ABOUT SOME MEAN-VALUE THEOREMS FOR B-DIFFERENTIABLE FUNCTIONS

OVIDIU T. POP* and MIRCEA FARCAŞ ${ }^{\dagger}$

Abstract

In this paper we shall demonstrate a general mean-value theorem for B-differentiable functions. By particularization, we obtain Pompeiu-type and Ivan-type theorems for B-differentiable functions.

MSC 2000. 26B05, 26B99.
Keywords. Mean-value theorems for B-differentiable functions.

1. PRELIMINARIES

In the following, let X and Y be compact real intervals. The definition of B-differentiability was introduced by K. Bögel in the papers [2] and [3].

Definition 1. A function $f: X \times Y \rightarrow \mathbb{R}$ is called a B-differentiable function in $\left(x_{0}, y_{0}\right) \in X \times Y$ iff exists and if the limit

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]}{\left(x-x_{0}\right)\left(y-y_{0}\right)} \tag{1}
\end{equation*}
$$

is finite, where $\Delta f\left[(x, y),\left(x_{0}, y_{0}\right)\right]=f(x, y)-f\left(x_{0}, y\right)-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right)$ denote a so-called mixed difference of function f.

The limit from (11) is named the B-differential of f in the point $\left(x_{0}, y_{0}\right)$ and is noted by $D_{B} f\left(x_{0}, y_{0}\right)$.

We recall the following results (see [2], [3] or [6]).
Theorem 2. Let $f: X \times Y \rightarrow \mathbb{R}$ be a function. If f admits the derivatives $f_{x}^{\prime}, f_{x y}^{\prime \prime \prime}$ in a neighborhood of the point $\left(x_{0}, y_{0}\right) \in X \times Y$ and the derivative $f_{x y}^{\prime \prime}$ is continuous in $\left(x_{0}, y_{0}\right)$, then f is B-differentiable in $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
D_{B} f\left(x_{0}, y_{0}\right)=f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right) \tag{2}
\end{equation*}
$$

Theorem 3. Let $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be a function. If f is B-differentiable on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$ and

$$
\begin{equation*}
\Delta f\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=0 \tag{3}
\end{equation*}
$$

[^0]then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that
\[

$$
\begin{equation*}
D_{B} f(\xi, \eta)=0 . \tag{4}
\end{equation*}
$$

\]

Remark 1. This theorem is a Rolle-type theorem.
Theorem 4. Let $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be a function. If f is B-differentiable on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$, then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{equation*}
\Delta f\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=(b-a)\left(b^{\prime}-a^{\prime}\right) D_{B} f(\xi, \eta) . \tag{5}
\end{equation*}
$$

Remark 2. This theorem is a Lagrange-type theorem.
Theorem 5. Let $f, g:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be two functions. If f and g are B-differentiable on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$, then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{equation*}
\Delta f\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} g(\xi, \eta)=\Delta g\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} f(\xi, \eta) . \tag{6}
\end{equation*}
$$

Remark 3. This theorem is a Cauchy-type theorem.

2. MAIN RESULTS

Lemma 6. If $d \notin[a, b]$ and $d^{\prime} \notin\left[a^{\prime}, b^{\prime}\right]$, then

$$
\begin{equation*}
\Delta_{\frac{1}{(--d)\left(*-d^{\prime}\right)}}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=\frac{(a-b)\left(a^{\prime}-b^{\prime}\right)}{(a-d)(b-d)\left(a^{\prime}-d^{\prime}\right)\left(b^{\prime}-d^{\prime}\right)}, \tag{7}
\end{equation*}
$$

where "." and "*" stand for the first and the second variable.
Proof. Follows immediately.
Theorem 7. Let $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be a B-differentiable function on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$ and $d \notin[a, b], d^{\prime} \notin\left[a^{\prime}, b^{\prime}\right]$. Then there exists a point $(\xi, \eta) \in$ $(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{align*}
& \Delta_{\frac{1}{(\cdot-d)\left(*-d^{\prime}\right)}}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} \frac{f(\cdot, *)}{(--d)\left(*-d^{\prime}\right)} \tag{8}\\
= & \Delta_{\frac{f(\cdot,)}{}}^{\frac{f--()\left(*-d^{\prime}\right)}{}}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} \frac{1}{(\cdot-d)\left(*-d^{\prime}\right)}(\xi, \eta) .
\end{align*}
$$

