REFINEMENTS OF JENSEN-MERCER'S INEQUALITY FOR INDEX SET FUNCTIONS WITH APPLICATIONS

A. MATKOVIĆ* ${ }^{*}$ and J. PEČARIĆ ${ }^{\dagger}$

Abstract

Some refinements of Jensen-Mercer's inequality are presented. They are used to refine few inequalities among various means of Mercer's type, and they are further generalized for linear functionals.

MSC 2000. 26D15, 39B62.
Keywords. Jensen-Mercer's inequality, index set function, means of Mercer's type.

1. INTRODUCTION

In paper [3] A. McD. Mercer proved the following variant of Jensen's inequality, to which we will refer as to the "Jensen-Mercer's inequality".

Theorem A. Let $[a, b]$ be an interval in \mathbb{R}, and $x_{1}, \ldots, x_{n} \in[a, b]$. Let w_{1}, \ldots, w_{n} be nonnegative real numbers such that $W_{n}=\sum_{i=1}^{n} w_{i}>0$. If f is a convex function on $[a, b]$, then

$$
\begin{equation*}
f\left(a+b-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \leq f(a)+f(b)-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) . \tag{1}
\end{equation*}
$$

In this paper we give some refinements of (1) and we present several applications of them. In Section 2 we first prove the Jensen-Mercer's inequality for weights satisfying conditions as for the reversed Jensen's inequality (see for example [4, p. 83]), and after that we prove refinements of Theorem A, using an index set function. In Section 3 we use these results to refine some well known inequalities among arithmetic, geometric, harmonic, power and quasi-arithmetic means of Mercer's type. In Section 4 we generalize our main results for linear isotonic functionals.

[^0]
2. MAIN RESULTS

Theorem 2.1. Let w_{1}, \ldots, w_{n} be real numbers such that

$$
\begin{equation*}
w_{1}>0, \quad w_{i} \leq 0 \text { for } i=2, \ldots, n, \quad W_{n}>0 \tag{2}
\end{equation*}
$$

Let $[a, b]$ be an interval in \mathbb{R}, and $x_{1}, \ldots, x_{n} \in[a, b]$ such that $\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i} \in$ $[a, b]$. If f is a convex function on $[a, b]$, then (1) holds.

To prove Theorem 2.1, we need the following Lemma:
Lemma 2.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Then for any $x \in[a, b]$

$$
f(a+b-x) \leq f(a)+f(b)-f(x)
$$

Proof. For every $x \in[a, b]$, there exists a unique $\lambda \in[0,1]$ such that $x=$ $\lambda a+(1-\lambda) b$. Since f is convex, we have

$$
\begin{aligned}
f(a+b-x) & =f(a+b-\lambda a-(1-\lambda) b) \\
& =f((1-\lambda) a+\lambda b) \\
& \leq(1-\lambda) f(a)+\lambda f(b) \\
& =f(a)+f(b)-(\lambda f(a)+(1-\lambda) f(b)) \\
& \leq f(a)+f(b)-f(\lambda a+(1-\lambda) b) \\
& =f(a)+f(b)-f(x)
\end{aligned}
$$

Proof of Theorem 2.1. Weights w_{1}, \ldots, w_{n} satisfy conditions (2) and $\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i} \in[a, b]$, so by Lemma 2.2 and by the reversed Jensen's inequality, we have

$$
\begin{aligned}
f\left(a+b-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) & \leq f(a)+f(b)-f\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}\right) \\
& \leq f(a)+f(b)-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
\end{aligned}
$$

Let I be a finite nonempty set of positive integers, and let $f:[a, b] \rightarrow \mathbb{R}$. Let $\mathbf{w}=\left\{w_{i}\right\}_{i \in I}, \mathbf{x}=\left\{x_{i}\right\}_{i \in I}$ be real sequences such that $x_{i} \in[a, b]$ for all $i \in I$, and $A_{I}(\mathbf{x}, \mathbf{w})=\frac{1}{W_{I}} \sum_{i \in I} w_{i} x_{i} \in[a, b]$, where $W_{I}=\sum_{i \in I} w_{i}$. If we define the index set function F as

$$
F(I)=W_{I}\left[f(a)+f(b)-\frac{1}{W_{I}} \sum_{i \in I} w_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{W_{I}} \sum_{i \in I} w_{i} x_{i}\right)\right]
$$

then the following theorem is valid.
Theorem 2.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Let I and J be finite nonempty sets of positive integers such that $I \cap J=\varnothing$. Let $\mathbf{w}=\left\{w_{i}\right\}_{i \in I \cup J}$, $\mathbf{x}=\left\{x_{i}\right\}_{i \in I \cup J}$ be real sequences such that $x_{i} \in[a, b](i \in I \cup J), W_{I \cup J}>0$, and $A_{S}(\mathbf{x}, \mathbf{w}) \in[a, b](S=I, J, I \cup J)$. If $W_{I}>0$ and $W_{J}>0$, then

