INTERPOLATION PAR DES FONCTIONS ENTIÈRES

GHIOCEL GROZA* et NICOLAE POP[†]

Résumé. Soit A une algèbre normée unifére commutative complète sur un corps commutatif à valeur absolue non triviale. L'article montre qu'il existe une fonction entière, ayant les coefficients en A qui donne une solution pour un problème d'interpolation infinie en A.

MSC 2000. 41A05, 41A30.

Keywords. Interpolation par des fonction entières, aproximation par des autre speciales classes fonctions.

1. INTRODUCTION

Ce travail est consacré à l'interpolation par des fonctions entières dans une algèbre normée unifère commutative A [2] sur un corps commutatif K à valeur absolue non triviale | | [1]. Rappelons qu'une valeur absolue non triviale sur K est une application $| | de K dans [0, \infty)$ qui satisfait:

```
VA1.
                  |\alpha| = 0 \Leftrightarrow \alpha = 0;
```

VA2.
$$|\alpha\beta| = |\alpha| |\beta|;$$

VA3.
$$|\alpha + \beta| \le |\alpha| + |\beta|$$
;

VA4.
$$\exists \alpha \in K, \ \alpha \neq 0 \text{ tel que } |\alpha| \neq 1.$$

Si $x \in A$, la norme de x se note ||x|| et on sait que

N1.
$$||x|| \ge 0$$
 et $||x|| = 0 \Leftrightarrow x = 0$;

N2.
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
;

N3.
$$||x + y|| \le ||x|| + ||y||$$
;

N4
$$||xy|| < ||x|| \cdot ||y|| \quad \forall x \ y \in A \quad \forall \alpha \in K$$

N4. $\|xy\| \leq \|x\| \cdot \|y\|$, $\forall x, y \in A$, $\forall \alpha \in K$. Nous noterons IA[[X]] l'ensemble des fonctions entières sur A. Donc f=

 $\sum_{n=0}^{\infty} a_n X^n \in IA[[X]], \ a_n \in A$, si la série converges dans A quel que soit $x \in A$.

Soit $\{x_n\}_{n\in\mathbb{N}}$ une suite d'éléments de A telle que

 x_n est inversible $\forall n \in \mathbb{N}$;

^{*}Université Technique de Contructions, Département de Mathématiques et Informatiques, 124 Lacul Tei, sector 2, 031761 Bucharest, Roumanie, e-mail: grozag@hidro.utcb.ro.

[†]Nord Université, Département de Mathématique et Informatique, 76 Victoriei, 430122 Baia Mare, Roumanie, e-mail: nic_pop2000@yahoo.com.

C2.
$$||x_n x_{n+1}^{-1}|| < 1, \quad \forall \ n \in \mathbb{N};$$

C3.
$$\lim_{n \to \infty} ||x_n^{-1}|| = 0.$$

Si $A = K = \mathbb{C}$, ||x|| = |x| et $\{y_n\}_{n \in \mathbb{N}}$ est une suite d'éléments de A, on sait [4] qu'il existe $f \in IA[[X]]$ telle que

$$(1) f(x_n) = y_n, \quad \forall \ n \in \mathbb{N}.$$

La démonstration utilises le produit de Weierstrass et le théorème classique de Mittag-Leffler. Si A=K et la valeur absolue sur K este non-archimèdienne, il existe [3] alors des corps K et des fonctions qui n'admettent aucune décomposition raisonnable en produit, donc le problème n'est plus accessible par les méthodes multiplicatives. Le problème de la construction de f este plus difficile si A n'est pas un corps ou norme n'est pas multiplicative.

2. INTERPOLATION SUR UNE ALGÈBRE NORMÉE

En utilisant des méthodes additives nous obtenons le résultat suivant.

THÉORÈME 1. Soit A une algèbre normée unifère commutative complète sur un corps commutatif K á valeur absolue non triviale. Si $\{x_n\}_{n\in\mathbb{N}}$ est une suite d'éléments de A qui vérifie C1-C3, alors pour suite $\{y_n\}_{n\in\mathbb{N}}$ d'éléments de A il existe $f \in IA[[X]]$ qui vérifie (1).

Preuve. Nous voulons construire une suite de polynômes $\{P_k\}_{k\in\mathbb{N}}$,

(2)
$$P_k = a_{k0} + a_{k1}X^{n_1} + \dots + a_{kk}X^{n_k} \in A[X]$$

qui vèrifient

$$(3) 0 = n_0 < n_1 < \dots < n_k,$$

$$(4) P_k(x_i) = y_i,$$

pour tout $k \in \mathbb{N}$ et pour tout $i \leq k$. De plus, si $k \in \mathbb{N}^*$, $B_k = \left\|x_{k-1}^{-1}\right\|^{n_{k-1}}$, $C_{ki} = n_i \left\|x_i^{-1}\right\|^{n_i} - \|a_{k-1i}\|$, alors on a

$$||a_{k0} - a_{k-10}|| < B_k,$$

(6)
$$||a_{ki} - a_{k-1i}|| < \min\{B_k, C_{ki}\}, \quad \forall i = 1, 2, \dots, k-1;$$

