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AN APPROXIMATION ALGORITHM FOR THE AT LEAST VERSION
OF THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

P. C. POP,∗ A. HORVAT-MARC∗ and CORINA POP SITAR†

Abstract. We consider the at least version of the Generalized Minimum Span-
ning Tree Problem, denoted by L-GMSTP, which consists in finding a minimum
cost tree spanning at least one node from each node set of a complete graph
with the nodes partitioned into a given number of node sets called clusters. We
assume that the cost function attached to edges satisfies the triangle inequality
and the clusters have sizes bounded by ρ. Under these assumptions we present
a 2ρ approximation algorithm.
The algorithm works by rounding an optimal fractional solution to a linear pro-
gramming relaxation. Our technique is based on properties of optimal solutions
to the linear programming formulation of the minimum spanning tree problem
and the parsimonious property of Goemans and Bertsimas.
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1. INTRODUCTION

The minimum spanning tree (MST) problem can be generalized in a natural
way by considering instead of nodes node sets (clusters) and asking for a
minimum cost tree spanning exactly one node from each cluster. This problem
is called the generalized minimum spanning tree problem (GMSTP) and it was
introduced by Myung et al. [6].

Meanwhile, the GMSTP have been studied by several authors w.r.t. heuris-
tics and metaheuristics, LP-relaxations, polyhedral aspects and approximabil-
ity, cf., e.g. Feremans, Labbe, and Laporte [3], Feremans [2], Pop, Kern and
Still [10, 11] and Pop [7, 8].

Two variants of the generalized minimum spanning tree problem were con-
sidered in the literature: one in which in addition to the cost attached to the
edges, we have costs attached also to the nodes, called the prize collecting gen-
eralized minimum spanning tree problem, see [9] and the second one consists
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in finding a minimum cost tree spanning at least one node from each cluster,
denoted by L-GMSTP and introduced by Dror et al. [1]. The same authors
have proven that the L-GMSTP is NP-hard.

The theory of NP-completeness has reduced hopes that the NP-hard prob-
lems can be solved within polynomially bounded computation times. At the
expense of reducing the quality of the solution by relaxing some of the require-
ments, for example we can relax the requirement that the algorithm always
finds an optimal solution, we can get considerable speed-up in complexity.
Consequently, there is much interest in approximation, heuristic and meta-
heuristic algorithms.

An algorithm is an α-approximation algorithm for an optimization problem
if

1. The algorithm runs in polynomial time.
2. The algorithm produces a solution which is within a factor of α of the

value of the optimal solution.
Approximation algorithms have been around since 1966, but in the last years

there has been a great deal of research, and two different strands converged:
complexity theorists have developed powerful tools for showing that no α-
approximation algorithms can exist unless P = NP and algorithm designers
have developed techniques that apply to a wide range of problems.

The aim of this paper is to describe an approximation algorithm for the at
least version of the generalized minimum spanning tree problem under some
special assumptions.

2. DEFINITION OF THE PROBLEM

The at least version of the generalized minimum spanning tree problem (L-
GMSTP) is defined on an undirected graph G = (V,E) with nodes partitioned
into m clusters. Let |V | = n and K = {1, 2, . . . ,m} be the index set of the
node sets (clusters). Then, V = V1 ∪ V2 ∪ . . . ∪ Vm and Vl ∩ Vk = ∅ for all
l, k ∈ K such that l 6= k. We assume that the graph G is complete and each
edge e = {i, j} ∈ E has a nonnegative cost denoted by cij .

The L-GMSTP is the problem of finding a minimum-cost tree spanning a
subset of nodes which includes at least one node from each cluster.

3. INTEGER PROGRAMMING FORMULATIONS

The L-GMSTP can be formulated as an integer program in many different
ways. For example, introducing the variables xe ∈ {0, 1}, e ∈ E and yi ∈
{0, 1}, i ∈ V , to indicate whether an edge ′e′ respectively a node ′i′ is contained
in the spanning tree, a feasible solution to the L-GMSTP can be seen as a
connected subgraph with at least one node selected from every cluster and
connecting all the clusters. Therefore the L-GMSTP can be formulated as the
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Fig. 1. Example of a feasible solution of the L-GMSTP problem, where at least one node
from each cluster is selected.

following 0-1 integer programming problem:

min
∑
e∈E

cexe

s.t. y(Vk) ≥ 1, ∀ k ∈ K = {1, ...,m}(1)
x(δ(S)) ≥ yi + yj − 1, ∀ i ∈ S ⊂ V, j /∈ S(2)
x(E) = y(V )− 1(3)
xe ∈ {0, 1}, ∀ e ∈ E(4)
yi ∈ {0, 1}, ∀ i ∈ V,(5)

where for S ⊆ V , the cutset, denoted by δ(S), is defined as usually:

δ(S) = {e = (i, j) ∈ E | i ∈ S, j /∈ S}.

In the above formulation, we use the standard shorthand notations:

x(F ) =
∑
e∈F

xe, F ⊆ E and y(S) =
∑
i∈S

yi, S ⊆ V.