$$
\begin{equation*}
F(I \cup J) \geq F(I)+F(J) \tag{3}
\end{equation*}
$$

If $W_{I} \cdot W_{J}<0$, then the inequality (3) is reversed.
Proof. Since f is convex, the same is also true for the function $g:[a, b] \rightarrow \mathbb{R}$ defined as $g(y)=f(a+b-y), y \in[a, b]$. Hence, the following inequality holds for every $y_{1}, y_{2} \in[a, b]$ and $u_{1}, u_{2}>0$

$$
\begin{equation*}
g\left(\frac{u_{1} y_{1}+u_{2} y_{2}}{u_{1}+u_{2}}\right) \leq \frac{u_{1} g\left(y_{1}\right)+u_{2} g\left(y_{2}\right)}{u_{1}+u_{2}} \tag{4}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\left(u_{1}+u_{2}\right) f\left(a+b-\frac{u_{1} y_{1}+u_{2} y_{2}}{u_{1}+u_{2}}\right) \leq u_{1} f\left(a+b-y_{1}\right)+u_{2} f\left(a+b-y_{2}\right) . \tag{5}
\end{equation*}
$$

If $u_{1}>0, u_{2}<0, u_{1}+u_{2}>0$ and $\frac{u_{1} y_{1}+u_{2} y_{2}}{u_{1}+u_{2}} \in[a, b]$, then (4), i.e., (5) is reversed. This is a simple consequence of (4) after we make the substitutions $u_{1} \rightarrow u_{1}+u_{2}, u_{2} \rightarrow-u_{2}, y_{1} \rightarrow \frac{u_{1} y_{1}+u_{2} y_{2}}{u_{1}+u_{2}}$, and $y_{2} \rightarrow y_{2}$ (similarly as in the proof of the reversed Jensen's inequality).

Suppose that $W_{I}>0$ and $W_{J}>0$. If we let

$$
u_{1}=W_{I}, u_{2}=W_{J}, y_{1}=A_{I}(\mathbf{x}, \mathbf{w}), y_{2}=A_{J}(\mathbf{x}, \mathbf{w})
$$

in (5), then we obtain

$$
\begin{aligned}
& W_{I \cup J} f\left(a+b-A_{I \cup J}(\mathbf{x}, \mathbf{w})\right) \\
& \leq W_{I} f\left(a+b-A_{I}(\mathbf{x}, \mathbf{w})\right)+W_{J} f\left(a+b-A_{J}(\mathbf{x}, \mathbf{w})\right) .
\end{aligned}
$$

Multiplying the above inequality by (-1) and adding to the both sides the term

$$
W_{I \cup J}\left[f(a)+f(b)-\frac{1}{W_{I \cup J}} \sum_{i \in I \cup J} w_{i} f\left(x_{i}\right)\right],
$$

it follows that

$$
\begin{aligned}
& W_{I \cup J}\left[f(a)+f(b)-\frac{1}{W_{I \cup J}} \sum_{i \in I \cup J} w_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{W_{I \cup J}} \sum_{i \in I \cup J} w_{i} x_{i}\right)\right] \\
& \geq W_{I}\left[f(a)+f(b)-\frac{1}{W_{I}} \sum_{i \in I} w_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{W_{I}} \sum_{i \in I} w_{i} x_{i}\right)\right] \\
& \quad+W_{J}\left[f(a)+f(b)-\frac{1}{W_{J}} \sum_{i \in J} w_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{W_{J}} \sum_{i \in J} w_{i} x_{i}\right)\right] .
\end{aligned}
$$

In case when $W_{I} \cdot W_{J}<0$, for instance $W_{I}>0$ and $W_{J}<0$, we again let

$$
u_{1}=W_{I}, u_{2}=W_{J}, y_{1}=A_{I}(\mathbf{x}, \mathbf{w}), y_{2}=A_{J}(\mathbf{x}, \mathbf{w})
$$

and reversed (3) follows from reversed (5).
Corollary 2.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function. Let I_{1}, \ldots, I_{k} be finite nonempty sets of positive integers such that $I_{i} \cap I_{j}=\varnothing$, for all
$i \neq j \in\{1, \ldots, k\}$. Let $\mathbf{w}=\left\{w_{i}\right\}_{i \in \cup_{j=1}^{k} I_{j}}, \mathbf{x}=\left\{x_{i}\right\}_{i \in \cup_{j=1}^{k} I_{j}}$ be real sequences such that $x_{i} \in[a, b]\left(i \in \cup_{j=1}^{k} I_{j}\right), W_{\cup_{j=1}^{k} I_{j}}>0$, and $A_{S}(\mathbf{x}, \mathbf{w}) \in[a, b]$ $\left(S=I_{1}, \ldots, I_{k}, \cup_{j=1}^{l} I_{j}(l=2, \ldots, n)\right)$. If $W_{I_{j}}>0(j=1, \ldots, k)$, then

$$
\begin{equation*}
F\left(\bigcup_{j=1}^{k} I_{j}\right) \geq \sum_{j=1}^{k} F\left(I_{j}\right) . \tag{6}
\end{equation*}
$$