If in addition f admits the derivatives $f_{x}^{\prime}, f_{y}^{\prime}, f_{x y}^{\prime \prime}$ on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$ and the derivative $f_{x y}^{\prime \prime}$ is continuous on $(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ then
(9)

$$
\begin{aligned}
& \frac{a a^{\prime} f\left(b, b^{\prime}\right)-a^{\prime} b f\left(a, b^{\prime}\right)-a a^{\prime} f\left(b, a^{\prime}\right)+b b^{\prime} f\left(a, a^{\prime}\right)}{(a-b)\left(a^{\prime}-b^{\prime}\right)}-\xi \eta f_{x y}^{\prime \prime}(\xi, \eta)+\xi f^{\prime} x(\xi, \eta) \\
& \quad+\eta f^{\prime} y(\xi, \eta)-f(\xi, \eta)= \\
& =\left(d d^{\prime}-\xi d^{\prime}-\eta d\right) f_{x y}^{\prime \prime}(\xi, \eta)+d f_{x}^{\prime}(\xi, \eta)+d^{\prime} f^{\prime} y(\xi, \eta)+ \\
& \quad-\frac{\left(d d^{\prime}-a d^{\prime}-a^{\prime} d\right) f\left(b, b^{\prime}\right)-\left(d d^{\prime}-b d^{\prime}-a^{\prime} d\right) f\left(a, b^{\prime}\right)}{(a-b)\left(a^{\prime}-b^{\prime}\right)}+\frac{\left(d d^{\prime}-a d^{\prime}-b^{\prime} d\right) f\left(b, a^{\prime}\right)-\left(d d^{\prime}-b^{\prime} d-b d^{\prime}\right) f\left(a, a^{\prime}\right)}{(a-b)\left(a^{\prime}-b^{\prime}\right)} .
\end{aligned}
$$

Proof. We apply Theorem 5 for the functions $F, G:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$, $F(x, y)=\frac{f(x, y)}{(x-d)\left(y-d^{\prime}\right)}, G(x, y)=\frac{1}{(x-d)\left(y-d^{\prime}\right)}$ and we make the calculus.

ThEOREM 8. Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a function. If
(1) φ is continuous on $[a, b]$,
(2) φ is differentiable on (a, b),
(3) $d \notin[a, b]$,
then there exists $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{a \varphi(b)-b \varphi(a)}{a-b}-\varphi(\xi)+\xi \varphi^{\prime}(\xi)=d\left(\varphi^{\prime}(\xi)-\frac{\varphi(a)-\varphi(b)}{a-b}\right) . \tag{10}
\end{equation*}
$$

Proof. In Theorem 7 we take $d^{\prime}=0$ and $f(x, y)=\varphi(x)$.
REmark 4. For another proof, see [9] or [10].
Theorem 9. Let $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be a B-differentiable function such that $0 \notin[a, b], 0 \notin\left[a^{\prime}, b^{\prime}\right], f$ admits the derivatives $f_{x}^{\prime}, f_{y}^{\prime}, f_{x y}^{\prime \prime}$ on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$ and the derivative $f_{x y}^{\prime \prime}$ is continuous on $(a, b) \times\left(a^{\prime}, b^{\prime}\right)$. Then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{align*}
& \frac{a a^{\prime} f\left(b, b^{\prime}\right)-a^{\prime} b f\left(a, b^{\prime}\right)-a b^{\prime} f\left(b, a^{\prime}\right)+b b^{\prime} f\left(a, a^{\prime}\right)}{(a-b)\left(a^{\prime}-b^{\prime}\right)}= \tag{11}\\
& =\xi \eta f_{x y}^{\prime \prime}(\xi, \eta)-\xi f_{x}^{\prime}(\xi, \eta)-\eta f_{y}^{\prime}(\xi, \eta)+f(\xi, \eta)
\end{align*}
$$

Proof. In Theorem 7 we take $d=0, d^{\prime}=0$.
REmark 5. This theorem is a Pompeiu-type theorem, see [5], [7], [9] or [10].

