{b}$,

$$
\begin{equation*}
\|\left.\varphi\right|_{p}=\sup _{y \neq 0} \frac{\varphi(y)}{p(y)}=\sup \{\varphi(y): y \in Y, p(y) \leq 1\} \tag{7}
\end{equation*}
$$

The functional $\|\left.\cdot\right|_{p}: Y_{p}^{b} \rightarrow[0, \infty)$ defined by (7) is an asymmetric norm, and the pair $\left(Y_{p}^{b}, \|\left.\cdot\right|_{p}\right)$ is called asymmetric dual cone of (Y, p) [5].

3. EXTENSION RESULTS

Let Y be a subset of asymmetric normed space (X, p). The function f : $Y \rightarrow \mathbb{R}$ is called bounded on Y if there exists the numbers $m, M \in \mathbb{R}$ such that

$$
m \leq f(y) \leq M,
$$

for every $y \in Y$.
Proposition 2. Let (X, p) be an asymmetric normed space, Y a subset of X and $f: Y \rightarrow \mathbb{R}$ a bounded function. Let also $K \geq 0$ be arbitrary, but fixed. Then the functions $F_{p}(f), G_{p}(f): X \rightarrow \mathbb{R}$ defined by the formulas

$$
\begin{array}{ll}
F_{p}(f)(x) & =\inf _{y \in Y}\{f(y)+K p(x-y)\}, \\
G_{p}(f)(x) & =\sup _{y \in Y}\{f(y)-K p(y-x)\}, \\
& x \in X,
\end{array}
$$

satisfy the following relations:
(a)

$$
F_{p}(f)(y) \leq f(y) \leq G_{p}(f)(y), \quad \forall y \in Y,
$$

(b)

$$
F_{p}(f)\left(x_{1}\right)-F_{p}(f)\left(x_{2}\right) \leq K p\left(x_{1}-x_{2}\right), \forall x_{1}, x_{2} \in X,
$$

$$
\begin{equation*}
G_{p}(f)\left(x_{1}\right)-G_{p}(f)\left(x_{2}\right) \leq K p\left(x_{1}-x_{2}\right), \quad \forall x_{1}, x_{2} \in X \tag{c}
\end{equation*}
$$

Proof. Let $f: Y \rightarrow \mathbb{R}$ and $m, M \in \mathbb{R}$ such that $m \leq f(y) \leq M$ for every $y \in Y$. It follows

$$
m \leq f(y)+K p(x-y), \forall y \in Y, \forall x \in X
$$

and

$$
M \geq f(y)-K p(y-x), \forall y \in Y, \forall x \in X
$$

Consequently, the set $\{f(y)+K p(x-y) \mid y \in Y\}$ is bounded from below for every $x \in X$ and the set $\{f(y)-K p(y-x) \mid y \in Y\}$ is bounded from above for every $x \in X$. Then the functions $F_{p}(f)$ and $G_{p}(f)$ are well defined on X.
a) Let $y_{0} \in Y$ be fixed. For every $x \in X$,

$$
\inf _{y \in Y}\{f(y)+K p(x-y)\} \leq f\left(y_{0}\right)+K p\left(x-y_{0}\right),
$$

and for $x=y_{0}$ it follows that

$$
F_{p}(f)\left(y_{0}\right) \leq f\left(y_{0}\right) .
$$

Analogously,

$$
\sup _{y \in Y}\{f(y)-K p(y-x)\} \geq f\left(y_{0}\right)-K p\left(y_{0}-x\right)
$$

and for $x=y_{0}$, we obtain

$$
f\left(y_{0}\right) \leq G_{p}(f)\left(y_{0}\right) .
$$

Because y_{0} is arbitrary in Y it follows that

$$
F_{p}(f)(y) \leq f(y) \leq G_{p}(f)(y),
$$

for every $y \in Y$.
b) Let $x_{1}, x_{2} \in X$. Because for every $y \in Y$ we have

$$
\begin{aligned}
0 & \leq p\left(x_{1}-y\right) \\
& =p\left(x_{1}-x_{2}+x_{2}-y\right) \\
& \leq p\left(x_{1}-x_{2}\right)+p\left(x_{2}-y\right),
\end{aligned}
$$

it follows the inequality

$$
f(y)+K p\left(x_{1}-y\right) \leq f(y)+K p\left(x_{1}-x_{2}\right)+K p\left(x_{2}-y\right),
$$

and taking the infimum with respect to $y \in Y$ one obtain

$$
F_{p}(f)\left(x_{1}\right) \leq F_{p}(f)\left(x_{2}\right)+K p\left(x_{1}-x_{2}\right) .
$$