If $W_{I_{1}}>0$ and $W_{I_{j}}<0(j=2, \ldots, k)$, then the inequality (6) is reversed.
Proof. Directly from Theorem 2.3 by induction.
The following corollaries give refinements of Theorem A.
Corollary 2.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and $I_{k}=\{1, \ldots, k\}$ $(k=1, \ldots, n)$. Let $\mathbf{w}=\left\{w_{i}\right\}_{i \in I_{n}}, \mathbf{x}=\left\{x_{i}\right\}_{i \in I_{n}}$ be real sequences such that $x_{i} \in[a, b]\left(i \in I_{n}\right)$, and $w_{1}>0$. If $w_{i} \geq 0$ for $i=2, \ldots, n$, then

$$
\begin{equation*}
F\left(I_{n}\right) \geq F\left(I_{n-1}\right) \geq \cdots \geq F\left(I_{2}\right) \geq F\left(I_{1}\right) \geq 0 . \tag{7}
\end{equation*}
$$

If $w_{i} \leq 0$ for $i=2, \ldots, n, W_{I_{n}}>0$ and $A_{I_{n}}(\mathbf{x}, \mathbf{w}) \in[a, b]$, then

$$
0 \leq F\left(I_{n}\right) \leq F\left(I_{n-1}\right) \leq \cdots \leq F\left(I_{2}\right) \leq F\left(I_{1}\right) .
$$

Proof. Suppose that $w_{i} \geq 0$ for $i=2, \ldots, n$. First we show that

$$
F(\{k\})=w_{k}\left[f(a)+f(b)-f\left(x_{k}\right)-f\left(a+b-x_{k}\right)\right] \geq 0
$$

for any $k \in I_{n}$. By Lemma 2.2, we have $f\left(a+b-x_{k}\right) \leq f(a)+f(b)-f\left(x_{k}\right)$, and since $w_{k} \geq 0$, it follows that $F(\{k\}) \geq 0$. Now, by Theorem 2.3 ,

$$
F\left(I_{k}\right)=F\left(I_{k-1} \cup\{k\}\right) \geq F\left(I_{k-1}\right)+F(\{k\}) \geq F\left(I_{k-1}\right)
$$

for all $k \in\{2, \ldots, n\}$.
Suppose that $w_{i} \leq 0$ for $i=2, \ldots, n, W_{I_{n}}>0$ and $A_{I_{n}}(\mathbf{x}, \mathbf{w}) \in[a, b]$. First we show that from $A_{I_{n}}(\mathbf{x}, \mathbf{w}) \in[a, b]$ it follows that $A_{I_{n-1}}(\mathbf{x}, \mathbf{w}) \in[a, b]$. If we multiply inequality

$$
a \leq A_{I_{n}}(\mathbf{x}, \mathbf{w}) \leq b
$$

by $W_{I_{n}}>0$, and then add to the both sides $-w_{n} x_{n}$, we obtain

$$
W_{I_{n}} a-w_{n} x_{n} \leq \sum_{i \in I_{n-1}} w_{i} x_{i} \leq W_{I_{n}} b-w_{n} x_{n} .
$$

Multiplying the above inequality by $\frac{1}{W_{I_{n-1}}}>0$, we have

$$
\begin{aligned}
\frac{1}{W_{I_{n-1}}}\left(W_{I_{n-1}} a+w_{n} a-w_{n} x_{n}\right) & \leq A_{I_{n-1}}(\mathbf{x}, \mathbf{w}) \\
& \leq \frac{1}{W_{I_{n-1}}}\left(W_{I_{n-1}} b+w_{n} b-w_{n} x_{n}\right),
\end{aligned}
$$

i.e.,

$$
a+\frac{w_{n}}{W_{I_{n-1}}}\left(a-x_{n}\right) \leq A_{I_{n-1}}(\mathbf{x}, \mathbf{w}) \leq b+\frac{w_{n}}{W_{I_{n-1}}}\left(b-x_{n}\right)
$$

Since, $\frac{w_{n}}{W_{I_{n-1}}}\left(a-x_{n}\right) \geq 0$ and $\frac{w_{n}}{W_{I_{n-1}}}\left(b-x_{n}\right) \leq 0$, it follows that

$$
a \leq A_{I_{n-1}}(\mathbf{x}, \mathbf{w}) \leq b
$$

By iteration we obtain $A_{I_{k}}(\mathbf{x}, \mathbf{w}) \in[a, b]$ for all $k \in\{2, \ldots, n-1\}$. Similarly as before we have $F(\{k\}) \leq 0$ for any $k \in\{2, \ldots, n\}$. Now, by Theorem 2.3,

$$
F\left(I_{k}\right)=F\left(I_{k-1} \cup\{k\}\right) \leq F\left(I_{k-1}\right)+F(\{k\}) \leq F\left(I_{k-1}\right)
$$

