ITERATED BOOLEAN SUMS OF BERNSTEIN AND RELATED OPERATORS

IOAN RAŞA*

Abstract

Let $(T(t))_{t \geq 0}$ be the semigroup associated with the classical Bernstein operators $\left(B_{n}\right)_{n \geq 1}$ on $C[0,1]$. We obtain rates of convergence for iterated Boolean sums of the operators $T\left(\frac{1}{n}\right)$.

MSC 2000. MSC 2000. 41A36.
Keywords. Bernstein operators and the associated semigroup, Boolean sums.

1. INTRODUCTION

Consider the classical Bernstein operators B_{n} on $C[0,1]$, defined by

$$
B_{n} f(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}, \quad f \in C[0,1], x \in[0,1]
$$

The associated semigroup $(T(t))_{t \geq 0}$ can be described by

$$
T(t) f=\lim _{n \rightarrow \infty} B_{n}^{[n t]} f \text { uniformly on }[0,1]
$$

where $t \geq 0$ and $f \in C[0,1]$; see [2, Sect. 6.3], [8].
If $P, Q: X \longrightarrow X$ are linear operators on an arbitrary linear space X, their Boolean sum is defined to be

$$
P \oplus Q:=P+Q-P Q .
$$

Considering the k-fold Boolean sum, define

$$
B_{n, k}:=B_{n} \oplus \cdots \oplus B_{n}=I-\left(I-B_{n}\right)^{k}
$$

where I is the identity operator on $C[0,1]$.
The operators $B_{n, k}$ were introduced independently by Micchelli [6], Mastroianni and Occorsio [5], and Felbecker [3]. They were further investigated in several papers; for surveys, references and historical remarks see [4], [9, Chapter 26].
*Department of Mathematics, Technical University of Cluj-Napoca, Str. C. Daicoviciu 15, 400020 Cluj-Napoca, Romania, e-mail: ioan.rasa@math.utcluj.ro.

In this paper we consider the k-fold Boolean sum of $T\left(\frac{1}{n}\right)$:

$$
T_{n, k}:=T\left(\frac{1}{n}\right) \oplus \cdots \oplus T\left(\frac{1}{n}\right)=I-\left(I-T\left(\frac{1}{n}\right)\right)^{k}
$$

and obtain rates of convergence when k is fixed and $n \rightarrow \infty$.

2. MAIN RESULTS

Theorem 2.1. For all $f \in C[0,1]$ and $n \geq 1$,

$$
\begin{equation*}
\left\|T\left(\frac{1}{n}\right) f-f\right\| \leq \frac{5}{4} \omega\left(f, \sqrt{1-\mathrm{e}^{-1 / n}}\right) \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is the uniform norm and ω is the usual modulus of continuity.
Proof. Let $e_{j}(x)=x^{j}, x \in[0,1], j=0,1,2$.
Then (see, e.g., [8]):

$$
\begin{align*}
& T\left(\frac{1}{n}\right) e_{0}=e_{0} \tag{2}\\
& T\left(\frac{1}{n}\right) e_{1}=e_{1} \tag{3}
\end{align*}
$$

$$
\begin{equation*}
T\left(\frac{1}{n}\right) e_{2}=\left(1-\mathrm{e}^{-1 / n}\right) e_{1}+\mathrm{e}^{-1 / n} e_{2} \tag{4}
\end{equation*}
$$

Consequently, from [2, Prop.5.1.5] we get

$$
\left|T\left(\frac{1}{n}\right) f(x)-f(x)\right| \leq\left(1+\frac{1}{\delta^{2}}\left(T\left(\frac{1}{n}\right) e_{2}(x)-e_{2}(x)\right)\right) \omega(f, \delta)
$$

for all $\delta>0$.
Using (4) and choosing $\delta:=\sqrt{1-\mathrm{e}^{-1 / n}}$ we obtain for $x \in[0,1]$

$$
\begin{equation*}
\left|T\left(\frac{1}{n}\right) f(x)-f(x)\right| \leq(1+x(1-x)) \omega\left(f, \sqrt{1-\mathrm{e}^{-1 / n}}\right) \tag{5}
\end{equation*}
$$

Now, (1) is a consequence of (5).
Remark 2.1. For $f \in C^{2}[0,1], x \in[0,1]$ and $n \geq 1$ we have also (see [8]):

$$
\begin{equation*}
\left|T\left(\frac{1}{n}\right) f(x)-f(x)\right| \leq\left(1-\mathrm{e}^{-1 / n}\right) \frac{x(1-x)}{2}\left\|f^{\prime \prime}\right\| \tag{6}
\end{equation*}
$$