In the integer programming formulation of the L-GMSTP, constraints (1)
guarantee that from every cluster we select at least one node, constraints (2)
guarantee that the selected subgraph is connected and finally constraint (3)
guarantees that the selected subgraph has y(V )− 1 edges.

An equivalent integer programming formulation of the L-GMSTP used in
developing an approximation algorithm for the problem is described in what
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it follows:

ZIP = min
∑
e∈E

cexe

s.t. y(Vk) ≥ 1, ∀ k ∈ K = {1, ...,m}
x(δ(S)) ≥ yi, ∀ S ⊂ V \ {i}
xe ∈ {0, 1}, ∀ e ∈ E
yi ∈ {0, 1}, ∀ i ∈ V.

In this new integer programming formulation, the constraint (3) is omitted,
because it is redundant under the assumption that the edges have a non-
negative cost.

We consider the linear programming (LP) relaxation of this integer program
obtained by replacing the integrality constraints xe ∈ {0, 1}, for all e ∈ E and
yi ∈ {0, 1}, for all i ∈ V by the constraints xe ∈ [0, 1], for all e ∈ E and
yi ∈ [0, 1], for all i ∈ V .

4. AN APPROXIMATION ALGORITHM FOR THE L-GMSTP

In this section we present an approximation algorithm for the L-GMSTP
under the following two assumptions:

1. The cost function c : E → R+ attached to the edges of G satisfies the
triangle inequality:

cij ≤ cik + ckj (i, j, k ∈ V )

2. The clusters are bounded:

|Vk| ≤ ρ, k ∈ K

for some ρ > 0.
For this class of problem instances we can efficiently construct a solution

with cost at most 2ρ times the optimum. The design of the approximation
algorithm is based on solving the LP relaxation of the integer programming
formulation of the L-GMSTP and round the fractional solution to a nearby
integral one. Our technique of rounding is based on properties of optimal
solutions to the linear programming formulation of the minimum spanning tree
problem and the parsimonious property of Goemans and Bertsimas, see [4].

Let (y∗, x∗, Z∗LP ) = ((y∗i )ni=1, (x∗e)e∈E , Z∗LP ) be the optimal fractional solu-
tion of the LP relaxation. Obviously, the following inequality between the
value of the optimal fractional solution of the LP relaxation and the value of
the optimal solution of the IP formulation holds:

Z∗LP ≤ ZIP .

The LP relaxation can be solved in polynomial time (relative to the input size
of the problem) using the ellipsoid method [5] or interior point methods [12].
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Because the cluster sizes are assumed to be bounded by ρ, i.e. |Vk| ≤ ρ,
k ∈ K, there exists in each cluster Vk at least one node v ∈ Vk such that

y∗(v) ≥ 1
ρ
.

Let W = {v1, ..., vm, ..., vp} ⊆ V denote the set of chosen nodes. We now
compute the minimum cost tree spanning the nodes of W and claim that
this tree, which is a feasible (approximate) solution of the L-GMSTP, denoted
T (W ), has the cost at most 2ρ times the optimum of the IP formulation of
L-GMSTP, ZIP . More precisely, we show that

Theorem 1. The performance ratio for approximating the optimum solu-
tion to the L-GMSTP satisfies:

c(T (W )) ≤ (2− 2
n)ρZIP .

5. PROOF OF CORRECTNESS

The crucial argument in providing the approximation algorithm is based on
the parsimonious property, see [4].

Given a complete undirected graph G = (V,E). We associate with each
edge (i, j) ∈ E a cost cij and for any pair (i, j) of vertices, let rij be the
connectivity requirement between i and j (rij is assumed to be symmetric, i.e.
rij = rji). A network is called survivable if it has at least rij edge disjoint
paths between any pair (i, j) of vertices.

The survivable network design problem consists in finding the minimum cost
survivable network. This problem can be formulated by the following integer
program:

(IP∅(r)) IZ∅(r) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ max
(i,j)∈δ(S)

rij , S ⊂ V, S 6= ∅(6)

0 ≤ xe, e ∈ E,
xe integral, e ∈ E.

We denote by IZ∅(r) the optimal value of the above integer program. Let
(P∅(r)) denote the linear programming relaxation of (IP∅(r)) obtained by
dropping the integrality restrictions and let Z∅(r) be its optimal value.

By definition the degree of vertex i ∈ V is dx(i) = x(δ(i)), for any feasible
solution x, either to (IP∅(r)) or to (P∅(r)). Because of constraints (6) for
S = {i}, the degree of vertex i is at least equal to maxj∈V \{i} rij . If dx(i) =
maxj∈V \{i} rij , then we say that x is parsimonious at vertex i. If we impose
that the solution x is parsimonious at all the vertices of a set D ⊆ V , we get
some interesting variations of (IP∅(r)) and (P∅(r)), denoted by (IPD(r)) and
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(PD(r)), respectively. The formulation of (IPD(r)) as an integer program is:

(IPD(r)) IZD(r) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ max
(i,j)∈δ(S)

rij , S ⊂ V, S 6= ∅

x(δ(i)) = max
j∈V \{i}

rij , i ∈ D, D ⊆ V

0 ≤ xe, e ∈ E
xe integral, e ∈ E.

