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EVALUATION OF OVERSHOOTING ERRORS IN PARTICLE METHODS
FOR DIFFUSION BY BIASED GLOBAL RANDOM WALK

NICOLAE SUCIU∗ and CĂLIN VAMOŞ†

Abstract. The adjustment of grid steps which guarantees that particles methods yield
no numerical diffusion inevitably induces overshooting errors in the solution of the para-
bolic partial differential equations with space variable coefficients. In this paper we give
an evaluation of the overshooting errors of the “global random walk” algorithm (GRW),
a computational efficient method used in simulations for transport in environmental
problems. The evaluation is performed by comparisons between the GRW solutions
and those of the “biased global random walk” algorithm (BGRW), a cellular automa-
ton, which is computational more expensive but is also free of overshooting errors. The
reference problem was the diffusive transport in a random velocity field, a model for
the transport of the contaminant solutes in groundwater. The evaluation reveals that,
for an optimum choice of the parameters, GRW results for time intervals of practical
interest lie in ranges of acceptable precision, for both the ensemble averaged observables
and for their fluctuations.
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1. INTRODUCTION

Particles methods supply stable solutions, free of numerical diffusion, for parabolic
equations with highly variable parameters. These methods are successfully used in
environmental problems, characterized by high Péclet numbers and irregular space
variable velocity and diffusion coefficients [5]. An often used method is the “particle
tracking” (PT), which is a forward-time Euler scheme for the Itô stochastic equation
[4]. Itô equation describes the trajectory of a diffusing particle and provides a de-
scription of the advection-diffusion process which is equivalent to the Fokker-Plank
equation for the corresponding probability densities [1]. In particular, for the one-
time density, which can be identified with the concentration c(x, t), the Fokker-Plank
equation coincides with the advection dispersion parabolic equation
(1) ∂tc+∇(Vc) = ∇2(Dc),
where V is the velocity field and D is the diffusion tensor. Note that (1) is the Itô
form of the Fokker-Planck equation, the only one which is equivalent to Itô stochastic
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equation and for which PT provides correct numerical solutions. More familiar and
used in practice is the Stratonovich form

(1’) ∂tc+∇(V∗c) = ∇(D∇c),

which is the local mass balance equation derived from the Fick’s constitutive law (i.e.,
concentration flux ∼ −D∇c) [3]. The equation (1’) takes the form (1) and can be
associated to Itô equation, if the velocity V∗ is supplemented with a drift vector with
components given by the divergence of the rows of the diffusion tensor: V = V∗+∇D
[2].

Due to the equivalence between the Itô and Fokker-Planck descriptions of the
transport process, the PT solution of (1) at a given time t = kδt and at a grid point
(x1, x2, x3) = (i1δx1, i2δx2, i3δx3) is obtained by counting the number n(i1, i2, i3, k)
of “tracked particles” in a reference volume,

(2) c(x1, x2, x3, t) = 1
N ∆1∆2∆3

s1∑
i′

1=−s1

s2∑
i′

2=−s2

s3∑
i′

3=−s3

n(i1 + i′1, i2 + i′2, i3 + i′3, k),

where N is the total number of particles and ∆l = 2slδxl, l = 1, 2, 3, are the lengths of
symmetrical intervals centered at xl. The severe limitation of PT concerns the total
number of particles, which in practice cannot be large enough to ensure the desired
accuracy of c [5, 6, 9].