(7)
$$||a_{ki}|| < n_i ||x_i^{-1}||^{n_i}, \forall i = 1, 2, \dots, k.$$

Soient D_k le déterminant

(8)
$$\det \begin{pmatrix} 1 & x_0^{n_1} & x_0^{n_2} & \cdots & x_0^{n_k} \\ 1 & x_1^{n_1} & x_1^{n_2} & \cdots & x_1^{n_k} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & x_k^{n_1} & x_k^{n_2} & \cdots & x_k^{n_k} \end{pmatrix}$$

et pour tout $i = 0, 1, ..., k, D_k^{(i)}$ le déterminant obtenu à partir de D_k en remplaçant les éléments de la colonne d'indice i + 1 par les éléments $y_0, y_1, ..., y_k$. Alors on a

$$(9) D_k = E_k \cdot \prod_{j=1}^k x_j^{n_j},$$

οù

(10)
$$E_{k} = \det \begin{pmatrix} 1 & \left(x_{0}x_{1}^{-1}\right)^{n_{1}} & \left(x_{0}x_{2}^{-1}\right)^{n_{2}} & \cdots & \left(x_{0}x_{k}^{-1}\right)^{n_{k}} \\ 1 & 1 & \left(x_{1}x_{2}^{-1}\right)^{n_{2}} & \cdots & \left(x_{1}x_{k}^{-1}\right)^{n_{k}} \\ 1 & \left(x_{2}x_{1}^{-1}\right)^{n_{1}} & 1 & \cdots & \left(x_{2}x_{k}^{-1}\right)^{n_{k}} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & \left(x_{k}x_{1}^{-1}\right)^{n_{1}} & \left(x_{k}x_{2}^{-1}\right)^{n_{2}} & \cdots & 1 \end{pmatrix} .$$

De plus, on voit que

(11)
$$D_k^{(i)} = E_k^{(i)} \cdot \prod_{\substack{j=1\\j \neq i}}^k x_j^{n_j},$$

où $E_k^{(i)}$ est le déterminant obtenu à partir de E_k en remplaçant les éléments de la colonne d'indice i+1 par les éléments y_0, y_1, \ldots, y_k .

Soit $P_0 = a_{00}$ où $a_{00} = y_0$. Nous allons construire la suite P_k par récurrence sur l'entier k.

Soit k = 1. La relation C2 nous donne

$$\lim_{n_1 \to \infty} E_1 = 1$$

et

(13)
$$\lim_{n_1 \to \infty} E_1^{(0)} = a_{00} \,.$$

Rappelons [2] que le groupe A^* des éléments inversibles de A est une partie ouverte de A. Alors, puisque $D_1^{(1)}$ ne dépend pas de n_1 et d'après (12), (13), (9) et (11), il existe $n_1 \in \mathbb{N}^*$ telle que E_1 soit inversible et

$$||D_1^{(0)}D_1^{-1} - a_{00}|| < B_1,$$

(15)
$$||D_1^{(1)}D_1^{-1}|| < n_1||x_1^{-1}||^{n_1}.$$

Nous choisissons un entier n_1 qui vérifie ces conditions. En résolvant, suivant le théoreme de Cramer, le système (4) pour k = 1 on obtient

(16)
$$a_{1i} = D_1^{(i)} D_1^{-1}, \quad i = 0, 1.$$

Donc, d'après (14), (15) et (16), les relations (3), (4), (5) et (7) sont verifiées pour k=1.

Soient maintenant P_k satisfaisant aux conditions (3)–(7) et E_k inversible. Nous allons construire le polynôme

(17)
$$P_{k+1} = a_{k+10} + a_{k+11}x^{n_1} + \dots + a_{k+1k}x^{n_k} + a_{k+1k+1}x^{n_{k+1}} \in A[X].$$

Donc, nous cherchons le nombre $n_{k+1} \in \mathbb{N}^*$ et les éléments $a_{k+1i} \in A$, $i = 0, 1, \ldots, k+1$, tels que les relations (3)–(7) soient verifiées en remplaçant k par k+1 et E_{k+1} soit inversible.