We denote by IZD(r) the optimal value of the above integer program. Let
(PD(r)) denote the linear programming relaxation of (IPD(r)) obtained by
dropping the integrality restrictions and let ZD(r) be its optimal value.

Theorem 2. (parsimonious property, Goemans and Bertsimas [4])
If the costs cij satisfy the triangle inequality, then

Z∅(r) = ZD(r)

for all subsets D ⊆ V.

The proof of this theorem is based on a result on connectivity properties of
Eulerian multigraphs.

Let now W ⊆ V and consider the following linear program:
Problem LP2:

Z∗2 (W ) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t. W ∩ S 6= ∅ 6= W \ S(7)
x(δ(i)) = 0, i ∈ V \W,(8)
0 ≤ xe ≤ 1, e ∈ E.(9)

Replacing constraints (9) with the integrality constraints xe ∈ {0, 1}, the
formulation obtained is the formulation of the minimum tree spanning the
subset of nodes W ⊂ V .

Consider the following relaxation of the problem LP2.
Problem LP3:

Z∗3 (W ) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t. W ∩ S 6= ∅ 6= W \ S
0 ≤ xe, e ∈ E.(10)

Thus we omitted constraint (8) and relaxed constraint (9).
The following result is a straightforward consequence of the parsimonious

property, if we choose rij = 1, if i, j ∈W , and 0 otherwise, and D = V \W .
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Lemma 3. The optimal solution values to linear programming problems LP2
and LP3 are the same, that is

Z∗2 (W ) = Z∗3 (W ).

Consider the following integer programming problem:
Problem IP4:

Z4 = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t. S 6= ∅ 6= V(11)
xe ∈ {0, 1}, e ∈ E.(12)

Clearly, it is the integer programming formulation of the MST (minimum
spanning tree) problem. Let LP4 be the LP relaxation of this formulation,
that is, we simply replace the constraint (12) by the constraint 0 ≤ xe ≤ 1,
for all e ∈ E.

Denote by Z∗4 the value of the optimal solution of the LP4. The following
known result for minimum spanning trees holds:

Proposition 4.
c(T (V )) ≤ (2− 2

|V |)Z
∗
4 ,

where c(T (V )) denotes the cost of the minimum spanning tree on V.

Proof. See for example [4]. �

Let W ⊆ V , then Proposition 4 can be easily modified to obtain:

Proposition 5.
c(T (W )) ≤ (2− 2

|W |)Z
∗
2 (W ).

Proof. Let (xe) be a feasible solution to linear program LP2. If

e /∈ E(W ) = {(i, j) | i, j ∈W}

implies that xe = 0 and using Proposition 4 we prove the inequality.
Consider that (y∗, x∗, Z∗LP ) is the optimal solution to the linear program-

ming relaxation of the L-GMSTP, then we define

x̂e = ρx∗e

ŷi =


1 if y∗i ≥ 1

ρ

0 otherwise,

W =
{
i ∈ V | y∗i ≥ 1

ρ

}
= {i ∈ V | ŷi = 1} .

Now, let us show that (x̂e)e∈E is a feasible solution to LP3. Indeed, x̂e ≥ 0
for all e ∈ E, hence condition (10) is satisfied. Let S ⊂ V be such that
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W ∩ S 6= ∅ 6= W \ S and choose some i ∈ W ∩ S. Hence ŷi = 1 and y∗i ≥ 1
ρ .

Then we have
x̂(δ(S)) =

∑
e∈δ(S)

x̂e = ρ
∑

e∈δ(S)
x∗e ≥ ρy∗i ≥ ρ1

ρ = 1,

by definition of x̂e and the fact that the (x∗e) solve the linear programming
relaxation of the L-GMSTP. Therefore (x̂e) satisfy constraint (7) in LP3.

Now we are able to prove the performance bounds for the approximation
algorithm that we proposed for the L-GMSTP:

c(T (W )) ≤ (2− 2
|W |)Z

∗
2 (W ) = (2− 2

|W |)Z
∗
3 (W )

≤ (2− 2
|W |)

∑
e∈E

cex̂e = (2− 2
|W |)ρ

∑
e∈E

cex
∗
e = (2− 2

|W ′ |)ρZ
∗
1

≤ (2− 2
|W |)ρZLP = (2− 2

|W |)ρZIP .

And since W ⊆ V , that is, m ≤ |W | ≤ |V | = n, we have proved the following:

c(T (W )) ≤ (2− 2
n)ρZIP ≤ 2ρZIP .

�

6. CONCLUSIONS

For a special class of the L-GMSTP instances, i.e. graphs with the cost
function attached to the edges of the graph satisfying the triangle inequality
and the clusters having bounded sizes by ρ, we provided an approximation
algorithm for the problem which delivers a solution with cost at most 2ρ times
the optimum.
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