The GRW algorithm is equivalent to a superposition of many PT procedures [9].
Starting with a given distribution of N particles in a computational grid, all the parti-
cles lying at a grid site are simultaneously spread, first by an advection displacement,
then by unbiased diffusion jumps. For illustration we present the GRW algorithm
in the case of constant D, when the two- and three-dimensional algorithms can be
designed by repeating a one-dimensional procedure for all space directions. The one-
dimensional GRW algorithm describes the scattering of n(i, k) particles from (xi, tk)
by

(3) n(j, k) = δn(j, j + vj , k) + δn(j + vj − d, j, k) + δn(j + vj + d, j, k),

where vj are discrete displacements in a given velocity field and d is the amplitude
of unbiased diffusive jumps. The quantities δn are Bernoulli random variables and
describe respectively, the number of particles which remain at the same grid site j+vj

reached after an advective displacement, the number of particles jumping to the left
and those jumping to the right (with respect to the advected position j + vj). The
mostly used version is the so called “reduced fluctuations” version of GRW, defined
by

δn(j + vj − d, j, k) =
{

n/2 if n is even
[n/2] + θ if n is odd,

where n = n(j, k)− δn(j, j + vj , k), [n/2] is the integer part of n/2 and θ is a random
variable taking the values 0 and 1 with probability 1/2. When applied in large scale
problems, the reduced fluctuations GRW algorithm has two advantages. First, a
much smaller number of calls of the random number generator is required, which
significantly reduces the computational costs. Then, the diffusion front does not
extend beyond the limit concentration defined by one particle at a grid point, keeping
a physical significant shape (compared to the finite differences schemes, where a pure
diffusion front has a cubic shape of size ∼ (2Dt)1/2).
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The distribution of the particles at the next time (k + 1)δt is given by

n(i, k + 1) =
∑

j

δn(i, j, k).

The averages of the terms in (1) over an ensemble of simulations are related by

(4) δn(j, j + vj , k) = (1− r) n(j, k), δn(j + vj ± d, j, k) = 1
2r n(j, k),

where 0 ≤ r ≤ 1. The diffusion coefficient D is expressed in terms of the grid steps
by the relation

(5) D = r
(δx)2

2δt .

For r ≤ 1, there is no numerical diffusion. Moreover, since the total number of
particles N contained in the grid is conserved, the GRW algorithm is stable. GRW
can be regarded as a particular cellular automaton (CA), i.e. it is a stochastic process
in the space of configurations, defined at a given time by the occupation numbers at
each grid site. In the GRW algorithm the number of particles per grid site is not
limited by an “exclusion principle”. Therefore, GRW is “self-averaging”, in the sense
that the solution given by a single simulation is in fact the same as that obtained af-
ter averaging over large ensembles of simulations. For instance, the GRW solution of
the heat equation converges to the Gaussian distribution as O(δx2) +O(1/

√
N); for

large numbers of particles the convergence order is O(δx2), the same as for the finite
differences scheme [9]. Though if GRW overcomes the limitation of PT concerning
the number of particles, the correctness of its solution is still affected by overshooting
errors, which characterize particles methods. Overshooting errors occur when the
particles jump over more than one lattice site and the variability of the velocity field
between the ends of the jumps is not accounted for. Overshooting can be somehow
kept under control (with increasing computational costs) by a fine discretization but
cannot be completely removed [6]. Therefore, to assess the reliability of GRW solu-
tions, an evaluation of the overshooting errors by comparisons with other methods is
necessary.

2. BGRW ALGORITHM

To prevent overshooting, one imposes that particles jump only on the first-neighbor
grid sites. This can be done by fixing to unity the amplitude of jumps in GRW,
d = 1, and by modeling the advection by a bias in the random walk jumps. The
new cellular automaton algorithm is called “biased global random walk” (BGRW)
[7]. We describe here the one-dimensional BGRW algorithm, for variable velocity and
diffusion coefficients. In BGRW, the relations (3-5) are replaced by

(3’) n(j, k) = δn(j, k) + δn(j + 1, j, k) + δn(j − 1, j, k),

(4’) δn(j, j, k) = (1− rj) n(j, k), δn(j ± 1, j, k) = 1
2 (rj ± vj) n(j, k),

(5’) rj = 2D(jδx)δt
δx2 , vj = V (jδx)δt

δx
.
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Thus unlike in the unbiased GRW algorithm, where the advective displacements vj

and the unbiased diffusive jumps d are independent, in BGRW the advective flux
vjn(j, k) is given, as follows from (4’), by the bias of the diffusive jumps

vjn(j, k) = δn(j + 1, j, k)− δn(j − 1, j, k).
The configuration of the grid, at the time (k + 1)δt is obtained by summing the

contributions from the first-neighbor sites,
n(i, k + 1) = δn(i, k) + δn(i, i+ 1, k) + δn(i, i− 1, k).