for all $k \in\{2, \ldots, n\}$, and finally, by Theorem 2.1, $F\left(I_{n}\right) \geq 0$.
Corollary 2.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a convex function and $I_{k}=\{1, \ldots, k\}$ $(k=1, \ldots, n)$. Let $\mathbf{w}=\left\{w_{i}\right\}_{i \in I_{n}}, \mathbf{x}=\left\{x_{i}\right\}_{i \in I_{n}}$ be real sequences such that $x_{i} \in[a, b]\left(i \in I_{n}\right)$.
If $w_{i}>0$ for all $i=1, \ldots, n$, then

$$
\begin{align*}
F\left(I_{n}\right) \geq & \max _{1 \leq i<j \leq n}\left\{(w _ { i } + w _ { j }) \left[f(a)+f(b)-\frac{w_{i} f\left(x_{i}\right)+w_{j} f\left(x_{j}\right)}{w_{i}+w_{j}}\right.\right. \\
& \left.\left.-f\left(a+b-\frac{w_{i} x_{i}+w_{j} x_{j}}{w_{i}+w_{j}}\right)\right]\right\}, \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
F\left(I_{n}\right) \geq \max _{1 \leq i \leq n}\left\{w_{i}\left[f(a)+f(b)-f\left(x_{i}\right)-f\left(a+b-x_{i}\right)\right]\right\} \tag{9}
\end{equation*}
$$

If \mathbf{w} satisfy (2) and $A_{I_{n}}(\mathbf{x}, \mathbf{w}) \in[a, b]$, then

$$
\begin{align*}
F\left(I_{n}\right) \leq \min _{2 \leq j \leq n}\{ & \left(w_{1}+w_{j}\right)\left[f(a)+f(b)-\frac{w_{1} f\left(x_{1}\right)+w_{j} f\left(x_{j}\right)}{w_{1}+w_{j}}\right. \\
& \left.\left.-f\left(a+b-\frac{w_{1} x_{1}+w_{j} x_{j}}{w_{1}+w_{j}}\right)\right]\right\} \tag{10}
\end{align*}
$$

Proof. Suppose that $w_{i}>0$ for all $i=1, \ldots, n$. Similarly as $F\left(I_{n}\right) \geq F\left(I_{2}\right)$ in Corollary 2.5, we may conclude that

$$
\begin{equation*}
F\left(I_{n}\right) \geq F(\{i, j\}) \text { for all } i \neq j \in\{1, \ldots, n\} \tag{11}
\end{equation*}
$$

so the inequality (8) immediately follows. From we have $F\left(I_{n}\right) \geq F(\{i\})$ for all $i \in\{1, \ldots, n\}$, so the inequality (9) is also proved.

The inequality 10 can be proved in the similar way.
REmark 2.7. Analogous assertions can be formulated for concave functions using the fact that f is concave iff $-f$ is convex.

3. APPLICATIONS

Let A_{n}, G_{n}, H_{n}, and $M_{n}^{[r]}$ be the arithmetic, geometric, harmonic, and power mean of order r, respectively, of the real numbers $x_{i} \in[a, b]$, where $0<a<b$, formed with the positive weights $w_{i}(i=1, \ldots, n)$. For the various properties of these means and relations among them we refer the reader to [2]. For example, it is well known that

$$
\begin{aligned}
\left(\frac{A_{n}}{G_{n}}\right)^{W_{n}} & \geq\left(\frac{A_{n-1}}{G_{n-1}}\right)^{W_{n-1}} \geq \cdots \geq\left(\frac{A_{1}}{G_{1}}\right)^{W_{1}} \geq 1 \\
W_{n}\left(A_{n}-G_{n}\right) & \geq W_{n-1}\left(A_{n-1}-G_{n-1}\right) \geq \cdots \geq W_{1}\left(A_{1}-G_{1}\right) \geq 0
\end{aligned}
$$

If we define

$$
\begin{aligned}
& \widetilde{A}_{n}:=a+b-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}=a+b-A_{n} \\
& \widetilde{G}_{n}:=\frac{a b}{\left(\prod_{i=1}^{n} x_{i}^{w_{i}}\right)^{\frac{1}{W_{n}}}}=\frac{a b}{G_{n}} \\
& \widetilde{H}_{n}:=\left(a^{-1}+b^{-1}-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}^{-1}\right)^{-1}=\left(a^{-1}+b^{-1}-H_{n}^{-1}\right)^{-1}, \\
& \widetilde{M}_{n}^{[r]}:=\left(a^{r}+b^{r}-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} x_{i}^{r}\right)^{\frac{1}{r}}=\left(a^{r}+b^{r}-\left(M_{n}^{[r]}\right)^{r}\right)^{\frac{1}{r}},
\end{aligned}
$$

then we have the following results.
Theorem 3.1. (i)

$$
\begin{equation*}
\left(\frac{\widetilde{A}_{n}}{\widetilde{G}_{n}}\right)^{W_{n}} \geq\left(\frac{\widetilde{A}_{n-1}}{\widetilde{G}_{n-1}}\right)^{W_{n-1}} \geq \cdots \geq\left(\frac{\widetilde{A}_{1}}{\widetilde{G}_{1}}\right)^{W_{1}} \geq 1 \tag{12}
\end{equation*}
$$