Then

$$
F_{p}(f)\left(x_{1}\right)-F_{p}(f)\left(x_{2}\right) \leq K p\left(x_{1}-x_{2}\right),
$$

for every $x_{1}, x_{2} \in X$.
c) Using the inequalities

$$
\begin{aligned}
0 & \leq p\left(y-x_{2}\right)=p\left(y-x_{1}+x_{1}-x_{2}\right) \leq \\
& \leq p\left(y-x_{1}\right)+p\left(x_{1}-x_{2}\right),
\end{aligned}
$$

one obtains

$$
f(y)-K p\left(y-x_{2}\right) \geq f(y)-K p\left(y-x_{1}\right)-K p\left(x_{1}-x_{2}\right)
$$

and taking the supremum with respect to $y \in Y$ we obtain

$$
G_{p}(f)\left(x_{1}\right)-G_{p}(f)\left(x_{2}\right) \leq K p\left(x_{1}-x_{2}\right) .
$$

A subset Y of an asymmetric normed space (X, p) is called p-bounded, (\bar{p} bounded) if there exists $M \geq 0(Q \geq 0)$ such that

$$
p(u-v) \leq M \quad(\bar{p}(u-v) \leq Q),
$$

for all $u, v \in Y$.
The set Y is called (p, \bar{p})-bounded if it is both p-bounded and \bar{p}-bounded.
Proposition 3. If Y is a (p, \bar{p})-bounded set of an asymmetric normed space (X, p) and $f \in p$-SLip Y, then f is bounded.

Proof. Let $y_{0} \in Y$ be fixed. For every $y \in Y, f(y)-f\left(y_{0}\right) \leq \|\left. f\right|_{p} p\left(y-y_{0}\right)$, implies $f(y) \leq f\left(y_{0}\right)+\|\left. f\right|_{p} p\left(y-y_{0}\right)$.

Analogously,

$$
f\left(y_{0}\right)-f(y) \leq\left||f|_{p} p\left(y_{0}-y\right)=\left||f|_{p} \bar{p}\left(y-y_{0}\right),\right.\right.
$$

for every $y \in Y$. Then

$$
f\left(y_{0}\right)-\left||f|_{p} \bar{p}\left(y-y_{0}\right) \leq f(y) \leq f\left(y_{0}\right)+\left||f|_{p} p\left(y-y_{0}\right),\right.\right.
$$

and because Y is (p, \bar{p})-bounded, it follows that f is bounded.
Remark 1. By Proposition 1, it follows that every $g \in \bar{p}$-SLip Y is bounded, if Y is (p, \bar{p})-bounded. For the symmetric case of Proposition 2, see [12].

Proposition 4. Let (X, p) be an asymmetric normed space, $Y a(p, \bar{p})$ bounded subset of X and $f \in p-\operatorname{SLip} Y$. Let $\|\left. f\right|_{p}$ the smallest semi-Lipschitz constant of f. Then the functions $F_{p}(f), G_{p}(f): X \rightarrow \mathbb{R}$ defined as in Proposition 2 with $K=\|\left. f\right|_{p}$ satisfy the following properties:
a) $G_{p}(f)(x) \leq F_{p}(f)(x), x \in X$,
b) $G_{p}(f)(y)=f(y)=F_{p}(f)(y), y \in Y$,
c) $\left|\left|G_{p}(f)\right|_{p}=\left\|\left.f\right|_{p}=\right\| G_{p}(f)\right|_{p}$,
d) If $g: X \rightarrow \mathbb{R}$ and $g \in p$-SLip X verifies $\left.g\right|_{Y}=f$ and $\left.\left\|\left.f\right|_{p}=\right\| g\right|_{p}$,
then

$$
G_{p}(f)(x) \leq g(x) \leq F_{p}(f)(x)
$$

for every $x \in X$.
Proof. a) For Every $u, v \in Y$ and $x \in X$, the following inequalities are fulfilled:

$$
f(u)-f(v) \leq\left||f|_{p} p(u-v) \leq\left\|\left.f\right|_{p} p(u-x)+\right\| f\right|_{p} p(x-v) .
$$