Taking the averages of this relation over an ensemble of simulations and using (4’)
and (5’) one obtains

n(x, t+ δt)− n(x, t)
δt

+ (V n)(x+ δx, t)− (V n)(x− δx, t)
2δx =

(Dn)(x+ δx, t)− 2(Dn)(x, t) + (Dn)(x− δx, t)
δx2 ,

where n(x, t) = n(iδx, kδt). Thus, BGRW is equivalent to the forward-time centred-
space finite difference scheme for the 1-dimensional version of the advection-diffusion
equation (1). For large N , n(x, t) ' n(x, t), i.e. BGRW is also self-averaging.

As it follows from (4’), BGRW is subjected to the restrictions
(6) rj 6 1, |vj | 6 r.

The first condition (6) corresponds to the von Neumann criterion for stability, imply-
ing that there is no numerical diffusion. The second condition in (6) ensures that the
Courant numbers are sub-unitary, then the algorithm also avoids the overshooting
errors. Implementations of BGRW for higher dimensional cases are easily done by
using vector parameters, for instance r = (r1, r2, r3),v = (v1, v2, v3), and accordingly
modifying (3’–5’) [7].

3. EVALUATION OF GRW BY COMPARISON WITH BGRW

We consider an isotropic two-dimensional diffusion in groundwater (D1 = D2 =
D = 0.01 m2/day) in a velocity field V with mean U = 1 m/day, oriented along
the x1 axis and with a standard deviation σ = 0.2 m/day. The velocity field is
generated as a realization of a periodic random field, consisting of a superposition
of 64 sin modes which approximates a Gaussian field; this Gaussian field is in turn
an approximation for small fluctuations of the hydraulic conductivity of the Darcy
velocity field in saturated groundwater formations [8]. For all simulations presented
in this paper, we fixed N = 1010, the total number of particles which ensures the
self-averaging of the GRW simulations for this transport problem [6].

Since D is constant we use in BGRW algorithm δx1 = δx2 = δx and r1 = r2 =
r = 0.5. Supposing that the maximum velocity can be as large as V max = U + 5σ =
2 m/day, from the second relation (5’) and the second condition (6) it follows that
δx 6 2D/V max = 0.01 m. Correspondingly, from the first relation in (5’) one obtains
δt = 0.0025 days. The BGRW simulation of the transport over 100 days, for a point
instantaneous injection at the origin of the lattice, requires about 15 cpu hours. For
the same problem and consuming the same cpu time, the (unbiased) GRW algorithm
can perform the simulation of the transport over 4 000 days, when an optimum choice
of parameters, (δx = 0.1 m, δt = 0.5 day, r = 0.25) is used [8]. Therefore, GRW is
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more appropriate for investigations on the large time behavior of transport processes
which show complex scaling properties, like the fate of contaminants in groundwater
[8]. To assess the reliability of the computational efficient GRW simulations we shall
use the overshooting-free (and more expensive in terms of cpu time) BGRW algorithm.
Because of the statistical nature of the predictions for groundwater contamination, we
go beyond the single realization comparisons done in [7], and proceed to an evaluation
of GRW solutions for the means and fluctuations, with respect to an ensemble of 256
velocity realizations, of the mostly used observables. The latter are the moments of
the solute concentration and the space average of the concentration over the cross-
section of the solute plume.