(ii)

$$
W_{n}\left(\widetilde{A}_{n}-\widetilde{G}_{n}\right) \geq W_{n-1}\left(\widetilde{A}_{n-1}-\widetilde{G}_{n-1}\right) \geq \cdots \geq W_{1}\left(\widetilde{A}_{1}-\widetilde{G}_{1}\right) \geq 0 .
$$

Proof. (i) Applying Corollary 2.5 to the convex function $f(x)=-\ln x$, we obtain

$$
\ln \left(\frac{\widetilde{A}_{n}}{\widetilde{G}_{n}}\right)^{W_{n}} \geq \ln \left(\frac{\widetilde{A}_{n-1}}{\widetilde{G}_{n-1}}\right)^{W_{n-1}} \geq \cdots \geq \ln \left(\frac{\widetilde{A}_{1}}{\widetilde{G}_{1}}\right)^{W_{1}} \geq 0
$$

from which $\sqrt{12}$ follows.
(ii) Applying Corollary 2.5 to the convex function $f(x)=\exp x$, and replacing a, b, and x_{i} with $\ln a, \ln b$, and $\ln x_{i}$ respectively, we obtain

$$
W_{n}\left(\widetilde{A}_{n}-\widetilde{G}_{n}\right) \geq W_{n-1}\left(\widetilde{A}_{n-1}-\widetilde{G}_{n-1}\right) \geq \cdots \geq W_{1}\left(\widetilde{A}_{1}-\widetilde{G}_{1}\right) \geq 0
$$

since in this case

$$
\begin{align*}
F\left(I_{k}\right) & =W_{k}\left(a+b-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} x_{i}-\exp \left(\ln a+\ln b-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} \ln x_{i}\right)\right) \\
& =W_{k}\left(\widetilde{A}_{k}-\widetilde{G}_{k}\right) \tag{i}
\end{align*}
$$

Corollary 3.2.

$$
\left(\frac{\widetilde{G}_{n}}{\widetilde{H}_{n}}\right)^{W_{n}} \geq\left(\frac{\widetilde{G}_{n-1}}{\widetilde{H}_{n-1}}\right)^{W_{n-1}} \geq \cdots \geq\left(\frac{\widetilde{G}_{1}}{\widetilde{H}_{1}}\right)^{W_{1}} \geq 1
$$

(ii)

$$
W_{n}\left(\frac{1}{\widetilde{H}_{n}}-\frac{1}{\widetilde{G}_{n}}\right) \geq W_{n}\left(\frac{1}{\widetilde{H}_{n-1}}-\frac{1}{\widetilde{G}_{n-1}}\right) \geq \cdots \geq W_{1}\left(\frac{1}{\widetilde{H}_{1}}-\frac{1}{\widetilde{G}_{1}}\right) \geq 0
$$

Proof. Directly from Theorem 3.1 by the substitutions $a \rightarrow \frac{1}{a}, b \rightarrow \frac{1}{b}$, $x_{i} \rightarrow \frac{1}{x_{i}}$.

Theorem 3.3. For $r \leq 1$,

$$
\begin{equation*}
W_{n}\left(\widetilde{A}_{n}-\widetilde{M}_{n}^{[r]}\right) \geq W_{n-1}\left(\widetilde{A}_{n-1}-\widetilde{M}_{n-1}^{[r]}\right) \geq \cdots \geq W_{1}\left(\widetilde{A}_{1}-\widetilde{M}_{1}^{[r]}\right) \geq 0 \tag{13}
\end{equation*}
$$

For $r \geq 1$, the inequalities (13) are reversed.
Proof. Suppose that $r \leq 1$. Applying Corollary 2.5 to the convex function $f(x)=x^{\frac{1}{r}}$, and replacing a, b, and x_{i} with a^{r}, b^{r}, and x_{i}^{r} respectively, we obtain (13) since in this case

$$
\begin{aligned}
F\left(I_{k}\right) & =W_{k}\left(a+b-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} x_{i}-\left(a^{r}+b^{r}-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} x_{i}^{r}\right)^{\frac{1}{r}}\right) \\
& =W_{k}\left(\widetilde{A}_{k}-\widetilde{M}_{k}^{[r]}\right)
\end{aligned}
$$

If $r \geq 1$, then the function $f(x)=x^{\frac{1}{r}}$ is concave, so the inequalities (13) are reversed.

Corollary 3.4.

$$
W_{n}\left(\widetilde{A}_{n}-\widetilde{H}_{n}\right) \geq W_{n-1}\left(\widetilde{A}_{n-1}-\widetilde{H}_{n-1}\right) \geq \cdots \geq W_{1}\left(\widetilde{A}_{1}-\widetilde{H}_{1}\right) \geq 0
$$

Remark 3.5. Obviously, the assertion (ii) from Theorem 3.1 is also direct consequence of Theorem 3.3.

