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Rev. Anal. Numér. Théor. Approx., vol. 35 (2006) no. 1, pp. 71–82
ictp.acad.ro/jnaat

REFINEMENTS OF JENSEN-MERCER’S INEQUALITY FOR INDEX
SET FUNCTIONS WITH APPLICATIONS
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Abstract. Some refinements of Jensen-Mercer’s inequality are presented. They
are used to refine few inequalities among various means of Mercer’s type, and
they are further generalized for linear functionals.
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1. INTRODUCTION

In paper [3] A. McD. Mercer proved the following variant of Jensen’s in-
equality, to which we will refer as to the “Jensen-Mercer’s inequality”.

Theorem A. Let [a, b] be an interval in R, and x1, . . . , xn ∈ [a, b]. Let
w1, . . . , wn be nonnegative real numbers such that Wn =

∑n
i=1wi > 0. If f is

a convex function on [a, b], then

(1) f

(
a+ b− 1

Wn

n∑
i=1

wixi

)
≤ f(a) + f(b)− 1

Wn

n∑
i=1

wif (xi) .

In this paper we give some refinements of (1) and we present several ap-
plications of them. In Section 2 we first prove the Jensen-Mercer’s inequality
for weights satisfying conditions as for the reversed Jensen’s inequality (see
for example [4, p. 83]), and after that we prove refinements of Theorem A,
using an index set function. In Section 3 we use these results to refine some
well known inequalities among arithmetic, geometric, harmonic, power and
quasi-arithmetic means of Mercer’s type. In Section 4 we generalize our main
results for linear isotonic functionals.

∗Department of Mathematics, Faculty of Natural Sciences, Mathematics and Education,
University of Split, Teslina 12, 21000 Split, Croatia, e-mail: anita@pmfst.hr.
†Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croa-

tia, e-mail: pecaric@hazu.hr.

www.ictp.acad.ro/jnaat


72 A. Matković and J. Pečarić 2

2. MAIN RESULTS

Theorem 2.1. Let w1, . . . , wn be real numbers such that
(2) w1 > 0, wi ≤ 0 for i = 2, . . . , n, Wn > 0.
Let [a, b] be an interval in R, and x1, . . . , xn ∈ [a, b] such that 1

Wn

∑n
i=1wixi ∈

[a, b]. If f is a convex function on [a, b], then (1) holds.

To prove Theorem 2.1, we need the following Lemma:

Lemma 2.2. Let f : [a, b]→ R be a convex function. Then for any x ∈ [a, b]
f (a+ b− x) ≤ f (a) + f (b)− f (x) .

Proof. For every x ∈ [a, b], there exists a unique λ ∈ [0, 1] such that x =
λa+ (1− λ) b. Since f is convex, we have

f (a+ b− x) = f (a+ b− λa− (1− λ) b)
= f ((1− λ) a+ λb)
≤ (1− λ) f (a) + λf (b)
= f (a) + f (b)− (λf (a) + (1− λ) f (b))
≤ f (a) + f (b)− f (λa+ (1− λ) b)
= f (a) + f (b)− f (x) . �

Proof of Theorem 2.1. Weights w1, . . . , wn satisfy conditions (2) and
1
Wn

∑n
i=1wixi ∈ [a, b], so by Lemma 2.2 and by the reversed Jensen’s inequal-

ity, we have

f

(
a+ b− 1

Wn

n∑
i=1

wixi

)
≤ f (a) + f (b)− f

(
1
Wn

n∑
i=1

wixi

)

≤ f(a) + f(b)− 1
Wn

n∑
i=1

wif (xi) . �

Let I be a finite nonempty set of positive integers, and let f : [a, b] → R.
Let w = {wi}i∈I , x = {xi}i∈I be real sequences such that xi ∈ [a, b] for all
i ∈ I, and AI (x,w) = 1

WI

∑
i∈I wixi ∈ [a, b], where WI =

∑
i∈I wi. If we

define the index set function F as

F (I) = WI

[
f (a) + f (b)− 1

WI

∑
i∈I

wif (xi)− f
(
a+ b− 1

WI

∑
i∈I

wixi

)]
,

then the following theorem is valid.