Then

$$
f(u)-\left||f|_{p} p(u-x) \leq f(v)+p(x-v) .\right.
$$

Taking the infimum with respect to $v \in Y$ and then with respect to $u \in Y$, we obtain

$$
G_{p}(f)(x) \leq F_{p}(f)(x),
$$

for every $x \in X$.
b) It follows from Proposition 2 a), Proposition 3 and the previous inequality of a).
c) The following inequalities are obvious:

$$
\left.\left\|\left.G_{p}(f)\right|_{p} \geq\right\| f\right|_{p} \text { and }\left.\left\|\left.F_{p}(f)\right|_{p} \geq\right\| f\right|_{p}
$$

Let now $x_{1}, x_{2} \in X$ and $\varepsilon>0$. Selecting $y \in Y$ such that

$$
F_{p}(f)\left(x_{1}\right) \geq f(y)+\|\left. f\right|_{p} p\left(x_{1}-y\right)-\varepsilon
$$

one obtains:

$$
\begin{aligned}
& F_{p}(f)\left(x_{2}\right)-F_{p}(f)\left(x_{1}\right) \leq \\
& \leq f(y)+\|\left. f\right|_{p} p\left(x_{2}-y\right)-\left(f(y)+\|\left. f\right|_{p} p\left(x_{1}-y\right)-\varepsilon\right) \\
& =\|\left. f\right|_{p}\left[p\left(x_{2}-y\right)-p\left(x_{1}-y\right)\right]+\varepsilon \\
& \leq \|\left. f\right|_{p} p\left(x_{2}-x_{1}\right)
\end{aligned}
$$

(since $p\left(x_{2}-y\right)-p\left(x_{1}-y\right) \leq p\left(x_{2}-x_{1}\right) \Longleftrightarrow p\left(x_{2}-y\right)=p\left(x_{2}-x_{1}+x_{1}-\right.$ $\left.y) \leq p\left(x_{2}-x_{1}\right)+p\left(x_{1}-y\right)\right)$.

The number $\varepsilon>0$ being arbitrarily chosen, it follows

$$
F_{p}(f)\left(x_{2}\right)-F_{p}(f)\left(x_{1}\right) \leq \|\left. f\right|_{p} p\left(x_{2}-x_{1}\right)
$$

for all $x_{1}, x_{2} \in X$, and then $\left.\left\|\left.F_{p}(f)\right|_{p} \leq\right\| f\right|_{p}$.

Analogously, we obtain $\|\left. G_{p}(f)\right|_{p} \leq\left||f|_{p}\right.$, and consequently

$$
\left.\left\|\left.G_{p}(f)\right|_{p}=\right\| f\right|_{p}=\|\left. F_{p}(f)\right|_{p}
$$

d) Let $g \in p$-SLip X such that $\left.g\right|_{Y}=f$, and $\left||g|_{p}=\left||f|_{p}\right.\right.$. For every $y \in Y$ and $x \in X$ we have

$$
f(y)-g(x)=g(y)-g(x) \leq \|\left. g\right|_{p} p(y-x),
$$

and then

$$
f(y)-\|\left. g\right|_{p} p(y-x) \leq g(x) .
$$

Taking the supremum with respect to $y \in Y$ we obtain

$$
G_{p}(f)(x) \leq g(x),
$$

for every $x \in X$.
Analogously,

$$
g(x)-f(y)=g(x)-g(y) \leq\left.\left\|\left.g\right|_{p} p(x-y)=\right\| f\right|_{p} p(x-y),
$$

implies

$$
g(x) \leq f(y)+\left||f|_{p} p(x-y)\right.
$$

and taking the infimum with respect to $y \in Y$, it follows

$$
g(x) \leq F_{p}(f)(x),
$$

for every $x \in X$.
Remarks. 1) In Proposition 4 the condition " Y is a (p, \bar{p})-bounded set" is not necessary.