Theorem 10. (Pompeiu's Theorem). Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a function. If
(1) φ is continuous on $[a, b]$,
(2) φ is differentiable on (a, b),
(3) $0 \notin[a, b]$, then there exists $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{a \varphi(b)-b \varphi(a)}{a-b}=\varphi(\xi)-\xi \varphi^{\prime}(\xi) \tag{12}
\end{equation*}
$$

Proof. In Theorem 9 we take $f:[a, b] \times[a, b] \rightarrow \mathbb{R}, f(x, y)=\varphi(x)$ or in Theorem 8 we take $d=0$.

ThEOREM 11. Let $f, g:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be two functions B-differentiable on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$. If $g(x, y) \neq 0$ for any $(x, y) \in[a, b] \times\left[a^{\prime}, b^{\prime}\right]$, then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{align*}
& \Delta \frac{f(\cdot, *)}{g(\cdot, *)}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} \frac{*}{g(\cdot, *)}(\xi, \eta)= \tag{13}\\
& =\Delta \frac{*}{g(\cdot, *)}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B} \frac{f(\cdot, *)}{g(\cdot, *)}(\xi, \eta)
\end{align*}
$$

If in addition f, g admit the derivatives $f_{x}^{\prime}, g_{x}^{\prime}, f_{y}^{\prime}, g_{y}^{\prime}, f_{x y}^{\prime \prime}, g_{x y}^{\prime \prime}$ on $[a, b] \times\left[a^{\prime}, b^{\prime}\right]$ and the derivatives $f_{x y}^{\prime \prime}, g_{x y}^{\prime \prime}$ are continuous on $(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ then

$$
\begin{align*}
& {\left[\frac{f\left(a, a^{\prime}\right)}{g\left(a, a^{\prime}\right)}-\frac{f\left(b, a^{\prime}\right)}{g\left(t, a a^{\prime}\right)}-\frac{f\left(a, b^{\prime}\right)}{g\left(a, b^{\prime}\right)}+\frac{f\left(b, b^{\prime}\right)}{g\left(b, b b^{\prime}\right)}\right]\left[2 \eta g_{x}^{\prime}(\xi, \eta) g_{y}^{\prime}(\xi, \eta)-\right.} \tag{14}\\
& \left.\quad-g(\xi, \eta) g_{x}^{\prime}(\xi, \eta)-\eta g(\xi, \eta) g_{x y}^{\prime \prime}(\xi, \eta)\right]= \\
& =\left[\frac{a^{\prime}}{g\left(a, a^{\prime}\right)}-\frac{a^{\prime}}{g\left(b, a^{\prime}\right)}-\frac{b^{\prime}}{g\left(a, b^{\prime}\right)}+\frac{b^{\prime}}{g\left(b, b^{\prime}\right)}\right]\left[2 f(\xi, \eta) g_{x}^{\prime}(\xi, \eta) g_{y}^{\prime}(\xi, \eta)-\right. \\
& \quad-g(\xi, \eta) f_{x}^{\prime}(\xi, \eta) g_{y}^{\prime}(\xi, \eta)-g(\xi, \eta) f_{y}^{\prime}(\xi, \eta) g_{x}^{\prime}(\xi, \eta)- \\
& \left.\quad-f(\xi, \eta) g(\xi, \eta) g_{x y}^{\prime \prime}(\xi, \eta)+g^{2}(\xi, \eta) f_{x y}^{\prime \prime}(\xi, \eta)\right] .
\end{align*}
$$

Proof. We apply Theorem 5 for the functions $F, G:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$, $F(x, y)=\frac{f(x, y)}{g(x, y)}, G(x, y)=\frac{y}{g(x, y)}$ and we make the calculus.