Theorem 2.3. Let f : [a, b]→ R be a convex function. Let I and J be finite
nonempty sets of positive integers such that I ∩ J = ∅. Let w = {wi}i∈I∪J ,
x = {xi}i∈I∪J be real sequences such that xi ∈ [a, b] (i ∈ I ∪ J), WI∪J > 0,
and AS (x,w) ∈ [a, b] (S = I, J, I ∪ J). If WI > 0 and WJ > 0, then
(3) F (I ∪ J) ≥ F (I) + F (J).
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If WI ·WJ < 0, then the inequality (3) is reversed.

Proof. Since f is convex, the same is also true for the function g : [a, b]→ R
defined as g(y) = f(a+ b− y), y ∈ [a, b]. Hence, the following inequality holds
for every y1, y2 ∈ [a, b] and u1, u2 > 0

(4) g

(
u1y1 + u2y2
u1 + u2

)
≤ u1g (y1) + u2g (y2)

u1 + u2
,

i.e.,

(5) (u1 + u2) f
(
a+ b− u1y1 + u2y2

u1 + u2

)
≤ u1f (a+ b− y1)+u2f (a+ b− y2) .

If u1 > 0, u2 < 0, u1 + u2 > 0 and u1y1+u2y2
u1+u2

∈ [a, b], then (4), i.e., (5) is
reversed. This is a simple consequence of (4) after we make the substitutions
u1 → u1 + u2, u2 → −u2, y1 → u1y1+u2y2

u1+u2
, and y2 → y2 (similarly as in the

proof of the reversed Jensen’s inequality).
Suppose that WI > 0 and WJ > 0. If we let

u1 = WI , u2 = WJ , y1 = AI (x,w) , y2 = AJ (x,w)

in (5), then we obtain

WI∪Jf (a+ b−AI∪J (x,w))
≤WIf (a+ b−AI (x,w)) +WJf (a+ b−AJ (x,w)) .

Multiplying the above inequality by (−1) and adding to the both sides the
term

WI∪J

[
f(a) + f(b)− 1

WI∪J

∑
i∈I∪J

wif (xi)
]
,

it follows that

WI∪J

[
f(a) + f(b)− 1

WI∪J

∑
i∈I∪J

wif (xi)− f
(
a+ b− 1

WI∪J

∑
i∈I∪J

wixi

)]

≥WI

[
f(a) + f(b)− 1

WI

∑
i∈I

wif (xi)− f
(
a+ b− 1

WI

∑
i∈I

wixi

)]

+WJ

[
f(a) + f(b)− 1

WJ

∑
i∈J

wif (xi)− f
(
a+ b− 1

WJ

∑
i∈J

wixi

)]
.

In case when WI ·WJ < 0, for instance WI > 0 and WJ < 0, we again let

u1 = WI , u2 = WJ , y1 = AI (x,w) , y2 = AJ (x,w) ,

and reversed (3) follows from reversed (5). �

Corollary 2.4. Let f : [a, b] → R be a convex function. Let I1, . . . , Ik
be finite nonempty sets of positive integers such that Ii ∩ Ij = ∅, for all
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i 6= j ∈ {1, . . . , k}. Let w = {wi}i∈∪k
j=1Ij

, x = {xi}i∈∪k
j=1Ij

be real se-

quences such that xi ∈ [a, b]
(
i ∈ ∪kj=1Ij

)
, W∪k

j=1Ij
> 0, and AS (x,w) ∈ [a, b](

S = I1, . . . , Ik,∪lj=1Ij (l = 2, . . . , n)
)

. If WIj > 0 (j = 1, . . . , k), then

(6) F

 k⋃
j=1

Ij

 ≥ k∑
j=1

F (Ij) .