Indeed, for a nonvoid set Y and $f \in p$-SLip Y, the functions $F_{p}(f)$ and $G_{p}(f)$ are well defined. For this, let $y_{0} \in Y$ and $x \in X$. For every $y \in Y$,

$$
\begin{aligned}
f(y)+\|\left. f\right|_{p} p(x-y) & =f\left(y_{0}\right)+\left||f|_{p} p(x-y)-\left(f\left(y_{0}\right)-f(y)\right)\right. \\
& \geq f\left(y_{0}\right)+\left||f|_{p} p(x-y)-p\left(y_{0}-y\right)\right] \\
& =f\left(y_{0}\right)-\left||f|_{p}\left[p\left(y_{0}-y\right)-p(x-y)\right] .\right.
\end{aligned}
$$

But $p\left(y_{0}-y\right)-p(x-y) \leq p\left(y_{0}-x\right)=\bar{p}\left(x-y_{0}\right)$, and then the set $\{f(y)+$ $\left.\|\left. f\right|_{p} p(x-y): y \in Y\right\}$ is bounded below and there exists

$$
F_{p}(f)(x)=\inf _{y \in Y}\left\{f(y)+\left||f|_{p} p(x-y)\right\},\right.
$$

for every $x \in X$.
Analogously, the function

$$
G_{p}(f)(x)=\sup _{y \in Y}\left\{f(y)-\|\left. f\right|_{p} p(y-x)\right\}
$$

is well defined for every $x \in X$.
2) A proposition similar to Proposition 4 is valid for the functions of cone \bar{p}-SLip Y.
3) For $f \in p-\operatorname{SLip} Y(f \in \bar{p}-\operatorname{SLip} Y)$ let

$$
E_{p}(f, Y)=\left\{g \in p-\operatorname{SLip} X:\left.g\right|_{Y}=f \text { and }\left.\left\|\left.g\right|_{p}=\right\| f\right|_{p}\right\}
$$

and respectively

$$
E_{\bar{p}}(f, Y)=\left\{h \in \bar{p}-\operatorname{SLip} X:\left.h\right|_{Y}=f \text { and }\left.\left\|\left.h\right|_{\bar{p}}=\right\| f\right|_{\bar{p}}\right\},
$$

the sets of extensions preserving the asymmetric seminorms $\|\left. f\right|_{p}$ (respectively $\left.\|\left. f\right|_{p}\right)$. We have the following inclusions:

$$
\begin{aligned}
& E_{p}(f, Y) \subset S^{+}\left(0, \|\left. f\right|_{p}\right)=\left\{g \in p-\operatorname{SLip} X:\left.\left\|\left.g\right|_{p}=\right\| f\right|_{p}\right\} \\
& E_{\bar{p}}(f, Y) \subset S^{-}\left(0, \|\left. f\right|_{p}\right)=\left\{h \in \bar{p}-\operatorname{SLip} X:\left.\left\|\left.h\right|_{\bar{p}}=\right\| f\right|_{\bar{p}}\right\} .
\end{aligned}
$$

4) By Theorem of McShane [6], for every $f \in p^{s}$-SLip Y there exists $F \in p^{s}$-SLip X, such that

$$
\left.F\right|_{Y}=f \text { and }\|F\|=\|f\|,
$$

where $\|f\|$ is defined by formulas (6) and $\|F\|$ analogously.
Denote by

$$
E_{p^{s}}(f, Y)=\left\{F \in p^{s}-\operatorname{SLip} X:\left.F\right|_{Y}=f \text { and }\|F\|=\|f\|\right\}
$$

the set of all extensions of $f \in p^{s}$-SLip Y preserving the Lipschitz constant $\|f\|$.
By Proposition 1, if $f \in p$-SLip Y, then $f \in p^{s}$-SLip Y and because $\|\left. f\right|_{p} \leq$ $\|f\|$, it follows that

$$
F_{p}(f)(x) \leq F(f)(x), \quad x \in X,
$$

where

$$
F(f)(x)=\inf _{y \in Y}\left\{f(y)+\|f\| p^{s}(x-y)\right\} .
$$

If $f \in \bar{p}$-SLip Y, then $-f \in p$-SLip Y and

$$
F_{p}(-f)(x) \leq F(-f)(x), x \in X
$$

But

$$
\begin{aligned}
F_{p}(-f)(x) & =\inf _{y \in Y}\left\{-f(y)+\|-\left.f\right|_{p} p(x-y)\right\} \\
& =-\sup _{y \in Y}\left\{f(y)-\|-\left.f\right|_{p} p(x-y)\right\} \\
& =-\sup _{y \in Y}\left\{f(y)-\|-\left.f\right|_{\bar{p}} \bar{p}(x-y)\right\} \\
& =-G_{\bar{p}}(f)(x),
\end{aligned}
$$