Remark 6. This theorem is a Boggio-type theorem, see [1].
Theorem 12. (Boggio's Theorem). Let $\varphi, \psi:[a, b] \rightarrow \mathbb{R}$ be two functions satisfying
(1) φ, ψ are continuous on $[a, b]$,
(2) ψ has no roots in $[a, b]$,
(3) ψ^{\prime} has no roots in (a, b).

Then there exists $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{\psi(a) \varphi(b)-\psi(b) \varphi(a)}{\psi(a)-\psi(b)}=\varphi(c)-\psi(c) \frac{\varphi^{\prime}(c)}{\psi^{\prime}(c)} . \tag{15}
\end{equation*}
$$

Proof. In Theorem 11 let $f, g:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}, f(x, y)=\varphi(x), g(x, y)=$ $\psi(x)$.

Theorem 13. Let $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be a B-differentiable function, $d \in$ such that $f(x, y) \neq d$ for any $(x, y) \in[a, b] \times\left[a^{\prime}, b^{\prime}\right]$. Then there exists $(\xi, \eta) \in(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ such that

$$
\begin{align*}
& \Delta \frac{\cdot *}{f(\cdot, *)-d}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B \frac{*}{f(\cdot, *)-d}}(\xi, \eta)= \tag{16}\\
& =\Delta_{\overline{f(\cdot, * *)-d}}\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right] D_{B \frac{\cdot}{f(\cdot, *)-d}}(\xi, \eta) .
\end{align*}
$$

If in addition f admits the derivatives $f_{x}^{\prime}, f_{y}^{\prime}, f_{x y}^{\prime \prime}$ on $[a, b] \times\left[a^{\prime}, b^{\prime}\right], f_{x y}^{\prime \prime}$ continuous on $(a, b) \times\left(a^{\prime}, b^{\prime}\right)$ then

$$
\begin{align*}
& {\left[\frac{a a^{\prime}}{f\left(a a^{\prime}\right)-d}-\frac{b a^{\prime}}{f\left(b, a^{\prime}\right)-d}-\frac{a b^{\prime}}{f\left(a, b^{\prime}\right)-d}+\frac{b b^{\prime}}{f\left(b, b^{\prime}\right)-d}\right] .} \tag{17}\\
& \quad \cdot\left[2 \eta f_{x}^{\prime}(\xi, \eta) f_{y}^{\prime}(\xi, \eta)-(f(\xi, \eta)-d) f_{x}^{\prime}(\xi, \eta)-\eta(f(\xi, \eta)-d) f_{x y}^{\prime \prime}(\xi, \eta)\right]= \\
& =\left[\frac{a^{\prime}}{f\left(a a^{\prime}\right)-d}-\frac{a^{\prime}}{f\left(b, a^{\prime}\right)-d}-\frac{b^{\prime}}{f\left(a, b^{\prime}\right)-d}+\frac{b^{\prime}}{f\left(b, b^{\prime}\right)-d}\right] . \\
& \quad \cdot\left[f^{2}(\xi, \eta)-\eta f(\xi, \eta) f_{y}^{\prime}(\xi, \eta)-\xi f(\xi, \eta) f_{x}^{\prime}(\xi, \eta)-\right. \\
& \left.\quad-\xi \eta f(\xi, \eta) f_{x y}^{\prime \prime}(\xi, \eta)+2 \xi \eta f_{x}^{\prime}(\xi, \eta) f_{y}^{\prime}(\xi, \eta)\right] .
\end{align*}
$$

Proof. In Theorem 5 let $F, G:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}, F(x, y)=\frac{x y}{f(x, y)-d}$, $G(x, y)=\frac{y}{f(x, y)-d}$.