If WI1 > 0 and WIj < 0 (j = 2, . . . , k), then the inequality (6) is reversed.

Proof. Directly from Theorem 2.3 by induction. �

The following corollaries give refinements of Theorem A.

Corollary 2.5. Let f : [a, b]→ R be a convex function and Ik = {1, . . . , k}
(k = 1, . . . , n). Let w = {wi}i∈In

, x = {xi}i∈In
be real sequences such that

xi ∈ [a, b] (i ∈ In), and w1 > 0.
If wi ≥ 0 for i = 2, . . . , n, then
(7) F (In) ≥ F (In−1) ≥ · · · ≥ F (I2) ≥ F (I1) ≥ 0.
If wi ≤ 0 for i = 2, . . . , n, WIn > 0 and AIn (x,w) ∈ [a, b], then

0 ≤ F (In) ≤ F (In−1) ≤ · · · ≤ F (I2) ≤ F (I1).

Proof. Suppose that wi ≥ 0 for i = 2, . . . , n. First we show that
F ({k}) = wk [f (a) + f (b)− f (xk)− f (a+ b− xk)] ≥ 0

for any k ∈ In. By Lemma 2.2, we have f (a+ b− xk) ≤ f (a) + f (b)− f (xk),
and since wk ≥ 0, it follows that F ({k}) ≥ 0. Now, by Theorem 2.3,

F (Ik) = F (Ik−1 ∪ {k}) ≥ F (Ik−1) + F ({k}) ≥ F (Ik−1)
for all k ∈ {2, . . . , n}.

Suppose that wi ≤ 0 for i = 2, . . . , n, WIn > 0 and AIn (x,w) ∈ [a, b]. First
we show that from AIn (x,w) ∈ [a, b] it follows that AIn−1 (x,w) ∈ [a, b]. If
we multiply inequality

a ≤ AIn (x,w) ≤ b
by WIn > 0, and then add to the both sides −wnxn, we obtain

WIna− wnxn ≤
∑

i∈In−1

wixi ≤WInb− wnxn.

Multiplying the above inequality by 1
WIn−1

> 0, we have

1
WIn−1

(
WIn−1a+ wna− wnxn

)
≤ AIn−1 (x,w)

≤ 1
WIn−1

(
WIn−1b+ wnb− wnxn

)
,
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i.e.,

a+ wn
WIn−1

(a− xn) ≤ AIn−1 (x,w) ≤ b+ wn
WIn−1

(b− xn) .

Since, wn
WIn−1

(a− xn) ≥ 0 and wn
WIn−1

(b− xn) ≤ 0, it follows that

a ≤ AIn−1 (x,w) ≤ b.

By iteration we obtain AIk
(x,w) ∈ [a, b] for all k ∈ {2, . . . , n− 1}. Similarly

as before we have F ({k}) ≤ 0 for any k ∈ {2, . . . , n}. Now, by Theorem 2.3,

F (Ik) = F (Ik−1 ∪ {k}) ≤ F (Ik−1) + F ({k}) ≤ F (Ik−1)

for all k ∈ {2, . . . , n}, and finally, by Theorem 2.1, F (In) ≥ 0. �

Corollary 2.6. Let f : [a, b]→ R be a convex function and Ik = {1, . . . , k}
(k = 1, . . . , n). Let w = {wi}i∈In

, x = {xi}i∈In
be real sequences such that

xi ∈ [a, b] (i ∈ In).
If wi > 0 for all i = 1, . . . , n, then

F (In) ≥ max
1≤i<j≤n

{
(wi + wj)

[
f(a) + f(b)− wif (xi) + wjf (xj)

wi + wj

− f

(
a+ b− wixi + wjxj

wi + wj

)]}
,(8)

and

(9) F (In) ≥ max
1≤i≤n

{wi [f(a) + f(b)− f (xi)− f (a+ b− xi)]} .