Les relations C2 et N4 nous donnent

(18)
$$\lim_{n_{k+1} \to \infty} E_{k+1} = E_k \,,$$

(19)
$$\lim_{n_{k+1} \to \infty} E_{k+1}^{(i)} = E_k^{(i)}, \quad i = 0, 1, \dots, k.$$

Alors, puisque $D_{k+1}^{(k+1)}$ ne depend pas de n_{k+1} , d'aprés (18), (19), (9) et (11) il existe $n_{k+1} \in \mathbb{N}^*$ telle que E_{k+1} soit inversible et

(20)
$$\left\| D_{k+1}^{(0)} D_{k+1}^{-1} - D_k^{(0)} D_k^{-1} \right\| < B_{k+1} ,$$

(21)
$$\|D_{k+1}^{(i)}D_{k+1}^{-1} - D_k^{(i)}D_k^{-1}\| < \min\{B_{k+1}, C_{k+1i}\}, \quad i = 1, 2, \dots, k,$$

(22)
$$\left\| D_{k+1}^{(k+1)} D_{k+1}^{-1} \right\| < n_{k+1} \left\| x_{k+1}^{-1} \right\|^{n_{k+1}} .$$

Nous choisissons un entier n_{k+1} qui vérifie ces conditions. En résolvant, suivant théorème de Cramer, le système (4) on obtient

(23)
$$a_{k+1i} = D_{k+1}^{(i)} D_{k+1}^{-1}, \quad i = 0, 1, \dots, k+1.$$

Donc, les relations (3)–(6) sont verifiées et aussi la relation (7) pour i = k + 1. De plus,

$$||a_{k+1i}|| \le ||a_{k+1i} - a_{ki}|| + ||a_{ki}|| < C_{k+1i} + ||a_{ki}|| =$$

= $n_i ||x_i^{-1}||^{n_i}$, pour tout $i = 1, 2, ..., k$

et la relation (7) est verifiée.

Nous noterons

(24)
$$b_k^{(i)} = a_{ki}, \quad \text{pour} \quad i, k \in \mathbb{N} \quad \text{et} \quad k \ge i.$$

Alors, d'après (5), (6), on a

(25)
$$\left\|b_{k+m}^{(i)} - b_k^{(i)}\right\| \le B_{k+1} + B_{k+2} + \dots + B_{k+m}, \quad \forall \ m \in \mathbb{N}.$$

Or A est complete et, lorsque C3 est satisfaite, la série $\sum_{j=0}^{\infty} B_j$ converge. Par conséquent, pour tout $i \in \mathbb{N}$, il existe $a_i \in A$ tel que

$$(26) a_i = \lim_{k \to \infty} b_k^{(i)}.$$

Soit

$$f = \sum_{i=0}^{\infty} a_i X^i \in A[[X]]$$

et nous montrerons que $f \in IA[[X]]$.

En effet, d'après la relation (7), on a

$$||a_i|| \le n_i \left\| x_i^{-1} \right\|^{n_i}$$

et la condition C3 montre que f est une fonction entière sur A.

Il reste á montrer que f vérifie la relation (1).

On a

$$S_k(x_n) = a_0 + a_1 x_n^{n_1} + \dots + a_k x_n^{n_k}$$

$$= P_k(x_n) + S_k(x_n) - P_k(x_n)$$

$$= y_n + a_0 - a_{k0} + (a_1 - a_{k1}) x_n^{n_1} + \dots + (a_k - a_{kk}) x_n^{n_k},$$

d'où

$$||S_k(x_n) - y_n|| \leq ||a_0 - a_{k0}|| + ||a_1 - a_{k1}|| \cdot ||x_n||^{n_1} + \dots + ||a_k - a_{kk}|| \cdot ||x_n||^{n_k}.$$
(28)

Or, d'après (25), pour $m \to \infty$, nous avons

(29)
$$||a_i - a_{ki}|| \le \sum_{j=k}^{\infty} ||x_j^{-1}||^{n_j} ,$$

donc les relations (28) et (29) impliquent

(30)
$$||S_k(x_n) - y_n|| \le \sum_{i=1}^k ||x_n||^{n_i} \sum_{j=k}^\infty ||x_j^{-1}||^{n_j}.$$

Notons $M_n = \max \{||x_n||, 1\}$. De la condition C3, pour k assez grand et $j \ge k$, nous obtenons

(31)
$$||x_j^{-1}|| \le (2M_n)^{-1} .$$

Alors

$$\sum_{j=k}^{\infty} \left\| x_j^{-1} \right\|^{n_j} \le \sum_{j=k}^{\infty} (2M_n)^{-n_j} \le (2M_n)^{-n_k} \left(1 - 2^{-1} M_n^{-1} \right)^{-1}$$

et d'après (30) on a pour k assez grand

$$||S_k(x_n) - y_n|| \le kM_n^{n_k} (2M_n)^{-n_k} (1 - 2^{-1}M_n^{-1})^{-1} = k (1 - 2^{-1}M_n^{-1})^{-1} 2^{-n_k}.$$

Donc
$$f(x_n) = \lim_{k \to \infty} S_k(x_n) = y_n$$
 et la théorème est démontrée. \square

BIBLIOGRAPHIE

- [1] AMICE, Y., Les nombres p-adiques, Presses Universitaires de France, 1975.
- [2] BOURBAKI, N., Topologie générale, Livre III, Hermann, Paris, 1961.
- [3] LAZARD, M., Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Publ. Math. I.H.E.S., no. 14, 1962.
- [4] Rudin, W., Real and Complex Analysis, M. Graw-Hill, 1966.

Received by the editors: February 2, 2006.