The two-dimensional version of the equation (1) was solved by GRW and BGRW,
for identical realizations of the velocity, point instantaneous injection at the origin,
and no-boundary conditions. The latter were achieved by fixing the grid dimensions to
L1 = 150 m and L2 = 20 m, so that during the total simulation time, T = 100 days,
no particle reaches the boundary. The concentration c was computed by (2) for
∆1 = ∆2 = ∆ = 1 m. The 1st and the 2-nd moments of the concentration c are
defined by

(7) µl(t) =
∫∫

xlc(x1, x2, t)dx1dx2, µll(t) =
∫∫

(xl − µl(t))2c(x1, x2, t)dx1dx2,

where l = 1, 2 and the integrals are computed over the support of c. For comparisons
we used the derivative of the 1-st moments V cm

l (t) = dµl(t)/dt, which represent the
velocity components of the center of mass of the solute body, and the rate of increase
with time of the 2-nd moments, which is used to define effective diffusion coefficients
Deff

ll (t) = µll(t)/(2t) [8]. The cross-section concentration was computed by

(8) C(x1, t) = 1
L2

∫ L2

0
c(x1, x2, t)dx2,

where L2 is the transverse dimension of the grid. For comparisons we used the cross-
section concentration at the center of mass of the plume, i.e. (8) estimated at x1 =
µ1(t).

The evaluation of the center of mass velocity was done using the absolute errors

(9) δ(Φ) = Φ(GRW)− Φ(BGRW),

where Φ stands, respectively, for the expectation E(V cm
l ), computed by arithmetic

means over the 256 velocity realizations, and for the corresponding standard devia-
tions SD(V cm

l ) = {E[(V cm
l )2] − [E(V cm

l )]2}1/2. The results for l = 1 and l = 2 are
presented in figure 1. In these figures we also plotted, by horizontal lines, the mean
errors (9) calculated by formula

(10) ‖δ(Φ)‖ =
{

1
T − T1

∫ T

T1

[δ(Φ)(t)]2dt
}1/2

,

where T1 = 1 day.
The evaluation for the effective coefficients Deff

ll and cross-section concentration
C were achieved by using the percentage relative errors

(11) ε(Φ) = 100Φ(GRW)− Φ(BGRW)
Φ(BGRW) ,
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Fig. 1. The evolution of the center of mass velocity.

where Φ stands, again, for the corresponding expectations, E(·), and standard devia-
tions, SD(·). The results for the longitudinal and transverse effective coefficients are
given in figure 2, respectively, and those for cross-section concentration in figure 3.
The horizontal lines in these figures correspond to the mean errors (11), calculated
similarly to (10), as ‖ε(Φ)‖.
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Fig. 2. The evolution of the effective coefficient.

4. CONCLUSIONS

A comparison between figure 1 and the theoretical expectation values E(V cm
1 ) =

1 m/day and E(V cm
2 ) = 0 m/day, shows that GRW reproduces the mean and the

fluctuations of the velocity of the plume center of mass with a very good precision of
the order of a few cm/day. Figures 2a and 3 also show that the longitudinal effective
coefficient and cross-section concentration are simulated with GRW with a satisfactory
precision of about 5%. The errors for the transverse effective coefficient are larger,
mainly those for the standard deviation (figure 2b). But in modelling groundwater
contamination the most important effects are described by the longitudinal effective
coefficients. Moreover, the existing limit theorems for large time behavior of the
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Fig. 3. Cross-section concentration.

transport also predict up-scaled diffusion coefficients given by asymptotic expansions
truncated at the order of local diffusion coefficient D. After tens of days the transverse
effective coefficient already reaches the theoretical asymptotic value Deff

22 ∼ D and its
standard deviation is one order of magnitude smaller [8]. Because the relative errors
presented in figure 2b are smaller than 100%, from (11) it follows that the absolute
errors in GRW simulations are smaller than D, thus still acceptable for inclusion into
the prediction process. Therefore, we can say that GRW is accurate enough for the
purpose of stochastic analyses of large time behavior of the transport.
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