If w satisfy (2) and AIn (x,w) ∈ [a, b], then

F (In) ≤ min
2≤j≤n

{
(w1 + wj)

[
f(a) + f(b)− w1f (x1) + wjf (xj)

w1 + wj

− f

(
a+ b− w1x1 + wjxj

w1 + wj

)]}
.(10)

Proof. Suppose that wi > 0 for all i = 1, . . . , n. Similarly as F (In) ≥ F (I2)
in Corollary 2.5, we may conclude that

(11) F (In) ≥ F ({i, j}) for all i 6= j ∈ {1, . . . , n} ,

so the inequality (8) immediately follows. From (11) we have F (In) ≥ F ({i})
for all i ∈ {1, . . . , n}, so the inequality (9) is also proved.

The inequality (10) can be proved in the similar way. �

Remark 2.7. Analogous assertions can be formulated for concave functions
using the fact that f is concave iff −f is convex. �
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3. APPLICATIONS

Let An, Gn, Hn, and M
[r]
n be the arithmetic, geometric, harmonic, and

power mean of order r, respectively, of the real numbers xi ∈ [a, b], where
0 < a < b, formed with the positive weights wi (i = 1, . . . , n). For the various
properties of these means and relations among them we refer the reader to [2].
For example, it is well known that(

An
Gn

)Wn

≥
(
An−1
Gn−1

)Wn−1

≥ · · · ≥
(
A1
G1

)W1

≥ 1,

Wn (An −Gn) ≥Wn−1 (An−1 −Gn−1) ≥ · · · ≥W1 (A1 −G1) ≥ 0.

If we define

Ãn := a+ b− 1
Wn

n∑
i=1

wixi = a+ b−An,

G̃n := ab(
n∏
i=1

xwi
i

) 1
Wn

= ab

Gn
,

H̃n :=
(
a−1 + b−1 − 1

Wn

n∑
i=1

wix
−1
i

)−1

=
(
a−1 + b−1 −H−1

n

)−1
,

M̃ [r]
n :=

(
ar + br − 1

Wn

n∑
i=1

wix
r
i

) 1
r

=
(
ar + br −

(
M [r]
n

)r) 1
r
,

then we have the following results.

Theorem 3.1. (i)

(12)
(
Ãn

G̃n

)Wn

≥
(
Ãn−1

G̃n−1

)Wn−1

≥ · · · ≥
(
Ã1

G̃1

)W1

≥ 1,

(ii)

Wn

(
Ãn − G̃n

)
≥Wn−1

(
Ãn−1 − G̃n−1

)
≥ · · · ≥W1

(
Ã1 − G̃1

)
≥ 0.

Proof. (i) Applying Corollary 2.5 to the convex function f(x) = − ln x, we
obtain

ln
(
Ãn

G̃n

)Wn

≥ ln
(
Ãn−1

G̃n−1

)Wn−1

≥ · · · ≥ ln
(
Ã1

G̃1

)W1

≥ 0,

from which (12) follows.
(ii) Applying Corollary 2.5 to the convex function f(x) = expx, and replac-

ing a, b, and xi with ln a, ln b, and ln xi respectively, we obtain

Wn

(
Ãn − G̃n

)
≥Wn−1

(
Ãn−1 − G̃n−1

)
≥ · · · ≥W1

(
Ã1 − G̃1

)
≥ 0,
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since in this case

F (Ik) = Wk

(
a+ b− 1

Wk

k∑
i=1

wixi − exp
(

ln a+ ln b− 1
Wk

k∑
i=1

wi ln xi

))
= Wk

(
Ãk − G̃k

)
. �

Corollary 3.2. (i)(
G̃n

H̃n

)Wn

≥
(
G̃n−1

H̃n−1

)Wn−1

≥ · · · ≥
(
G̃1

H̃1

)W1

≥ 1,

(ii)

Wn

(
1
H̃n

− 1
G̃n

)
≥Wn

(
1

H̃n−1
− 1
G̃n−1

)
≥ · · · ≥W1

(
1
H̃1
− 1
G̃1

)
≥ 0.