Theorem 3.6. Let $r, s \in \mathbb{R}, r \leq s$.
(i) If $s>0$, then

$$
\begin{align*}
W_{n}\left(\left(\widetilde{M}_{n}^{[s]}\right)^{s}-\left(\widetilde{M}_{n}^{[r]}\right)^{s}\right) & \geq W_{n-1}\left(\left(\widetilde{M}_{n-1}^{[s]}\right)^{s}-\left(\widetilde{M}_{n-1}^{[r]}\right)^{s}\right) \tag{14}\\
& \geq \cdots \geq W_{1}\left(\left(\widetilde{M}_{1}^{[s]}\right)^{s}-\left(\widetilde{M}_{1}^{[r]}\right)^{s}\right) \geq 0
\end{align*}
$$

(ii) If $s<0$, then the inequalities (14) are reversed.

Proof. Suppose that $s>0$. Applying Corollary 2.5 to the convex function $f(x)=x^{\frac{s}{r}}$, and replacing a, b, and x_{i} with a^{r}, b^{r}, and x_{i}^{r} respectively, we obtain (14) since

$$
\begin{aligned}
F\left(I_{k}\right) & =W_{k}\left(a^{s}+b^{s}-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} x_{i}^{s}-\left(a^{r}+b^{r}-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} x_{i}^{r}\right)^{\frac{s}{r}}\right) \\
& =W_{k}\left(\left(\widetilde{M}_{k}^{[s]}\right)^{s}-\left(\widetilde{M}_{k}^{[r]}\right)^{s}\right) .
\end{aligned}
$$

If $s<0$, then the function $f(x)=x^{\frac{s}{r}}$ is concave, so (14) is reversed.
Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a strictly monotonic and continuous function, where $[a, b] \subset \mathbb{R}$. Then for a given n-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in[a, b]^{n}$ and positive n-tuple $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$, the value

$$
M_{\varphi}^{[n]}=\varphi^{-1}\left(\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} \varphi\left(x_{i}\right)\right)
$$

is well defined and is called quasi-arithmetic mean of \mathbf{x} with weights \mathbf{w} (see for example [2, p. 215]). If we define

$$
\widetilde{M}_{\varphi}^{[n]}:=\varphi^{-1}\left(\varphi(a)+\varphi(b)-\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} \varphi\left(x_{i}\right)\right),
$$

then we have the following results.
Theorem 3.7. Let $\varphi, \psi:[a, b] \rightarrow \mathbb{R}$ be strictly monotonic and continuous functions. If $\psi \circ \varphi^{-1}$ is convex on $[a, b]$, then

$$
\begin{align*}
W_{n}\left(\psi\left(\widetilde{M}_{\psi}^{[n]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[n]}\right)\right) & \geq W_{n-1}\left(\psi\left(\widetilde{M}_{\psi}^{[n-1]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[n-1]}\right)\right) \tag{15}\\
& \geq \cdots \geq W_{1}\left(\psi\left(\widetilde{M}_{\psi}^{[1]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[1]}\right)\right) \geq 0
\end{align*}
$$

If $\psi \circ \varphi^{-1}$ is concave on $[a, b]$, then the inequalities (15) are reversed.
Proof. Applying Corollary 2.5 to the convex function $f=\psi \circ \varphi^{-1}$, and replacing a, b, and x_{i} with $\varphi(a), \varphi(b)$, and $\varphi\left(x_{i}\right)$ respectively, we obtain (15) since in this case

$$
\begin{aligned}
F\left(I_{k}\right)= & W_{k}\left(\psi(a)+\psi(b)-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} \psi\left(x_{i}\right)\right. \\
& \left.-\left(\psi \circ \varphi^{-1}\right)\left(\varphi(a)+\varphi(b)-\frac{1}{W_{k}} \sum_{i=1}^{k} w_{i} \varphi\left(x_{i}\right)\right)\right) \\
= & W_{k}\left(\psi\left(\widetilde{M}_{\psi}^{[k]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[k]}\right)\right) .
\end{aligned}
$$

Remark 3.8. Theorems 3.1, 3.3 and 3.6 follow from Theorem 3.7, by choosing adequate functions φ and ψ, and appropriate substitutions.

Corollary 3.9. Let $\varphi, \psi:[a, b] \rightarrow \mathbb{R}$ be strictly monotonic and continuous functions. If $\psi \circ \varphi^{-1}$ is convex on $[a, b]$, then

$$
\begin{align*}
& W_{n}\left(\psi\left(\widetilde{M}_{\psi}^{[n]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[n]}\right)\right) \\
& \geq \max _{1 \leq i<j \leq n}\left\{(w _ { i } + w _ { j }) \left[\psi(a)+\psi(b)-\frac{w_{i} \psi\left(x_{i}\right)+w_{j} \psi\left(x_{j}\right)}{w_{i}+w_{j}}\right.\right. \tag{16}\\
& \left.\left.\quad-\left(\psi \circ \varphi^{-1}\right)\left(\varphi(a)+\varphi(b)-\frac{w_{i} \varphi\left(x_{i}\right)+w_{j} \varphi\left(x_{j}\right)}{w_{i}+w_{j}}\right)\right]\right\},
\end{align*}
$$