Theorem 2.2. Let $f \in C[0,1], n \geq 1$ and $k \geq 1$. Then:

$$
\begin{equation*}
\left\|T_{n, k} f-f\right\| \leq 5 \cdot 2^{k-3} \omega\left(f, \sqrt{1-\mathrm{e}^{-1 / n}}\right) \tag{7}
\end{equation*}
$$

Proof. Let us remark that

$$
\begin{aligned}
T_{n, k}-I & =-\left(I-T\left(\frac{1}{n}\right)\right)^{k} \\
& =\left(T\left(\frac{1}{n}\right)-I\right)\left(I-T\left(\frac{1}{n}\right)\right)^{k-1} \\
& =\left(T\left(\frac{1}{n}\right)-I\right) \sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}\left(T\left(\frac{1}{n}\right)\right)^{j} .
\end{aligned}
$$

Since

$$
\left(T\left(\frac{1}{n}\right)\right)^{j}=T\left(\frac{j}{n}\right),
$$

we get

$$
\begin{equation*}
T_{n, k}-I=\sum_{j=0}^{k-1}(-1)^{j}\binom{k-1}{j}\left(T\left(\frac{j+1}{n}\right)-T\left(\frac{j}{n}\right)\right) . \tag{8}
\end{equation*}
$$

This yields

$$
\begin{align*}
\left\|T_{n, k} f-f\right\| & \leq \sum_{j=0}^{k-1}\binom{k-1}{j}\left\|T\left(\frac{j}{n}\right)\left(T\left(\frac{1}{n}\right) f-f\right)\right\| \tag{9}\\
& \leq \sum_{j=0}^{k-1}\binom{k-1}{j}\left\|T\left(\frac{j}{n}\right)\right\|\left\|T\left(\frac{1}{n}\right) f-f\right\| .
\end{align*}
$$

On the other hand, $T\left(\frac{j}{n}\right)$ is a positive linear operator, and $T\left(\frac{j}{n}\right) e_{0}=e_{0}$; it follows that $\left\|T\left(\frac{j}{n}\right)\right\|=1$.

Now from (9) and (1) we infer

$$
\left\|T_{n, k} f-f\right\| \leq \frac{5}{4} \omega\left(f, \sqrt{1-\mathrm{e}^{-1 / n}}\right) \cdot 2^{k-1}
$$

and this entails (7).
Remark 2.2. The estimates

$$
\begin{align*}
& \left\|B_{n, k} f-f\right\| \leq \frac{3}{2}\left(2^{k}-1\right) \omega\left(f, n^{-1 / 2}\right) \tag{10}\\
& \left\|B_{n, k} f-f\right\| \leq\left(2^{k}-1+\frac{n}{4}\left(2^{k}-\left(2-\frac{1}{n}\right)^{k}\right)\right) \omega\left(f, n^{-1 / 2}\right) \tag{11}
\end{align*}
$$

were obtained by Micchelli in [6], respectively by Agrawal and Kasana in [1].
They were improved by Biancamaria Della Vecchia and the author (see [9, Chapter 26]):

$$
\begin{equation*}
\left\|B_{n, k} f-f\right\| \leq 5 \cdot 2^{k-3} \omega\left(f, n^{-1 / 2}\right) \tag{12}
\end{equation*}
$$

In the sequel $[a, b, c ; f]$ will denote the divided difference of the function f at the points $a<b<c$.

Theorem 2.3. Let $n, k \geq 1, f \in C[0,1]$ and $x \in[0,1]$ be given. Then there exist $0 \leq a<b<c \leq 1$ and $0 \leq p<q<r \leq 1$ such that:

$$
\begin{align*}
& T_{n, k} f(x)-f(x)=\left(1-\mathrm{e}^{-1 / n}\right)^{\frac{x(1-x)}{2} \times} \times \\
& \times\left(\left(\left(1+\mathrm{e}^{-1 / n}\right)^{k-1}+\left(1-\mathrm{e}^{-1 / n}\right)^{k-1}\right)[a, b, c ; f]-\right. \tag{13}\\
& \left.-\left(\left(1+\mathrm{e}^{-1 / n}\right)^{k-1}-\left(1-\mathrm{e}^{-1 / n}\right)^{k-1}\right)[p, q, r ; f]\right) .
\end{align*}
$$

Proof. From (8) we get

$$
\begin{equation*}
T_{n, k} f(x)-f(x)=\mu(f)-\nu(f), \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu(f):=\sum_{i}\binom{k-1}{2 i}\left(T\left(\frac{2 i+1}{n}\right) f(x)-T\left(\frac{2 i}{n}\right) f(x)\right), \\
& \nu(f):=\sum_{i}\binom{k-1}{2 i-1}\left(T\left(\frac{2 i}{n}\right) f(x)-T\left(\frac{2 i-1}{n}\right) f(x)\right) .
\end{aligned}
$$

