# ERRORS ESTIMATION FOR IMPLICIT MANN ITERATION* 

ŞTEFAN M. ŞOLTUZ ${ }^{\dagger}$


#### Abstract

We study the errors estimation for the implicit Mann iteration.


MSC 2000. 47H10.
Keywords. Implicit Mann iteration, errors.

Let $X$ be a real Banach space and $T: X \rightarrow X$ a map. Let $\overline{x_{0}}=x_{0} \in X$. The following iteration is known as Mann iteration, see [1]:

$$
\begin{equation*}
y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} T y_{n} . \tag{1}
\end{equation*}
$$

For the rest of the paper, we suppose that there exists $(I-t T)^{-1}$, for all $t \in] 0,1[$. The implicit Mann iteration was considered for the first time in [2]:

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n+1} . \tag{2}
\end{equation*}
$$

The sequence $\left\{\alpha_{n}\right\}$ is in $(0,1)$.
Remark 1. In order to have a well defined sequence $\left\{x_{n}\right\}$, the existence of $\left.(I-\lambda T)^{-1}, \forall \lambda \in\right] 0,1\left[\right.$, is crucial. Take $X=\mathbb{R}, T x=x^{4}, \alpha_{0}=1 / 3, x_{0}=4$, or $X=\mathbb{R}, T x=x^{4}, \alpha_{0}=1 / 2, x_{0}=2$, to see that there are no real values for $x_{1}$ that satisfy $\sqrt{2}$, that is $x_{1}=\left(1-\alpha_{0}\right) x_{0}+\alpha_{0} x_{1}^{4}$.

Estimations for the errors of Mann iteration are given in [3]. We aim to study the errors for the implicit iteration (2) . Consider

$$
x_{n+1}=\left(1-\alpha_{n}\right) F_{n} x_{n},
$$

where $F_{n}=\left(I-\alpha_{n} T\right)^{-1}, \forall n \in N$. Define the errors of $F_{n} x_{n}$ by

$$
u_{n}=F_{n} x_{n}-\overline{F_{n} x_{n}},
$$

where $\overline{F_{n} x_{n}}$ is the exact value of $F_{n} x_{n}$, that is $F_{n} x_{n}$ is an approximation value of $\overline{F_{n} x_{n}}$. The theory of errors shows that $\left\{u_{n}\right\}$ is bounded. Set

$$
M=\sup \left\{\left\|u_{n}\right\|: n \in \mathbb{N}\right\}
$$

The errors from (2) come essentially from $F_{n} x_{n}$. This errors will affect the next step $n+1$.

[^0]Theorem 1. Let $X$ be a real Banach space and $T: X \rightarrow X$ a map. Let $\overline{x_{0}}=x_{0} \in X$. Suppose that there exists $(I-t T)^{-1}$, for all $\left.t \in\right] 0,1[$, such that (2) is well defined. Then the errors $E_{n}=x_{n+1}-\overline{x_{n+1}}$ satisfy

$$
\begin{equation*}
\left\|E_{n}\right\| \leq\left(1-\alpha_{n}\right) M, \forall n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) F_{n} x_{n}=\left(1-\alpha_{n}\right) \overline{F_{n} x_{n}}+\left(1-\alpha_{n}\right) u_{n} \\
& =\overline{x_{n+1}}+\left(1-\alpha_{n}\right) u_{n}
\end{aligned}
$$

Note that the computational errors exist at step $n$ by computing the $\overline{F_{n} x_{n}}$, hence it is unappropriate to consider

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n+1}+u_{n} \tag{4}
\end{equation*}
$$

Such trend could occur by analogy with Mann iteration with errors,

$$
y_{n+1}=\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} T y_{n}+u_{n} .
$$

In (11) it makes sense to add the errors, but for implicit Mann iteration (2) it is not the case to consider (4).

## REFERENCES

[1] Mann, W.E., Mean Value in Iteration, Proc. Amer. Math. Soc., 4, pp. 506-510, 1953.
[2] Şoltuz, Ştefan M., The backward Mann iteration, Octogon Math. Mag., 9, pp. 797-800, 2001.
[3] Y. Xu and Z. Liu, On estimation and control errors of the Mann iteration process, J. Math. Anal. Appl., 286, pp. 804-806, 2003.

Received by the editors: March 14, 2006.


[^0]:    *This work has been supported by the Romanian Academy under grant GAR 14/2005.
    $\dagger$ "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 400110 Cluj-Napoca, Romania, e-mail: soltuzul@yahoo.com.

