REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 35 (2006) no. 1, pp. 117-118 ictp.acad.ro/jnaat

ERRORS ESTIMATION FOR IMPLICIT MANN ITERATION*

ŞTEFAN M. ŞOLTUZ[†]

Abstract. We study the errors estimation for the implicit Mann iteration.

MSC 2000. 47H10. Keywords. Implicit Mann iteration, errors.

Let X be a real Banach space and $T: X \to X$ a map. Let $\overline{x_0} = x_0 \in X$. The following iteration is known as Mann iteration, see [1]:

(1)
$$y_{n+1} = (1 - \alpha_n)y_n + \alpha_n T y_n.$$

For the rest of the paper, we suppose that there exists $(I - tT)^{-1}$, for all $t \in [0, 1[$. The implicit Mann iteration was considered for the first time in [2]:

(2)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_{n+1}$$

The sequence $\{\alpha_n\}$ is in (0, 1).

REMARK 1. In order to have a well defined sequence $\{x_n\}$, the existence of $(I - \lambda T)^{-1}, \forall \lambda \in]0, 1[$, is crucial. Take $X = \mathbb{R}, Tx = x^4, \alpha_0 = 1/3, x_0 = 4$, or $X = \mathbb{R}, Tx = x^4, \alpha_0 = 1/2, x_0 = 2$, to see that there are no real values for x_1 that satisfy (2), that is $x_1 = (1 - \alpha_0) x_0 + \alpha_0 x_1^4$.

Estimations for the errors of Mann iteration are given in [3]. We aim to study the errors for the implicit iteration (2). Consider

$$x_{n+1} = (1 - \alpha_n) F_n x_n,$$

where $F_n = (I - \alpha_n T)^{-1}$, $\forall n \in N$. Define the errors of $F_n x_n$ by

$$u_n = F_n x_n - \overline{F_n x_n},$$

where $\overline{F_n x_n}$ is the exact value of $F_n x_n$, that is $F_n x_n$ is an approximation value of $\overline{F_n x_n}$. The theory of errors shows that $\{u_n\}$ is bounded. Set

$$M = \sup\{\|u_n\| : n \in \mathbb{N}\}.$$

The errors from (2) come essentially from $F_n x_n$. This errors will affect the next step n + 1.

^{*}This work has been supported by the Romanian Academy under grant GAR 14/2005.

[†]"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 400110 Cluj-Napoca, Romania, e-mail: soltuzul@yahoo.com.

THEOREM 1. Let X be a real Banach space and $T: X \to X$ a map. Let $\overline{x_0} = x_0 \in X$. Suppose that there exists $(I - tT)^{-1}$, for all $t \in]0, 1[$, such that (2) is well defined. Then the errors $E_n = x_{n+1} - \overline{x_{n+1}}$ satisfy

(3)
$$||E_n|| \le (1 - \alpha_n) M, \forall n \in \mathbb{N}.$$

Proof. We have

$$x_{n+1} = (1 - \alpha_n) F_n x_n = (1 - \alpha_n) \overline{F_n x_n} + (1 - \alpha_n) u_n$$
$$= \overline{x_{n+1}} + (1 - \alpha_n) u_n.$$

Note that the computational errors exist at step n by computing the $\overline{F_n x_n}$, hence it is unappropriate to consider

(4)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_{n+1} + u_n.$$

Such trend could occur by analogy with Mann iteration with errors,

$$y_{n+1} = (1 - \alpha_n)y_n + \alpha_n T y_n + u_n.$$

In (1) it makes sense to add the errors, but for implicit Mann iteration (2) it is not the case to consider (4).

REFERENCES

- [1] MANN, W.E., Mean Value in Iteration, Proc. Amer. Math. Soc., 4, pp. 506–510, 1953.
- [2] ŞOLTUZ, Ştefan M., The backward Mann iteration, Octogon Math. Mag., 9, pp. 797–800, 2001.
- [3] Y. XU AND Z. LIU, On estimation and control errors of the Mann iteration process, J. Math. Anal. Appl., 286, pp. 804–806, 2003.

Received by the editors: March 14, 2006.