for every $x \in X$.
Analogously, if $f \in p$-SLip Y, then $-f \in \bar{p}$-SLip Y, and

$$
F_{\bar{p}}(-f)(x)=-G_{p}(f)(x), \quad \forall x \in X .
$$

If $G(f)(x)=\sup _{y \in Y}\left\{f(y)-\|-f\| p^{s}(x-y)\right\}$, then

$$
F(-f)(x)=-G(f)(x), \quad x \in X,
$$

and then

$$
-G_{\bar{p}}(f)(x) \leq-G(f)(x),
$$

and

$$
G(f)(x) \leq G_{\bar{p}}(f)(x), \quad x \in X .
$$

It follows that, if $f \in p$-SLip Y, then

$$
G(f) \leq G_{p}(f) \leq F_{p}(f) \leq F(f) \text { on } X,
$$

and for $f \in \bar{p}$-SLip Y,

$$
G(f) \leq G_{\bar{p}}(f) \leq F_{\bar{p}}(f) \leq F(f) \text { on } X \text {. }
$$

5) Let Y be a subspace of asymmetric normed space (X, p) and let φ_{0} a bounded linear functional $\left(\varphi_{0} \in Y_{p}^{b}\right)$. By Proposition 3.1 [4] there exists $\varphi \in X_{p}^{b}$ such that

$$
\left.\varphi\right|_{Y}=\varphi_{0} \text { and } \|\left.\varphi\right|_{p}=\left|\left|\varphi_{0}\right|_{p} .\right.
$$

Let

$$
E_{p}\left(\varphi_{0}\right)=\left\{\varphi \in X_{p}^{b}:\left.\varphi\right|_{Y}=\varphi_{0} \text { and }\left.\left\|\left.\varphi\right|_{p}=\right\| \varphi_{0}\right|_{p}\right\}
$$

be the set of all extensions of φ_{0} which preserves the asymmetric norm $\|\left.\varphi_{0}\right|_{p}$.
In this case $Y_{p}^{b} \subset p$ - $\operatorname{SLip}_{0} Y$ and for every $\varphi \in E_{p}\left(\varphi_{0}\right)$ the following inequalities hold:

$$
G_{p}(\varphi)(x) \leq \varphi(x) \leq F_{p}(\varphi)(x), \quad x \in X .
$$

If $\varphi_{0} \in Y_{p}^{b}$ but $\varphi_{0} \notin Y_{\bar{p}}^{b}$, then

$$
\varphi_{0}\left(B^{+}(0, r)\right)=\left(-\infty, r \|\left.\varphi_{0}\right|_{p}\right), \quad r>0 .
$$

If $\psi_{0} \in Y_{\bar{p}}^{b}$ but $\psi_{0} \notin Y_{p}^{b}$, then

$$
\psi_{0}\left(B^{-}(0, r)\right)=\left(-\infty, r \| \psi_{0} \mid \bar{p}\right), \quad r>0 .
$$

If $\varphi \in Y_{\bar{p}}^{b} \cap Y_{p}^{b}$, then

$$
\begin{aligned}
\varphi\left(B^{+}(0, r)\right) & =\left(-\left.r\left\|\left.\varphi\right|_{\bar{p}}, r\right\| \varphi\right|_{p}\right), & r>0, \\
\varphi\left(B^{-}(0, r)\right) & =\left(-\left.r\left\|\left.\varphi\right|_{p}, r\right\| \varphi\right|_{\bar{p}}\right), & r>0 .
\end{aligned}
$$

