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REFINEMENTS OF JENSEN-MERCER’S INEQUALITY FOR INDEX
SET FUNCTIONS WITH APPLICATIONS
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Abstract. Some refinements of Jensen-Mercer’s inequality are presented. They
are used to refine few inequalities among various means of Mercer’s type, and
they are further generalized for linear functionals.
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1. INTRODUCTION

In paper [3] A. McD. Mercer proved the following variant of Jensen’s in-
equality, to which we will refer as to the “Jensen-Mercer’s inequality”.

THEOREM A. Let [a,b] be an interval in R, and z1,...,z, € [a,b]. Let
w1, ..., w, be nonnegative real numbers such that W,, = > 1" jw; > 0. If f is
a conver function on [a,b], then

W f <a+b - Zw) < f(a) + f(b) — V;nizlwim).

In this paper we give some refinements of and we present several ap-
plications of them. In Section 2 we first prove the Jensen-Mercer’s inequality
for weights satisfying conditions as for the reversed Jensen’s inequality (see
for example [4, p. 83]), and after that we prove refinements of Theorem A,
using an index set function. In Section 3 we use these results to refine some
well known inequalities among arithmetic, geometric, harmonic, power and
quasi-arithmetic means of Mercer’s type. In Section 4 we generalize our main
results for linear isotonic functionals.
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2. MAIN RESULTS

THEOREM 2.1. Let wy,...,w, be real numbers such that
(2) w1 >0, w;<0fori=2...,n, W,>0.
Let [a,b] be an interval in R, and x1,...,z, € [a b] such that o >i) wiz; €

[a,b]. If f is a convex function on |a, b b then (1)) holds.
To prove Theorem 2.1 we need the following Lemma:
LEMMA 2.2. Let f : [a,b] — R be a convex function. Then for any x € [a, b
flatb—x) < f(a)+ f(b) = f(x).

Proof. For every = € [a,b], there exists a unique A € [0, 1] such that z =
Aa+ (1 —X)b. Since f is convex, we have

flatb—z)=fla+b—IAa—(1—-A)D)
=f((1=A)a+Ab)
< (1 =A)fla)+Af (D)
= f(a)+f(b) - ( fla)+ (1 =X)f()
< fla)+f(b) - ACL+(1—A)b)
=f(a)+f(b) - f(z). O
Proof of Theorem [2.1 Weights wj,...,w, satisfy conditions (2) and

W%l S wix; € [a,b], so by Lemma and by the reversed Jensen’s inequal-
ity, we have

f<a+b_zwz$1><f()+f < szxz)

nz 1
Sf(a)+f(b)—WZwif(fCi)~ U
Lt

Let I be a finite nonempty set of positive integers, and let f : [a,b] — R.
Let w = {w;};c;, X = {®i};c; be real sequences such that z; € [a,b] for all
i € I, and Ar (x,w) = v{%EiGI“’%’” € [a,b], where W; = Y ;crw;. If we
define the index set function F' as

F(I)=Wr |f(a)+ —*szf (z:) — (a‘i‘b_ml/zwil'i)]a

Iier Iier
then the following theorem is valid.
THEOREM 2.3. Let f : [a,b] — R be a convex function. Let I and J be finite
nonempty sets of positive integers such that I'NJ = @. Let w = {w;};cr 7,

x = {@i};cry be real sequences such that x; € [a,b] (i € TUJ), Wrys > 0,
and Ag (x,w) € [a,b] (S=1,J,1UJ). If W >0 and W; > 0, then

(3) F(IUJ) > F(I)+ F(J).



3 Refinements of Jensen-Mercer’s inequality 73

If Wiy - Wy <0, then the inequality 1s reversed.

Proof. Since f is convex, the same is also true for the function g : [a,b] — R
defined as g(y) = f(a+b—vy), y € [a,b]. Hence, the following inequality holds
for every y1,y2 € [a,b] and uy,ug > 0

(4) g <u1y1 + u2y2> < g (y1) + uag (y2)7
U1 + U2 U + U2
ie.,
u1yr +u
(5) (u1+uQ)f<a+b—m) <wuif(a+b—y1)tuaf(a+b—1y2).

