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Rev. Anal. Numér. Théor. Approx., vol. 35 (2006) no. 1, pp. 5–10
ictp.acad.ro/jnaat

REFINEMENT OF SOME INEQUALITIES FOR MEANS

MIRA-CRISTIANA ANISIU∗ and VALERIU ANISIU†

Abstract. We consider weighted arithmetic means as, for example, αG+
(1 − α)C, with α ∈ (0, 1), G, C being the geometric and anti-harmonic means,
and we find the range of values of α for which the weighted mean is still greater
or less than some suitable means, in this case the arithmetic and Hölder ones.
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1. INTRODUCTION

It is well-known that the classical means, namely the arithmetic, geometric
and harmonic ones,

A = a+ b

2 , G =
√
ab, H = 2ab

a+ b

satisfy the inequalities
H < G < A,

for 0 < a < b. As in [2], we shall consider some other means, like:
– the Hölder and the anti-harmonic mean

Q =
(
a2 + b2

2

)1/2

, C = a2 + b2

a+ b
;

– the Pólya & Szegő logarithmic mean, the exponential (or identric), and
the weighted geometric mean

L = b− a
ln b− ln a, I = 1

e

(
bb

aa

)1/(b−a)

, S =
(
aabb

)1/(a+b)
.

An exhaustive bibliography and a full treatment of the topic can be found
in [1].

In [2], beside the known inequalities
(1) H < G < L < I < A < Q < S < C,
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the authors present the following relation between some means

(2) G+Q

2 < A <
G+ C

2 < Q <
A+ C

2 < S.

We can add to (2) the following inequalities

(3) L <
G+A

2 <
G+Q

2 .

The first one will follow from Proposition 1 of the next section (the second is
obvious in view of (1)).

In section 2 we shall consider weighted arithmetic means as, for example,
αG + (1 − α)C, with α ∈ (0, 1) instead of (G + C)/2, and we shall find the
range of values of α for which the weighted mean is still greater or less than
its neighbours in (2) or (3).

In section 3 we prove that αA+ (1−α)S > Q if and only if α ≥ 2−
√

2. As
a consequence, there are numbers 0 < a < b for which (A + S)/2 > Q, while
for other pairs of numbers (A+ S)/2 < Q.

2. REFINED INEQUALITIES

Let us denote t = b/a, t > 1. It it obvious that, if M(a, b) is any mean, it
suffices to prove the inequalities in (1), (2) or (3) for M(1, t). We shall write
from now on M(t) instead of M(1, t).

Proposition 1. 1. L(t) < αG(t)+(1−α)A(t), ∀t > 1 if and only if α ≤ 2
3 ;

2. αG(t) + (1− α)Q(t) < A(t), ∀t > 1 if and only if α ≥ 1
2 .

Proof. 1. We have L(t) < αG(t) + (1− α)A(t) if and only if
A(t)− L(t)
A(t)−G(t) > α.

We denote

(4) f11(t) = A(t)− L(t)
A(t)−G(t) = (t+ 1) ln t− 2(t− 1)

(t+ 1− 2
√
t) ln t

.

The limits at 1 and ∞ are limt→1 f11(t) = 2/3 and limt→∞ f11(t) = 1. We
evaluate f11(t)−2/3 and show that it is positive. The denominator is obviously
positive; we substitute u =

√
t in the numerator and obtain

f(u) = (u2 + 4u+ 1) ln u− 3u2 + 3.

We have f(1) = f ′(1) = f ′′(1) = 0 and f ′′′(u) = 2(u − 1)2/u3 > 0 for u > 1,
hence f11(t) > 2/3 for t > 1.

