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ACCELERATING THE CONVERGENCE OF THE ITERATIVE
METHODS OF INTERPOLATORY TYPE

ION PĂVĂLOIU∗

Abstract. In this paper we deal with iterative methods of interpolatory type,
for solving nonlinear equations in Banach spaces. We show that the convergence
order of the iterations may considerably grow if the nodes are properly controlled.

MSC 2000. 65H05.
Keywords. Nonlinear equations, iterative methods of interpolatory type.

1. INTRODUCTION

Let X be a Banach space, D ⊆ X a subset, and f : D → X a nonlinear
mapping. Consider the equation

(1) f(x) = θ,

where θ ∈ X is the zero vector of X.
Regarding f we make the following assumptions:

a) f : D → f(D) is a one to one mapping;
b) equation (1) has a solution x∗ ∈ D;
c) the operator f is Fréchet differentiable on D and f ′(x) 6= θ1, where θ1

is the null linear operator.
In order to accelerate the convergence of the iterative methods of interpo-

latory type, we also consider an equation, equivalent to (1), of the form

(2) x = ϕ(x),

where ϕ : D → D.
We make the following assumptions regarding ϕ:

a′) ϕ is p times differentiable on the whole set D, for some p ∈ N;
b′) we have ϕ(i)(θ) = θi, i = 1, p − 1, but ϕ(p)(θ) 6= θp, where θi denotes

the i-linear operator. Also, ‖ϕ(p)(x)‖ ≤ L, ∀x ∈ D, for some L ≥ 0.
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Let x0, x1, . . . , xn ∈ D and y0 = f(x0), y1 = f(x1), . . . , yn = f(xn). For
f−1 : f(D)→ D, the Newton identity holds (see, e.g., [3], [4]):

f−1(y) = x0 + [y0, y1; f−1](y − y0) + [y0, y1, y2; f−1](y1 − y)(y − y0)(3)
+ . . .+ [y0, . . . yn; f−1](y − yn−1) . . . (y − y0)
+ [y, y0, . . . yn; f−1](y − yn) . . . (y − y0).

By hypotheses a) and b) we get the relation:
(4) x∗ = f−1(θ).
The relation above and (3) for y = θ attract that
(5)

x∗ = x0+
n∑
j=1

(−1)j [y0, . . . yj ; f−1]yj−1 . . . y0+(−1)n+1[θ, y0, . . . yn; f−1]yn . . . y0,

whence we deduce an approximation u for x∗, of the form:

(6) u = x0 +
n∑
j=1

(−1)j [y0, . . . yj ; f−1]yj−1 . . . y0.

The error for this approximation is bounded by
(7) ‖x∗ − u‖ ≤ ‖[θ, y0, . . . yn; f−1]‖ · ‖yn‖ . . . ‖y0‖,
where the norm of [θ, y0, . . . yn; f−1] is considered in the space of n+ 1-linear
operators.

In [2] it is shown that the convergence order of the iterative methods given
by (6) cannot be greater than 2, even if the number of the interpolation nodes
is arbitrarily increased. However, the convergence order can be increased if
we use the auxilliary function ϕ considered above.

Let x0 ∈ D be an initial approximation to x∗. Denote u0
0 = x0, u

0
1 =

ϕ(u0
0), . . . , u0

n = ϕ(u0
n−1) and y0

0 = f(u0
0), y0

1 = f(u0
1), . . . , y0

n = f(u0
n). Re-

placing in (6) the interpolation nodes by y0
i , i = 0, n, we obtain for x∗ a first

approximation, denoted by x1:

(8) x1 = x0 +
n∑
j=1

(−1)j [y0
0, . . . y

0
j ; f−1]y0

j−1 . . . y
0
0.

If xi ∈ D is an approximation for x∗, i ∈ N, n ≥ 1, then we obtain the next
approximation in the following way. Denote ui0 = xi, u

i
1 = ϕ(ui0), . . . , uin =

ϕ(uin−1) and yi0 = f(ui0), . . . , yin = f(uin). Analogously to (8) we get

(9) xi+1 = xi +
n∑
j=1

(−1)j [yi0, . . . yij ; f−1]yij−1 . . . y
i
0,

with the error
(10) ‖x∗ − xi+1‖ ≤

∥∥[θ, yi0, . . . yin; f−1]
∥∥ · ‖yin‖ . . . ‖yi0‖.

In the following we shall analyze some particular instance of (9).
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If we take n = 1 in (9), we get

(11) xi+1 = xi − [yi0, yi1; f−1]yi, i = 0, 1, . . . .