If up > 0, ug < 0, ug +ug > 0 and AE2E ¢ [q b], then (@), ie., is
reversed. This is a simple consequence of after we make the substitutions
Uy — U+ ug, Uy — —ug, Y — %, and yy — yo (similarly as in the
proof of the reversed Jensen’s inequality).

Suppose that Wy > 0 and W; > 0. If we let
up =Wr, ug =Wy, y1 = A1 (x,w), y2 = Ay (x, W)
in , then we obtain
Wiusf (a+b— Ay (x,w))
<Wifla+b—Ar(x,w))+Wyf(a+b—Ay(x,w)).

Multiplying the above inequality by (—1) and adding to the both sides the
term

1
Wi

Wiug [f(a) +f(b) - > wz'f(xi)l )

ielUuJ
it follows that

1 1
Wius | f(a) + f(b) — Wi ig:i; wi f (v;) — f (a +b— W lgL‘ijzxzﬂ
> Wi [f(a) + f(b) — Ml/}zwz‘f(xi) —f (G—i‘b— Wlflzwzxzﬂ
iel iel

W [f<a>+f<b> - o Swif ()~ f <a+b— V;zwxﬂ |

icJ I e
In case when W; - W; < 0, for instance W; > 0 and W; < 0, we again let
w=Wr,ug =Wy, y1 = A (x,w), yo = Ay (x, W),
and reversed follows from reversed . O

COROLLARY 2.4. Let f : [a,b] — R be a convex function. Let Iy,..., Iy
be finite nonempty sets of positive integers such that I; N1; = @, for all
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i #j € {l,....k}. Let w = {wi}ieulely x = {xi}ieuﬁzllj be real se-
quences such that x; € [a,b] (z € U;?:llj), Wye 1, >0, and As (x,w) € [a,b]
=
(5:11,.. I, ULy I (5:2,...,n)). IfWiy, >0 =1,....k), then
k k
(6) FIUL|>> FU
j=1

If Wi, >0 and Wy, <0 (j =2,...,k), then the inequality @ 15 reversed.

Proof. Directly from Theorem by induction. O

The following corollaries give refinements of Theorem A.

COROLLARY 2.5. Let f : [a,b] — R be a convez function and I, = {1, ... ,k}
(k=1,...,n). Let w = {wi},c; , X = {mi};c; be real sequences such that

€ [a,b] (i € I,), and wy > 0.
If w; >0 fori=2,...,n, then

(7) F(ln) 2 F(In-1) > F(I ) F(IL) = 0.
Ifw; <0 fori=2,...,n, Wi, >0 and Ay, (x,w) € [a,b], then
O§F(I) F(I,—1)<--- < (12)<F(Il)

Proof. Suppose that w; > 0 for ¢ = 2,...,n. First we show that

F({k}) =wi[f(a) + f(0) = f(zr) = fla+b—ak)] 20
for any k € I,,. By Lemma[2.2] we have f (a+b—zx) < f (a)+ f (b) — f (z1),
and since wy > 0, it follows that F' ({k}) > 0. Now, by Theorem

F(ly) = F(Ip—1 U{k}) = F(lg-1) + F ({k}) = F(Ix-1)

for all k € {2,...,n}.

Suppose that w; <0 for i =2,...,n, Wi, >0 and Ay, (x,w) € [a,b]. First
we show that from Aj, (x,w) € [a,b] it follows that A;, , (x,w) € [a,b]. If
we multiply inequality

a< A (x,w)<b
by Wy, > 0, and then add to the both sides —wyxy,, we obtain

Wi a—wpxy, < Z wix; < Wi b— wpy,.
i€l 1

Multiplying the above inequality by W

1
WInfl

(Wi, ,a+ wpa — wpzy) < A, (x, W)

1
<
WIn—l

(Wln—lb + wnb - wnxn) 9
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ie.,
Wn, Wn,
- <A <b b— .
Since, Win,l (a —xy) >0 and Wi’il (b —x,) <0, it follows that

a<Ap ,(x,w)<b.