Example 1. [11] (see also [9) Let (\mathbb{R}, u) be the asymmetric normed space with $u(a)=\max \{a, 0\}, a \in \mathbb{R}$. Then $\bar{u}(a)=\max \{-a, 0\}$ and $u^{s}(a)=|a|, a \in$ \mathbb{R}. Let $Y=[-1,2]$ and $f: Y \rightarrow \mathbb{R}, f(y)=4 y-y^{2}$. Because $f\left(y_{1}\right)-f\left(y_{2}\right) \leq$ $6 \max \left\{y_{1}-y_{2}, 0\right\}$ for all $y_{1}, y_{2} \in[-1,2]$, it follows that $f \in \bar{u}$-SLip Y and $\|\left. f\right|_{u}=$ 6 . Then the functions

$$
F_{u}(f)(x)= \begin{cases}-5, & x \in(-\infty,-1), \\ 4 x-x^{2}, & x \in[-1,2], \\ 6 x-8, & x \in(2, \infty)\end{cases}
$$

and

$$
G_{u}(f)(x)= \begin{cases}6 x+1, & x \in(-\infty,-1), \\ 4 x-x^{2}, & x \in[-1,2], \\ 4, & x \in(2, \infty)\end{cases}
$$

are the maximal and minimal extensions of f on (\mathbb{R}, u) with the asymmetric norms

$$
\left.\left\|\left.F_{u}(f)\right|_{u}=\right\| G_{u}(f)\right|_{u}=\|f\|_{u}=6 .
$$

If one considers the normed space $\left(\mathbb{R}, u^{s}\right)$, then the functions

$$
\begin{array}{ll}
F(f)(x)=\inf _{y \in[-1,2]}\{f(y)+6|x-y|\}, & x \in \mathbb{R}, \\
G(f)(x)=\sup _{y \in[-1,2]}\{f(y)+6|x-y|\}, & x \in \mathbb{R}
\end{array}
$$

are Lipschtiz extensions for f and

$$
G(f)(x) \leq G_{u}(f)(x) \leq F_{u}(f)(x) \leq F(f)(x), \quad x \in \mathbb{R} .
$$

4. APPLICATION

Let (X, p) be an asymetric normed space, and p^{s} - SLip $_{0} X$ the normed space of all p^{s}-Lipschitz real functions on X, vanishing at $0 \in X$, with the norm defined by (6).

If Y is a subset of X with $0 \in Y$ let also the normed space $p^{s}-\operatorname{SLip}_{0} Y$, with the norm $\|\cdot\|$.

By the McShane theorem [6] for every $f \in p^{s}$ - $_{\text {SLip }}^{0} \boldsymbol{Y}$ there exists at least one function $F \in p^{s}-\operatorname{SLip}_{0} X$ such that $\left.F\right|_{Y}=f$ and $\|F\|=\|f\|$.

Let also

$$
Y^{\perp}=\left\{G \in p^{s}-\operatorname{SLip}_{0} X:\left.G\right|_{Y}=0\right\},
$$

the annihilator of Y with respect to $p^{s}-\operatorname{SLip}_{0} X$.
Consider the following best approximation problem: for $F \in p^{s}-\operatorname{SLip}_{0} X$, find an element $G_{0} \in Y^{\perp}$ such that

$$
\left\|F-G_{0}\right\|=d\left(F, Y^{\perp}\right)=\inf \left\{\|F-G\|: G \in Y^{\perp}\right\} .
$$

An element $G_{0} \in Y^{\perp}$ such that the above infimum is attained is called best approximation element for F in Y^{\perp}. If every $F \in p^{s}$ - SLip $_{0} X$ has at least a best approximation element, then Y^{\perp} is called proximinal.

The following result appears in [7] (see also [8]).
Proposition 5. In the above notations, the following properties hold:
(a)

$$
d\left(F, Y^{\perp}\right)=\left\|\left.F\right|_{Y}\right\|, \quad \forall F \in p^{s}-\operatorname{SLip}_{0} X ;
$$

(b) the set of all best approximation elements of F in Y^{\perp} is $F-E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$, where $E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)=\left\{H \in p^{s}-\operatorname{SLip}_{0} X:\left.H\right|_{Y}=\left.F\right|_{Y}\right.$ and $\|H\|=$ $\left.\left\|\left.F\right|_{Y}\right\|\right\}$.