Using $T(t) e_{2}(x)=\left(1-\mathrm{e}^{-t}\right) x+\mathrm{e}^{-t} x^{2}(\operatorname{see}[8])$ we deduce

$$
\begin{aligned}
& \mu\left(e_{2}\right)=\left(1-\mathrm{e}^{-1 / n}\right) x(1-x) \sum_{i}\binom{k-1}{2 i} \mathrm{e}^{-2 i / n}, \\
& \nu\left(e_{2}\right)=\left(1-\mathrm{e}^{-1 / n}\right) x(1-x) \sum_{i}\binom{k-1}{2 i-1} \mathrm{e}^{-(2 i-1) / n},
\end{aligned}
$$

and then

$$
\begin{equation*}
\mu\left(e_{2}\right)=\left(1-\mathrm{e}^{-1 / n}\right) \frac{x(1-x)}{2}\left(\left(1+\mathrm{e}^{-1 / n}\right)^{k-1}+\left(1-\mathrm{e}^{-1 / n}\right)^{k-1}\right), \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\nu\left(e_{2}\right)=\left(1-\mathrm{e}^{-1 / n}\right) \frac{x(1-x)}{2}\left(\left(1+\mathrm{e}^{-1 / n}\right)^{k-1}-\left(1-\mathrm{e}^{-1 / n}\right)^{k-1}\right) \tag{16}
\end{equation*}
$$

Let $g \in C[0,1]$ be convex and $0 \leq s \leq t$. Then $T(t-s) g \geq g$ (see [2, Cor. 6.3.8]) and consequently $T(t) g=T(s) T(t-s) g \geq T(s) g$. It follows that $\mu(g) \geq 0$ and $\nu(g) \geq 0$.

By a classical result of Tiberiu Popoviciu (see [7]) there exist $0 \leq a<b<$ $c \leq 1$ and $0 \leq p<q<r \leq 1$ such that

$$
\begin{equation*}
\mu(f)=\mu\left(e_{2}\right)[a, b, c ; f] \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\nu(f)=\mu\left(e_{2}\right)[p, q, r ; f] \tag{18}
\end{equation*}
$$

Now, (13) is a consequence of (14)-(18).
Corollary 2.4. Let $n, k \geq 1, x \in[0,1], f \in C^{2}[0,1]$. Then

$$
\begin{equation*}
\left|T_{n, k} f(x)-f(x)\right| \leq\left(1-\mathrm{e}^{-1 / n}\right) \frac{x(1-x)}{2}\left(1+\mathrm{e}^{-1 / n}\right)^{k-1}\left\|f^{\prime \prime}\right\| \tag{19}
\end{equation*}
$$

Proof. By using the mean-value property of the divided differences we obtain

$$
|[a, b, c ; f]| \leq \frac{1}{2}\left\|f^{\prime \prime}\right\|, \quad 0 \leq a<b<c \leq 1
$$

Now, (19) follows from (13).

REFERENCES

[1] Agrawal, P.N. and Kasana, H.S., On the iterative combinations of Bernstein polynomials, Demonstratio Math., 17, pp. 777-783, 1984.
[2] Altomare, F. and Campiti, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin - New York, 1994.
[3] Felbecker, G., Linearkombinationen von iterierten Bernsteinoperatoren, Manuscripta Math., 29, pp. 229-248, 1979.
[4] Gonska, H.H. and Zhou, X.L., Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comp. Appl. Math., 53, pp. 21-31, 1994.
[5] Mastroianni, G. and Occorsio, M.R., Una generalizzazione dell'operatore di Bernstein, Rend. Accad. Sci. Mat. Fis. Nat. Napoli, 44, pp. 151-169, 1977.
[6] Micchelli, C.A., The saturation class and iterates of the Bernstein polynomials, J Approximation Theory, 8, pp. 1-18, 1973.
[7] Rasa, I., Sur les fonctionnelles de la forme simple au sens de T. Popoviciu, Rev. Anal. Numér. Théor. Approx., 9, pp. 261-268, 1980.[】
[8] Rasa, I., Estimates for the semigroup associated with Bernstein operators, Rev. Anal. Numér. Théor. Approx., 33, 243-245, 2004. ©
[9] Vladislav, T. and Rasa, I., Analiză Numerică. Aproximare, problema lui Cauchy abstractă, proiectori Altomare, Editura Tehnică, Bucureşti, 1999.

Received by the editors: March 1, 2006.