Proof. Directly from Theorem 3.1 by the substitutions a → 1
a , b → 1

b ,
xi → 1

xi
. �

Theorem 3.3. For r ≤ 1,
(13)

Wn

(
Ãn − M̃ [r]

n

)
≥Wn−1

(
Ãn−1 − M̃ [r]

n−1

)
≥ · · · ≥W1

(
Ã1 − M̃ [r]

1

)
≥ 0.

For r ≥ 1, the inequalities (13) are reversed.
Proof. Suppose that r ≤ 1. Applying Corollary 2.5 to the convex function

f(x) = x
1
r , and replacing a, b, and xi with ar, br, and xri respectively, we

obtain (13) since in this case

F (Ik) = Wk

a+ b− 1
Wk

k∑
i=1

wixi −
(
ar + br − 1

Wk

k∑
i=1

wix
r
i

) 1
r


= Wk

(
Ãk − M̃

[r]
k

)
.

If r ≥ 1, then the function f(x) = x
1
r is concave, so the inequalities (13) are

reversed. �

Corollary 3.4.
Wn

(
Ãn − H̃n

)
≥Wn−1

(
Ãn−1 − H̃n−1

)
≥ · · · ≥W1

(
Ã1 − H̃1

)
≥ 0.

Remark 3.5. Obviously, the assertion (ii) from Theorem 3.1 is also direct
consequence of Theorem 3.3. �

Theorem 3.6. Let r, s ∈ R, r ≤ s.
(i) If s > 0, then

Wn

((
M̃ [s]
n

)s
−
(
M̃ [r]
n

)s)
≥Wn−1

((
M̃

[s]
n−1

)s
−
(
M̃

[r]
n−1

)s)
(14)

≥ · · · ≥W1
((
M̃

[s]
1

)s
−
(
M̃

[r]
1

)s)
≥ 0,
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(ii) If s < 0, then the inequalities (14) are reversed.

Proof. Suppose that s > 0. Applying Corollary 2.5 to the convex function
f(x) = x

s
r , and replacing a, b, and xi with ar, br, and xri respectively, we

obtain (14) since

F (Ik) = Wk

as + bs − 1
Wk

k∑
i=1

wix
s
i −

(
ar + br − 1

Wk

k∑
i=1

wix
r
i

) s
r


= Wk

((
M̃

[s]
k

)s
−
(
M̃

[r]
k

)s)
.

If s < 0, then the function f(x) = x
s
r is concave, so (14) is reversed. �

Let ϕ : [a, b] → R be a strictly monotonic and continuous function, where
[a, b] ⊂ R. Then for a given n-tuple x = (x1, . . . , xn) ∈ [a, b]n and positive
n-tuple w = (w1, . . . , wn) ∈ Rn, the value

M [n]
ϕ = ϕ−1

(
1
Wn

n∑
i=1

wiϕ (xi)
)

is well defined and is called quasi-arithmetic mean of x with weights w (see
for example [2, p. 215]). If we define

M̃ [n]
ϕ := ϕ−1

(
ϕ (a) + ϕ (b)− 1

Wn

n∑
i=1

wiϕ (xi)
)
,

then we have the following results.

Theorem 3.7. Let ϕ,ψ : [a, b] → R be strictly monotonic and continuous
functions. If ψ ◦ ϕ−1 is convex on [a, b], then

Wn

(
ψ
(
M̃

[n]
ψ

)
− ψ

(
M̃ [n]
ϕ

))
≥Wn−1

(
ψ
(
M̃

[n−1]
ψ

)
− ψ

(
M̃ [n−1]
ϕ

))
(15)

≥ · · · ≥W1
(
ψ
(
M̃

[1]
ψ

)
− ψ

(
M̃ [1]
ϕ

))
≥ 0.