By iteration we obtain Ay, (x,w) € [a,b] for all k € {2,...,n — 1}. Similarly
as before we have F ({k}) <0 for any k € {2,...,n}. Now, by Theorem [2.3]

F(Iy) = F(Iy—1 U {k}) < F(I—1) + F ({k}) < F(Iy-1)

for all k € {2,...,n}, and finally, by Theorem 2.1 F(I,) > 0. O
COROLLARY 2.6. Let f : [a,b] — R be a convez function and I, = {1, ..., k}
(k=1,...,n). Let w = {wi},c; , X = {mi};c; be real sequences such that

x; € [a,b] (i € I,).
If w; >0 foralli=1,...,n, then

) wif (i) + w; f (x;)

F(I,) > max {(wZ + wj) [f(a) + f(b

~ 1<i<j<n w; + w;
W;T; + W;T,;
(8) _f<a+b_wi+w;j>]}’
and
(9) F(In) 2 max {w; [f(a) + f(b) — f(2:) — f(a+b— )]}

If w satisfy and Ar, (x,w) € [a,b], then

Fl) < jmin, {<w1 T+ wy) | fa) + 1) — 2 @21) ij (2;)
wW1T1 + W;iT;
" o mn )]}

Proof. Suppose that w; > 0 for all i = 1,...,n. Similarly as F(I,) > F(I2)
in Corollary 2.5 we may conclude that

(11) F(I,) > F({i,j}) foralli # j € {1,...,n},

so the inequality (8] immediately follows. From we have F'(I,) > F ({i})
for all i € {1,...,n}, so the inequality @D is also proved.
The inequality can be proved in the similar way. O

REMARK 2.7. Analogous assertions can be formulated for concave functions
using the fact that f is concave iff —f is convex. O



76 A. Matkovié¢ and J. Pecarié 6

3. APPLICATIONS

Let A,, G,, Hy, and MJLT] be the arithmetic, geometric, harmonic, and
power mean of order r, respectively, of the real numbers x; € [a,b], where
0 < a < b, formed with the positive weights w; (i =1,...,n). For the various
properties of these means and relations among them we refer the reader to [2].
For example, it is well known that

() =) "= (@)
on > >.o> (2 >1,
Gn o Gn—l o o Gl o

Wi (An — Gp) > Wy1 (Ap—1 — Gp—1) > - > Wi (A1 — Gh) > 0.
If we define

1 n
A, ::a+b—m;wixi:a+b—fln,
~ ab ab
Gpi=—m——— = —,

\Nwr G
(fr=)

i=1

-1
~ 1 X -1
H, = <a_1 +b = A Zwi$i1> = ((I_l +b71 — H771> )
n =1

3=

—~ 1 n N
[r] . r (O T _ r (. [r] r
M= (a Y - Z§1:w,xl> (am 0= (M),
then we have the following results.

THEOREM 3.1. (i)

(12) <%"> . > (%"‘1>Wnl >.> (%) " > 1,
G, Gn_1 1
(ii)
Wh (An — én) > Who1 (An—l - én_1> >...>W; (ﬁ1 — él) > 0.

Proof. (i) Applying Corollary to the convex function f(z) = —Inz, we

obtain
e Whn e Whn-1 e Wi
m [ 4n >1In An-a >...>In A1 >0,
Gy, Gn-1 G

from which follows.
(ii) Applying Corollary to the convex function f(z) = exp z, and replac-
ing a, b, and x; with Ina, Inb, and In x; respectively, we obtain

Wn (ﬁn - én) Z Wn—l (gn—l - én—l) > Z Wl (Al - él) Z 07
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since in this case

1 k
F(I) = Wk<a+b—2wlxl exp(lna—l—lnb—Wszlnxl))

=1 =1
= Wi (A = Gr). O

COROLLARY 3.2. (i)
én Wh én—l Whn—1 él Wi
.l > — > o> = > 1’
H, H,_1 H,

W (o= =) > W, = — S )
Hn Gn Hnl Gn_l Hl Gl

Proof. Directly from Theorem by the substitutions a — é, b — %,

THEOREM 3.3. Forr <1,
(13)
W (Ay = MEE) > Wosy (Ao = B2,) > o> W (A — 3211 > 0

Forr > 1, the inequalities are reversed.