and

$$
\begin{align*}
& W_{n}\left(\psi\left(\widetilde{M}_{\psi}^{[n]}\right)-\psi\left(\widetilde{M}_{\varphi}^{[n]}\right)\right) \tag{17}\\
& \geq \max _{1 \leq i \leq n}\left\{w_{i}\left[\psi(a)+\psi(b)-\psi\left(x_{i}\right)-\left(\psi \circ \varphi^{-1}\right)\left(\varphi(a)+\varphi(b)-\varphi\left(x_{i}\right)\right)\right]\right\} .
\end{align*}
$$

If $\psi \circ \varphi^{-1}$ is concave on $[a, b]$, then the inequalities (16) and 17], with max replaced by min , are reversed.

Remark 3.10. Analogous assertions can be formulated for the means of Mercer's type formed with weights satisfying (2).

4. FURTHER GENERALIZATION

Let E be a nonempty set, \mathcal{A} be an algebra of subsets of E, and L be a linear class of real valued functions $f: E \rightarrow \mathbb{R}$ having the properties:

L1: $f, g \in L \Rightarrow(\alpha f+\beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$;
L2: $1 \in L$, i.e., if $f(t)=1$ for $t \in E$, then $f \in L$;
L3: $f \in L, E_{1} \in \mathcal{A} \Rightarrow f \cdot \chi_{E_{1}} \in L$,
where $\chi_{E_{1}}$ is the indicator function of E_{1}. It follows from L2, L3 that $\chi_{E_{1}} \in L$ for every $E_{1} \in \mathcal{A}$.

Let $A: L \rightarrow \mathbb{R}$ be an isotonic linear functional having the properties:
A1: $A(\alpha f+\beta g)=\alpha A(f)+\beta A(g)$ for all $f, g \in L, \alpha, \beta \in \mathbb{R}$;
A2: $f \in L, f(t) \geq 0$ on $E \Rightarrow A(f) \geq 0$;
A3: $A(1)=1$.
It follows from L3 that for every $E_{1} \in \mathcal{A}$ such that $A\left(\chi_{E_{1}}\right)>0$, the functional A_{1} defined for all $f \in L$ as $\frac{A\left(f \cdot \chi_{E_{1}}\right)}{A\left(\chi_{E_{1}}\right)}$ is an isotonic linear functional with $A_{1}(1)=1$. Furthermore, we observe that

$$
\begin{gather*}
A\left(\chi_{E_{1}}\right)+A\left(\chi_{E \backslash E_{1}}\right)=1, \tag{18}\\
A(f)=A\left(f \cdot \chi_{E_{1}}\right)+A\left(f \cdot \chi_{E \backslash E_{1}}\right) . \tag{19}
\end{gather*}
$$

Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a continuous function, where $[a, b] \subset \mathbb{R}$. In [1, under the above assumptions, the following variant of the Jessen's inequality
is proved: if φ is convex, then

$$
\begin{equation*}
\varphi(a+b-A(f)) \leq \varphi(a)+\varphi(b)-A(\varphi(f)) ; \tag{20}
\end{equation*}
$$

if φ is concave, then the inequality 20 is reversed.
For $E_{1} \in \mathcal{A}$ and $f \in L$ such that $\varphi(f) \in L$, we define the function F_{f} : $\mathcal{A} \rightarrow \mathbb{R}$ with
$F_{f}\left(E_{1}\right)=A\left(\chi_{E_{1}}\right)\left[\varphi(a)+\varphi(b)-\frac{A\left(\varphi(f) \cdot \chi_{E_{1}}\right)}{A\left(\chi_{E_{1}}\right)}-\varphi\left(a+b-\frac{A\left(f \cdot \chi_{E_{1}}\right)}{A\left(\chi_{E_{1}}\right)}\right)\right]$.
Theorem 4.1. Under the above assumptions, if φ is convex, then

$$
\begin{equation*}
F_{f}(E) \geq F_{f}\left(E_{1}\right)+F_{f}\left(E \backslash E_{1}\right) \geq F_{f}\left(E_{1}\right) \geq 0 \tag{21}
\end{equation*}
$$

for all $E_{1} \in \mathcal{A}$ such that $0<A\left(\chi_{E_{1}}\right)<1$.
Proof. Since φ is continuous and convex, the same is also true for the function

$$
\psi:[a, b] \rightarrow \mathbb{R}
$$

defined as

$$
\psi(t)=\varphi(a+b-t), \quad t \in[a, b] .
$$

Hence, the following inequality holds for every $t_{1}, t_{2} \in[a, b]$ and $p, q \in \mathbb{R}$ such that $p+q=1$

$$
p \psi\left(t_{1}\right)+q \psi\left(t_{2}\right) \geq \psi\left(p t_{1}+q t_{2}\right),
$$

i.e.,

$$
p \varphi\left(a+b-t_{1}\right)+q \varphi\left(a+b-t_{2}\right) \geq \varphi\left(a+b-\left(p t_{1}+q t_{2}\right)\right) .
$$