2. Let us consider for t > 1, the function

(5) f12(t) = Q(t)−A(t)
Q(t)−G(t) =

√
2(t2 + 1)− (t+ 1)√

2(t2 + 1)− 2
√
t

= 1−
√
t2 + 1 +

√
2t√

2(
√
t+ 1)2 .
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We have f12(t) < 1/2, since
√
t2 + 1 +

√
2t >

√
2/2 (

√
t + 1)2 ⇔

√
t2 + 1 >√

2/2 (t+ 1) ⇔ (t− 1)2 > 0, and the conclusion follows since limt→1 f12(t) =
1/2. �

Proposition 2. 1. A(t) < αG(t)+(1−α)C(t), ∀t > 1 if and only if α ≤ 1
2 ;

2. αG(t) + (1 − α)C(t) < Q(t), ∀t > 1 if and only if α ≥ α0, where
α0 = f22(√u0) = 0.3471574308..., with u0 the unique root of (8) which is
greater than 1, and f22 defined in (7).

Proof. 1. For t > 1 we define

(6) f21(t) = C(t)−A(t)
C(t)−G(t) = (t− 1)2

2(t2 + 1−
√
t(t+ 1))

.

It follows that f21(t) > 1/2, since

f21(t)− 1
2 =

√
t(
√
t− 1)2

2(t2 + 1−
√
t(t+ 1))

=
√
t

2(t+
√
t+ 1)

> 0.

The infimum of f21 on (1,∞) is precisely 1/2, because limt→1 f21(t) = 1/2.
2. We consider now

(7) f22(t) = C(t)−Q(t)
C(t)−G(t) = 1

2
2(t2 + 1)− (t+ 1)

√
2(t2 + 1)

t2 + 1− (t+ 1)
√
t

and obtain limt→1 f22(t) = 1/3 and limt→∞ f22(t) = (2 −
√

2)/2. In order
to find the maximum of f22 we calculate the roots of the derivative of f22.
Denoting by u =

√
t, we obtain a unique root in (1,∞) of f ′22 from

(8) u8 − 8u5 − 10u4 − 8u3 + 1 = 0,

which is u0 = 2.3859965175..., for which f22(√u0) = 0.3471574308 . . . . The
function f22 will increase up to f22(√u0) = α0 and then will decrease to
(2−

√
2)/2. �

Lemma 3. For t > 1, the following inequality holds

(9) t
t

t+1 > t− ln t.

Proof. The inequality (9) is equivalent to
t

t+ 1 ln t > ln(t− ln t).

We consider the function

k(t) = ln(t− ln t)− t− 1
t

ln t, t > 1,

with

k′(t) = (ln t− 1) ln t
t2(t− ln t) .
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It has limt→1 k(t) = 0, limt→∞ k(t) = 0 and a minimum at t0 = e. It follows
that k(t) < 0 on (1,∞), hence ((t− 1)/t) ln t > ln(t− ln t). It follows that

t

t+ 1 ln t > t− 1
t

ln t > ln(t− ln t). �

Now we can prove

Proposition 4. 1. Q(t) < αA(t)+(1−α)C(t), ∀t > 1 if and only if α ≤ 1
2 ;

2. αA(t) + (1− α)C(t) < S(t), ∀t > 1 if and only if α ≥ 1
2 .

Proof. 1. Let us consider, for t > 1

(10) f41(t) = C(t)−Q(t)
C(t)−A(t) = 2(t2 + 1)− (t+ 1)

√
2(t2 + 1)

(t− 1)2 .

It follows that

f41(t)− 1
2 = 3(t2 + 1) + 2t− 2(t+ 1)

√
2(t2 + 1)

2(t− 1)2 ≥ 0,

because (3(t2 + 1) + 2t)2 − 8(t + 1)2(t2 + 1) ≥ 0 ⇔ (t − 1)4. We have
limt→1 f41(t) = 1/2, hence this is the infimum of f41 on (1,∞).

2. Finally we define

(11) f42(t) = C(t)− S(t)
C(t)−A(t) = 2 t

2 + 1− (t+ 1)t
t

t+1

(t− 1)2 .

We have

f42(t)− 1
2 = 3(t2 + 1) + 2t− 4(t+ 1)t

t
t+1

4(t− 1)2 .

We consider the function

g(t) = 3(t2 + 1) + 2t
4(t+ 1) − t

t
t+1

and the numerator of its derivative
(12) g1(t) = 4t

t
t+1 (t+ 1 + ln t) + 1− 3t2 − 6t.