Taking into account the identities [yi0, yi1; f−1] = [xi, ϕ(xi); f ]−1 and yi0 =
f(xi), yi1 = f(ϕ(xi)), we notice that we are lead to the Steffensen method:

(12) xi+1 = xi − [xi, ϕ(xi); f ]−1f(xi).

If we take n = 2 and recall that

[yi0, yi1, yi2; f−1]yi0yi1 = − [xi, ϕ(ϕ(xi)); f ]−1[xi, ϕ(xi), ϕ(ϕ(xi)); f ]
(13)

[xi, ϕ(xi); f ]−1f(xi)[ϕ(xi), ϕ(ϕ(xi)); f ]−1f(ϕ(xi)),

i = 0, 1, . . . , and we get

xi+1 = xi − [xi, ϕ(xi); f ]−1f(xi)(14)
− [xi, ϕ(ϕ(xi)); f ]−1[xi, ϕ(xi), ϕ(ϕ(xi)); f ]
[xi, ϕ(xi); f ]−1f(xi)[ϕ(xi), ϕ(ϕ(xi)); f ]−1f(ϕ(xi)),

a corrected Steffensen method.
In [5] we have studied the local convergence of the Steffensen method (12).

In the following we shall study the local convergence of the general method
(9). We shall show that the convergence order considerably grows even for
p = 1, under condition a′).

2. LOCAL CONVERGENCE

From (10), using the finite growth formula (see, e.g., [4]), we get

(15) ‖x∗ − xi+1‖ ≤MKn+1‖x∗ − uin‖ . . . ‖x∗ − ui0‖, i = 0, 1, . . . ,

where we have assumed that there exist M,K > 0 such that

‖[θ, v1, . . . , vn; f−1]‖ ≤M, ∀vi ∈ D, i = 0, n,(16)
‖f ′(x)‖ ≤ K, ∀x ∈ D.(17)

From the hypotheses a′) and b′), using the Taylor formula we get

(18) ‖x∗ − uis‖ ≤ lδs‖x∗ − xi‖p
s
, s = 1, n,

where l = L
p! and δs =

∑s−1
j=0 p

j .
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We make the following notations:

α =


n∑
s=1

ps−1
p−1 , p > 1

n(n+1)
2 , p = 1

(19)

β =


pn+1−1
p−1 , p > 1
n+ 1, p = 1

(20)

q = MKn+1lα.(21)
Using (18), relations (15) become

(22) ‖x∗ − xi+1‖ ≤ q‖x∗ − xi‖β, i = 0, 1, . . . .

Multiplying these inequalities by q
1

β−1 and denoting ηi = q
1

β−1 ‖x∗ − xi‖, i =
0, 1, . . . , we get:
(23) ηi+1 ≤ ηβi , i = 0, 1, . . . .

Taking into account the above considerations, we obtain the following result.

Theorem 2.1. If the hypotheses a)–c), a′), b′) hold and, moreover,
i. η0 ≤ 1;

ii. S = {x ∈ X : ‖x− x∗‖ ≤ q
1

1−β η0} ⊆ D,
then the elements of the sequence (xm)m≥0 generated by (9) remain in the set
D, lim xm = x∗, and for all m = 1, 2, . . . , we have

(24) ‖x∗ − xm‖ ≤ q
1

1−β ηβ
m

0 .

Proof. By (23) and i. it follows

‖x∗ − x1‖ ≤ q
1

1−β ηβ0 ,

which shows that x1 ∈ S.
Let xi ∈ S and ‖x∗ − xi‖ ≤ q

1
1−β ηβ

i

0 , so

‖x∗ − xi+1‖ ≤ q
1

1−β ηβ
i+1

0 < q
1

1−β η0,

which shows that xi+1 ∈ S.
Relations (24) can be easily proved, and further, taking into consideration

i., we obviously get lim xm = x∗. �

Remark 2.1. By (24) it follows that the convergence order of method (9)
is at least β.

In case of the particular methods (12) and (14) we get the following results.

Corollary 2.1. In the case of the Steffensen method, we obtain the well
known result (see, e.g., [5]) for α = 1 and β = 1 + p if p > 1 and β = 2 if
p = 1.
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Corollary 2.2. In the case of method (14) we get

α =
{
p+ 2, p > 1
3, p = 1

β =
{

1 + p+ p2, p > 1
3, p = 1.

We conclude that the iterative methods of interpolatory type may attain a
substantially higher convergence order if the nodes are properly controlled.
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