Proof. Suppose that r < 1. Applying Corollary [2.5] to the convex function
1
f(z) = z7, and replacing a, b, and z; with a”, b", and z] respectively, we
obtain (|13)) since in this case

1
k -
1
F(Iy) =Wk [a+b— —szfm (aT +b" - Zw;ﬁ)
i=1 Wi i
— Wi (A 1Y),

If » > 1, then the function f(z) = rr s concave, so the inequalities are
reversed. 0

COROLLARY 3.4.

W(A— )>Wn 1(An 1—1{17171)_ >W1(A1 )>0
REMARK 3.5. Obviously, the assertion (ii) from Theorem is also direct
consequence of Theorem [3.3] O

THEOREM 3.6. Letr,s e R, r < s.
(i) If s> 0, then

bW () () 2w (L) (L))
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(ii) If s <0, then the inequalities are reversed.

Proof. Suppose that s > 0. Applying Corollary [2.5] to the convex function
f(z) = z+, and replacing a, b, and z; with a”, b", and z! respectively, we

obtain since
1k 1k -
F(Ik.):Wk as—l—bs—VVkawa—(ar—i—br—m;wzx:)

i=1
- (T - ().
If s < 0, then the function f(z) = z+ is concave, so is reversed. O

Let ¢ : [a,b] — R be a strictly monotonic and continuous function, where
[a,b] € R. Then for a given n-tuple x = (21,...,2,) € [a,b]" and positive
n-tuple w = (w1, ..., w,) € R", the value

1 n
n -1
MS[D = P (an ;wz‘%@ (%))

is well defined and is called quasi-arithmetic mean of x with weights w (see
for example [2], p. 215]). If we define

. B 1 &
ML] = (SD(CL) +¢(b) - szi@(fﬂi)) )
n =1
then we have the following results.

THEOREM 3.7. Let ¢, : [a,b] — R be strictly monotonic and continuous
functions. If 1 o ™1 is convex on [a,b], then

190 (1) (3)) > o (o (32— (1751
<z (s () (3 2
If 9 o o~ ! is concave on [a,b], then the inequalities are reversed.

Proof. Applying Corollary to the convex function f = 9 o ¢!, and
replacing a, b, and x; with ¢ (a), ¢ (b), and ¢ (z;) respectively, we obtain
since in this case

k
() = Wi (30 + 6 0) - 3t ()

k
— (vop™) <<P (a) + ¢ (b) - V[l,kzwm (M))
=1

(0 () o (). ]

REMARK 3.8. Theorems and [3.6] follow from Theorem by choos-
ing adequate functions ¢ and v, and appropriate substitutions. O
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COROLLARY 3.9. Let ¢, : [a,b] — R be strictly monotonic and continuous
functions. If 1 o ™1 is convex on [a,b], then

Wi (v (04") - v (M207))

1 =z, max, {“”" ) [ (0) + 1) - S o =
— (woy™) (so (a) + ¢ (b) — —F <$;>i : Z?D <mj>>1 } |

and

(17)

W (v (W17) — v (M127))
> max {wi [1 (@) +4 (5) = v (1) = (bo™") (p(a) + 0 () — ¢ (a)]}

T 1<i<n
If ¢ o o~ is concave on [a,b], then the inequalities and , with max
replaced by min, are reversed.

REMARK 3.10. Analogous assertions can be formulated for the means of
Mercer’s type formed with weights satisfying . U

4. FURTHER GENERALIZATION

Let E be a nonempty set, A be an algebra of subsets of E, and L be a linear
class of real valued functions f: E — R having the properties:

L1: f,ge L= (af+ Bg) € L for all o, B € R;

L2: 1€ L,ie.,if f(t)=1fort € E, then f € L;

L3: fe L, E; GA:>f‘XE1 €L,
where x g, is the indicator function of F;. It follows from L2, L3 that xg, € L
for every F7 € A.