Using the fact that S > Q, i.e., tt/(t+1) >
√

(t2 + 1)/2, we obtain that g1(t) >√
2(t2 + 1)g2(t), where g2(t) = 2(t+ 1 + ln t)− (3t2 + 6t− 1)/

√
2(t2 + 1). The

numerator of g′2 is (t+ 1)
(√

2(t2 + 1)
)3− (3t4 + 7t2 + 6t

)
and it is positive on

(1, 10). It follows that g2(t) > g2(1) = 0, therefore g1 is positive for 1 < t < 10.
Let us consider now that t ≥ 10. Using (9) in (12) we obtain that g1(t) >

g3(t) = t2 − 2t + 2 − (2 ln t+ 1)2 . For g4(t) =
√
t2 − 2t+ 2 − 2 ln t − 1, the

sign of g′4 is given by t2 − t − 2
√
t2 − 2t+ 2; but (t2 − t)2 − 4(t2 − 2t + 2) =

(t− 10)4 + 38(t− 10)3 + 537(t− 10)2 + 3348(t− 10) + 7772 > 0 for t ≥ 10. It
follows that g3(t) ≥ g3(10) = 3.45... > 0, hence g1 is positive for t ≥ 10 too.

In conclusion, g(t) > g(1) = 0, and f42(t) > 1/2 for t > 1; in addition,
limt→1 f42(t) = 1/2. �
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3. ANOTHER INEQUALITY

In general it is not an easy task to find the range where the parameter α
may vary. To this aim the Symbolic Algebra Programs as Maple can be of
great help.

We consider the following problem:
Find the values of α ∈ (0, 1) for which

(13) Q(t)− αA(t)− (1− α)S(t) > 0, ∀t > 1.

In order to find the minimal value of α for which (13) holds, we shall develop
asymptotically the function F (t, α) = Q(t)− αA(t)− (1− α)S(t) for t→∞.
We denote

(14) u = F (t, α) = 1
2
√

2 + 2 t2 − 1
2α (1 + t)− (1− α) t

t
1+t .

Using the command asympt(u,t,3) we obtain the series

(15)

(√
2

2 + α

2 − 1
)
t− α

2 + (1− α) ln (t)

+

√
2/4− (1− α)

(
ln (t) + 1/2 (ln (t))2

)
t

+O
(
t−2) .

(We mention that the term O
(
t−2) is used in the sense of Maple; from the

point of view of Landau notation it should be O(t−2 ln3(t)).)
For u > 0, the condition

√
2/2+α/2−1 ≥ 0, hence α ≥ 2−

√
2, is obviously

necessary. Now that we know the expected minimal value of α, we state

Theorem 5. The inequality (13) holds if and only if α ≥ 2−
√

2.

Proof. We shall prove that the inequality holds for α = 2 −
√

2 (hence a
fortiori for α ≥ 2−

√
2).

Let us denote f(t) = (
√

2 + 1)F (t, 2 −
√

2), where F is given in (14). We
have to prove that f(t) > 0 for t > 1. It follows that

f(t) = (
√

2 + 1)
√

2(t2 + 1)
2 −

√
2(t+ 1)

2 − t
t

t+1 .

We put in the inequality (1 + x)q < 1 + qx, which holds for x > 0, 0 < q < 1,
x = t− 1 and q = t/(t+ 1). It follows that

t
t

t+1 <
t2 + 1
t+ 1 ,

and

f(t) > (1 +
√

2)
2(t+ 1)

(
(t+ 1)

√
2 + 2t2 −

√
2(t2 + 2(

√
2− 1)t+ 1)

)
.
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Let us denote the positive expressions
f1(t) = (t+ 1)

√
2 + 2t2, f2(t) =

√
2(t2 + 2(

√
2− 1)t+ 1);

it follows easily that f2
1 (t)− f2

2 (t) = 4t(t− 1)2, therefore f(t) > 0. �
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