If we let $p=A\left(\chi_{E_{1}}\right), q=A\left(\chi_{E \backslash E_{1}}\right), t_{1}=\frac{A\left(f \cdot \chi_{E_{1}}\right)}{A\left(\chi_{E_{1}}\right)}$, and $t_{2}=\frac{A\left(f \cdot \chi_{E \backslash E_{1}}\right)}{A\left(\chi_{E \backslash E_{1}}\right)}$, then $p+q=1$ by the equality (18), and $p t_{1}+q t_{2}=A(f)$ by the equality (19). Similarly, we can use that

$$
A(\varphi(f))=A\left(\varphi(f) \cdot \chi_{E_{1}}\right)+A\left(\varphi(f) \cdot \chi_{E \backslash E_{1}}\right)
$$

Hence, we have

$$
\begin{aligned}
& A\left(\chi_{E_{1}}\right) \varphi\left(a+b-\frac{A\left(f \cdot \chi_{E_{1}}\right)}{A\left(\chi_{E_{1}}\right)}\right)+A\left(\chi_{E \backslash E_{1}}\right) \varphi\left(a+b-\frac{A\left(f \cdot \chi_{E \backslash E_{1}}\right)}{A\left(\chi_{E \backslash E_{1}}\right)}\right) \\
& \geq \varphi(a+b-A(f)) .
\end{aligned}
$$

Multiplying the above inequality with (-1) and adding to the both sides the term

$$
\varphi(a)+\varphi(b)-A(\varphi(f))
$$

we obtain the first inequality in (21).
To prove the remaining two inequalities in (21), observe that they are simple consequences of (20) applied to the isotonic linear functional A_{1} defined for $f \in L$ as $\frac{A\left(f \cdot \chi_{E_{1}}\right)}{A\left(\chi E_{1}\right)}$ and having $A_{1}(1)=1$.

Corollary 4.2. Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be a partition of E (i.e., $E=\bigcup_{j=1}^{n} E_{j}, E_{i} \cap$ $E_{j}=\emptyset$ for all $\left.i \neq j \in\{1, \ldots, n\}\right)$ such that $0<A\left(\chi_{E_{j}}\right)<1$ for all $j \in$ $\{1, \ldots, n\}$. If φ is convex, then

$$
\begin{equation*}
F_{f}(E) \geq \sum_{j=1}^{n} F_{f}\left(E_{j}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{align*}
F_{f}(E) & \geq F_{f}\left(\bigcup_{j=1}^{n-1} E_{j}\right) \geq F_{f}\left(\bigcup_{j=1}^{n-2} E_{j}\right) \tag{23}\\
& \geq \cdots \geq F_{f}\left(E_{1} \cup E_{2}\right) \geq F_{f}\left(E_{1}\right) \geq 0
\end{align*}
$$

Proof. Directly from Theorem 4.1 by induction.
REmark 4.3. If φ is concave, then the inequalities $21-23$ are reversed.
Corollary 4.4. Let $\left\{E_{1}, \ldots, E_{n}\right\}$ be a partition of E such that $0<A\left(\chi_{E_{j}}\right)$ <1 for all $j \in\{1, \ldots, n\}$. If φ is convex, then

$$
\begin{equation*}
F_{f}(E) \geq \max _{1 \leq i<j \leq n}\left\{F_{f}\left(E_{i} \cup E_{j}\right)\right\} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{f}(E) \geq \max _{1 \leq j \leq n}\left\{F_{f}\left(E_{j}\right)\right\} \tag{25}
\end{equation*}
$$

If φ is concave, then the inequalities (24) and (25), with max replaced by min, are reversed.

REmark 4.5. We also may obtain similar results as in Theorem 3.7 and Corollary 3.9, for the generalized quasi-arithmetic means of Mercer's type defined in [1], as

$$
\widetilde{M}_{\varphi}(f, A)=\varphi^{-1}(\varphi(a)+\varphi(b)-A(\varphi(f)))
$$

REFERENCES

[1] Cheung, W. S., Matković, A. and Pečarić, J., A variant of Jessen's Inequality and generalized means, JIPAM, 7(1), Article 10, 2006.
[2] Bullen, P. S., Mitrinović, D. S. and Vasić, P. M., Means and Their Inequalities, Reidel, Dordrecht, 1988.
[3] Mercer, A. McD., A variant of Jensen's inequality, JIPAM, 4(4), Article 73, 2003.
[4] Pečarić, J. E., Proschan, F. and Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc., 1992.

Received by the editors: January 5, 2006.

[^0]: *Department of Mathematics, Faculty of Natural Sciences, Mathematics and Education, University of Split, Teslina 12, 21000 Split, Croatia, e-mail: anita@pmfst.hr.
 ${ }^{\dagger}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia, e-mail: pecaric@hazu.hr.