Let A: L — R be an isotonic linear functional having the properties:

Al: A(af + Bg) = aA(f) + BA(g) for all f,g€ L, a,3 € R;

A2: feL,f(t)>0on E= A(f) >0;

A3: A(1)=1.

It follows from L3 that for every F; € A such that A(xg,) > 0, the

functional A; defined for all f € L as A(fxpy)

is an isotonic linear functional
Axe,)
with A; (1) = 1. Furthermore, we observe that
(18) A(xe) + A (xem) = 1,
(19) A(f) = A(f - xm) + A(f - XB\EL)-

Let ¢ : [a,b] — R be a continuous function, where [a,b] C R. In [I],
under the above assumptions, the following variant of the Jessen’s inequality
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is proved: if ¢ is convex, then

(20) pla+b—A(f) <¢la)+o ) —Alp(f));

if ¢ is concave, then the inequality is reversed.
For Ey € A and f € L such that ¢ (f) € L, we define the function Fy :
A — R with

Fy(E1) = A(xE,) w(a)+w(b)—w—¢(a+b—wﬂ,

A(xE,) A(xE,)
THEOREM 4.1. Under the above assumptions, if ¢ is conver, then
(21) Fy(E) > Fy (BEv) + Fy (E\ E1) > Fy (E1) 2 0

for all By € A such that 0 < A(xp,) < 1.

Proof. Since ¢ is continuous and convex, the same is also true for the func-
tion
Y fa,b] - R

defined as

v(t)=pla+b—1t), tE]a,b].
Hence, the following inequality holds for every t1,ts € [a,b] and p,q € R such
that p+q=1

pY (t1) +qv (t2) > ¢ (pt1 + qta) ,
i.e.,

po(a+b—t1) +qp(a+b—1tz) = p(a+b— (pt1+ qt2)).

A(f- A(f-
If we letp:A(XEl),q:A(XE\El),tI: A({;:jl)),and hz%,then

p+ g = 1 by the equality , and pt; + gt = A(f) by the equality .
Similarly, we can use that

Alp (f) = Ale (f) - xE1) + Ale (f) - XB\Ey)-

Hence, we have

oo~ ) ) (- 520

>p(a+b—A(f)).

Multiplying the above inequality with (—1) and adding to the both sides the
term

p(a)+ ¢ (b) — Alp (f))
we obtain the first inequality in .
To prove the remaining two inequalities in , observe that they are simple
consequences of applied to the isotonic linear functional A; defined for

A(fxe,) ; _
felas A(xm, ) and having A; (1) = 1. O
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n
COROLLARY 4.2. Let{Ex,..., E,} be a partition of E (i.e., E= | Ej, E;N
j=1

E; =0 for alli # j € {1,...,n}) such that 0 < A(XEj) <1 forallje
{1,...,n}. If ¢ is convex, then

n
(22) Fr(E) > Fy(Ej),
j=1
and
n—1 n—2
(23) FrEB)zFp | JE | 2F | U B
j=1 j=1
> . ZFf(ElLJEQ) ZFf(El) > 0.
Proof. Directly from Theorem by induction. O
REMARK 4.3. If ¢ is concave, then the inequalities f are reversed.

0

COROLLARY 4.4. Let{E1, ..., E,} be a partition of E such that0 < A (XEj)
<1 forallje{l,...,n}. If ¢ is convez, then

(24) F(E) > | Jax {Ff(E; UE;j)},
and
(25) Fy (E) 2 max {Fy (Ej)} -

If ¢ is concave, then the inequalities and , with max replaced by min,

are reversed.

REMARK 4.5. We also may obtain similar results as in Theorem and

Corollary [3.9] for the generalized quasi-arithmetic means of Mercer’s type
defined in [I], as

M, (f,4) = ¢ (p(a) + ¢ (b) — A (). O
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