Remark 7. This theorem is an Ivan-type theorem, see [5].
ThEOREM 14. Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a function and d a real number. If
(1) φ is continuous on $[a, b]$,
(2) $\varphi(a) \neq \varphi(b)$,
(3) $\varphi(x) \neq d$ for any $x \in[a, b]$,
then there exists $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{a \varphi(b)-b \varphi(a)}{\varphi(b)-\varphi(a)}-\xi+\frac{\varphi(\xi)}{\varphi^{\prime}(\xi)}=d\left(\frac{1}{\varphi^{\prime}(\xi)}-\frac{b-a}{\varphi(b)-\varphi(a)}\right) \tag{18}
\end{equation*}
$$

Proof. In Theorem 13 we take $f:[a, b] \times\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}, f(x, y)=\varphi(x)$.
ThEOREM 15. (Ivan). Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a function satisfying
(1) φ is continuous on $[a, b]$,
(2) $\varphi(a) \neq \varphi(b)$,
(3) $\varphi(x) \neq 0$ for any $x \in[a, b]$.

Then there exists $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{a \varphi(b)-b \varphi(a)}{\varphi(b)-\varphi(a)}=\xi-\frac{\varphi(\xi)}{\varphi^{\prime}(\xi)} . \tag{19}
\end{equation*}
$$

Proof. In Theorem 14 let $d=0$.
Remark 8. Other proof for Theorem 8 and Theorem 14 may be found in [9].

REFERENCES

[1] Boggio, T., Sur une proposition de M. Pompeiu, Mathematica, 23, pp. 101-102, 1947-1948.
[2] BöGEL, K., Mehrdimensionale Differentiation von Funktionen mehrer Veränderlicher, J. Reine Angew. Math., 170, pp. 197-217, 1934.
[3] BÖGEL, K., Über mehrdimensionale Differentiation, Integration und beschränkte Variation, J. Reine Angew. Math., 173, pp. 5-29, 1935.
[4] Ivan, M., Asupra unei teoreme de medie, Atheneum Cluj, pp. 23-25, 1970 (in Romanian).
[5] Ivan, M., A note on a Pompeiu-type theorem, Math. Analysis and Approx. Theory, The $5^{t h}$ Romanian-German Seminar on Approx. Theory and its Applications, RoGer 2002, Sibiu, pp. 129-134.
[6] Nicolescu, M., Analiză matematică, II, Editura Didactică şi Pedagogică, Bucureşti, 1980 (in Romanian).
[7] Pompeiu, D., Sur une proposition analogue au théorème des accroisements finis, Mathematica, 22, 143-146, 1946.
[8] Pop, M. S., Asupra unei extinderi ale teoremei de medie a lui Cauchy, Gazeta matematică, Ser. A, XCIII, 12, pp. 107-112, 1996 (in Romanian).
[9] Pop, O. T., About some mean-theorems, Creative Math., 14, pp. 49-52, 2005.
[10] Rotaru, P., Asupra unor teoreme de medie, Gazeta matematică, Ser. B, LXXXVIII, 1, pp. 316-318, 1983 (in Romanian).
[11] Stamate, I., Asupra unei proprietăţi a lui Pompeiu, Lucrări ştiinţifice, Institutul Politehnic Cluj, 1, pp. 12-15, 1956 (in Romanian).
[12] Topan, Gh., O extindere a teoremei de medie a lui Cauchy, Gazeta matematică, Ser. B, LXXXVII, 2-3, pp. 54-55, 1982 (in Romanian).

Received by the editors: January 5, 2006.

[^0]: *West University "Vasile Goldiş" of Arad, Branch of Satu Mare, 26 Mihai Viteazul Street, Satu Mare 440030, Romania, e-mail: ovidiutiberiu@yahoo.com.
 ${ }^{\dagger}$ National College "Mihai Eminescu", 5 Mihai Eminescu Street, Satu Mare 440014, Romania, e-mail: mirceafarcas2005@yahoo.com.