If ψ ◦ ϕ−1 is concave on [a, b], then the inequalities (15) are reversed.

Proof. Applying Corollary 2.5 to the convex function f = ψ ◦ ϕ−1, and
replacing a, b, and xi with ϕ (a), ϕ (b), and ϕ (xi) respectively, we obtain (15)
since in this case

F (Ik) = Wk

(
ψ (a) + ψ (b)− 1

Wk

k∑
i=1

wiψ (xi)

−
(
ψ ◦ ϕ−1

)(
ϕ (a) + ϕ (b)− 1

Wk

k∑
i=1

wiϕ (xi)
))

= Wk

(
ψ
(
M̃

[k]
ψ

)
− ψ

(
M̃ [k]
ϕ

))
. �

Remark 3.8. Theorems 3.1, 3.3 and 3.6 follow from Theorem 3.7, by choos-
ing adequate functions ϕ and ψ, and appropriate substitutions. �



9 Refinements of Jensen-Mercer’s inequality 79

Corollary 3.9. Let ϕ,ψ : [a, b]→ R be strictly monotonic and continuous
functions. If ψ ◦ ϕ−1 is convex on [a, b], then

Wn

(
ψ
(
M̃

[n]
ψ

)
− ψ

(
M̃ [n]
ϕ

))
≥ max

1≤i<j≤n

{
(wi + wj)

[
ψ (a) + ψ (b)− wiψ (xi) + wjψ (xj)

wi + wj
(16)

−
(
ψ ◦ ϕ−1

)(
ϕ (a) + ϕ (b)− wiϕ (xi) + wjϕ (xj)

wi + wj

)]}
,

and

Wn

(
ψ
(
M̃

[n]
ψ

)
− ψ

(
M̃ [n]
ϕ

))(17)

≥ max
1≤i≤n

{
wi
[
ψ (a) + ψ (b)− ψ (xi)−

(
ψ ◦ ϕ−1

)
(ϕ (a) + ϕ (b)− ϕ (xi))

]}
.

If ψ ◦ ϕ−1 is concave on [a, b], then the inequalities (16) and (17), with max
replaced by min, are reversed.

Remark 3.10. Analogous assertions can be formulated for the means of
Mercer’s type formed with weights satisfying (2). �

4. FURTHER GENERALIZATION

Let E be a nonempty set, A be an algebra of subsets of E, and L be a linear
class of real valued functions f : E → R having the properties:

L1: f, g ∈ L⇒ (αf + βg) ∈ L for all α, β ∈ R;
L2: 1 ∈ L, i.e., if f(t) = 1 for t ∈ E, then f ∈ L;
L3: f ∈ L,E1 ∈ A ⇒ f · χE1 ∈ L,

where χE1 is the indicator function of E1. It follows from L2, L3 that χE1 ∈ L
for every E1 ∈ A.

Let A : L→ R be an isotonic linear functional having the properties:
A1: A (αf + βg) = αA(f) + βA(g) for all f, g ∈ L, α, β ∈ R;
A2: f ∈ L, f(t) ≥ 0 on E ⇒ A(f) ≥ 0;
A3: A (1) = 1.
It follows from L3 that for every E1 ∈ A such that A (χE1) > 0, the

functional A1 defined for all f ∈ L as A(f ·χE1)
A(χE1) is an isotonic linear functional

with A1 (1) = 1. Furthermore, we observe that

(18) A (χE1) +A
(
χE\E1

)
= 1,

(19) A(f) = A(f · χE1) +A(f · χE\E1).

Let ϕ : [a, b] → R be a continuous function, where [a, b] ⊂ R. In [1],
under the above assumptions, the following variant of the Jessen’s inequality
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is proved: if ϕ is convex, then
(20) ϕ (a+ b−A (f)) ≤ ϕ (a) + ϕ (b)−A (ϕ (f)) ;
if ϕ is concave, then the inequality (20) is reversed.