Proof. (a) Let $F \in p^{s}-$ SLip $_{0} Y$. Then for every $G \in Y^{\perp},\left\|\left.F\right|_{Y}\right\|=$ $\left\|\left.F\right|_{Y}-\left.G\right|_{Y}\right\| \leq\|F-G\|$, and taking the infimum with respect to $G \in Y^{\perp}$ one obtains

$$
\left\|\left.F\right|_{Y}\right\| \leq d\left(F, Y^{\perp}\right) .
$$

For $\left.F\right|_{Y}$, by the McShane theorem [6], there exists $H \in E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$ such that $\left.F\right|_{Y}=\left.H\right|_{Y}$ and $\|H\|=\left\|\left.F\right|_{Y}\right\|$. Then

$$
\left\|\left.F\right|_{Y}\right\|=\|F-(F-H)\| \geq d\left(F, Y^{\perp}\right) .
$$

(b) Obviously, for every best approximation element G_{0} of F in Y^{\perp},

$$
\left.\left(F-G_{0}\right)\right|_{Y}=\left.F\right|_{Y} \text { and }\left\|F-G_{0}\right\|=\left\|\left.F\right|_{Y}\right\| .
$$

It follows that $F-G_{0} \in F-E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$, and so $G_{0} \in F-E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$.
Let now $G_{0} \in F-E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$. Then there exists $H \in E_{p^{s}}\left(\left.F\right|_{Y}, Y\right)$ such that $G_{0}=F-H$. But then

$$
\left\|F-G_{0}\right\|=\|H\|=\left\|\left.F\right|_{Y}\right\|=d\left(F, Y^{\perp}\right)
$$

Remark 2. If $F \in \bar{p}-\operatorname{SLip}_{0} X$ then $\|F\|=\|\left. F\right|_{p}$ and $\left.F\right|_{Y} \in p-\operatorname{SLip}_{0} Y,\left\|\left.F\right|_{Y}\right\|=$ $\left\|\left.\left.F\right|_{Y}\right|_{p}=\right\|-\left.\left.F\right|_{Y}\right|_{\bar{p}}$.

It then follows

$$
d\left(F, Y^{\perp}\right)=d\left(-F, Y^{\perp}\right)=\|\left.\left. F\right|_{Y}\right|_{p}, \quad \forall F \in p-\operatorname{SLip}_{0} X
$$

REFERENCES

[1] Mennucci, Andrea C.G., On asymmetric distances, preprint, sept. 21, 2004 (www.scirus.com).
[2] Borodin, P.A., The Banach-Mazur theorem for spaces with an asymmetric norm and its applications in convex analysis, Mat. Zametki, 69, no. 3, pp. 193-217, 2001.
[3] Cobzaş, S., Separation of convex sets and best approximation in spaces with asymmetric norm, Quaest. Math., 27, no. 3, pp. 275-296, 2004.
[4] Cobzas, S. and Mustăţa, C., Extension of bouned linear functionals and best approximation in spaces with asymmetric norm, Rev. Anal. Numer. Theor. Approx., 33, no. 1, pp. 39-50, 2004. $\begin{aligned} \text { ® } \\ \end{aligned}$
[5] Garcia-Raffi, L.M., Romaguera, S. and Sanchez-Perez, E.A., The dual space of an asymmetric normed linear space, Quaest. Math., 26, no. 1, pp. 83-96, 2003.
[6] McShane, E.J., Extension of range of functions, Bull. Amer. Math. Soc., 40, pp. 837842, 1934.
[7] Mustă̧a, C., On a chebyshevian subspace of normed linear space of Lipschitz functions, Rev. Anal. Numer. Teoria Aproximaţiei, 2, pp. 81-87, 1973 (in Romanian). © $\mathbb{}$
[8] Mustă̧̧a, C., Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19, no. 3, pp. 222-230, 1977.
[9] Mustăţa, C., Extension of Hölder functions and some related problems of best approximation, "Babes-Bolyai" University, Faculty of Mathematics, Research Seminar on Mathematical Analysis, no. 7, pp. 71-86, 1991.
[10] Mustă̧̧a, C., Extension of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx., 30, no. 1, pp. 61-67, 2001.ए
[11] Mustă̧̧a, C., The approximation of the global maximum of a semi-Lipschitz function (submitted).
[12] Leonardi, S., Passarelli di Napoli, A. and Carlo Sbordone, On Fichera's existence principle in functional analysis and mathematical Physiscs, Papers of the 2-nd Interantional Symposium dedicated to memory of Prof. Gaetano Fichera (1922-1996). Roma: Dipartimento di Matematica Univ. di Roma (ISBN 88-7999-264-X), pp. 221-234 2000, Ricci, PaoloEmilio (Ed.)
[13] Romaguerra, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, pp. 292-301, 2000.

Received by the editors: March 28, 2005.

[^0]: *"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: cmustata@ictp.acad.ro.