For E1 ∈ A and f ∈ L such that ϕ (f) ∈ L, we define the function Ff :
A → R with

Ff (E1) = A (χE1)
[
ϕ (a) + ϕ (b)− A(ϕ (f) · χE1)

A (χE1) − ϕ
(
a+ b− A(f · χE1)

A (χE1)

)]
.

Theorem 4.1. Under the above assumptions, if ϕ is convex, then
(21) Ff (E) ≥ Ff (E1) + Ff (E \ E1) ≥ Ff (E1) ≥ 0
for all E1 ∈ A such that 0 < A (χE1) < 1.

Proof. Since ϕ is continuous and convex, the same is also true for the func-
tion

ψ : [a, b]→ R
defined as

ψ(t) = ϕ(a+ b− t), t ∈ [a, b].
Hence, the following inequality holds for every t1, t2 ∈ [a, b] and p, q ∈ R such
that p+ q = 1

pψ (t1) + qψ (t2) ≥ ψ (pt1 + qt2) ,
i.e.,

pϕ(a+ b− t1) + qϕ(a+ b− t2) ≥ ϕ(a+ b− (pt1 + qt2)).

If we let p = A (χE1), q = A
(
χE\E1

)
, t1 = A(f ·χE1 )

A(χE1) , and t2 = A(f ·χE\E1 )
A(χE\E1) , then

p + q = 1 by the equality (18), and pt1 + qt2 = A(f) by the equality (19).
Similarly, we can use that

A(ϕ (f)) = A(ϕ (f) · χE1) +A(ϕ (f) · χE\E1).
Hence, we have

A (χE1)ϕ
(
a+ b− A(f · χE1)

A (χE1)

)
+A

(
χE\E1

)
ϕ

a+ b−
A(f · χE\E1)
A
(
χE\E1

)


≥ ϕ (a+ b−A(f)) .

Multiplying the above inequality with (−1) and adding to the both sides the
term

ϕ (a) + ϕ (b)−A(ϕ (f))
we obtain the first inequality in (21).

To prove the remaining two inequalities in (21), observe that they are simple
consequences of (20) applied to the isotonic linear functional A1 defined for
f ∈ L as A(f ·χE1)

A(χE1) and having A1 (1) = 1. �



11 Refinements of Jensen-Mercer’s inequality 81

Corollary 4.2. Let {E1, . . . , En} be a partition of E (i.e., E =
n⋃
j=1

Ej , Ei∩

Ej = ∅ for all i 6= j ∈ {1, . . . , n}) such that 0 < A
(
χEj

)
< 1 for all j ∈

{1, . . . , n}. If ϕ is convex, then

(22) Ff (E) ≥
n∑
j=1

Ff (Ej) ,

and

Ff (E) ≥ Ff

n−1⋃
j=1

Ej

 ≥ Ff
n−2⋃
j=1

Ej

(23)

≥ · · · ≥ Ff (E1 ∪ E2) ≥ Ff (E1) ≥ 0.

Proof. Directly from Theorem 4.1 by induction. �

Remark 4.3. If ϕ is concave, then the inequalities (21)–(23) are reversed.
�

Corollary 4.4. Let {E1, . . . , En} be a partition of E such that 0 < A
(
χEj

)
< 1 for all j ∈ {1, . . . , n}. If ϕ is convex, then
(24) Ff (E) ≥ max

1≤i<j≤n
{Ff (Ei ∪ Ej)} ,

and
(25) Ff (E) ≥ max

1≤j≤n
{Ff (Ej)} .

If ϕ is concave, then the inequalities (24) and (25), with max replaced by min,
are reversed.

Remark 4.5. We also may obtain similar results as in Theorem 3.7 and
Corollary 3.9, for the generalized quasi-arithmetic means of Mercer’s type
defined in [1], as

M̃ϕ (f,A) = ϕ−1 (ϕ (a) + ϕ (b)−A (ϕ (f))) . �
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