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ON THE UNIQUENESS OF THE OPTIMAL SOLUTION
IN LINEAR PROGRAMMING
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Abstract. In this paper numerous necessary and sufficient conditions will be
given for a vector to be the unique optimal solution of the primal problem, as well
as for that of the dual problem, and even for the case when the primal and the
dual problem have unique optimal solutions at the same time, respectively, by
means of using the strict complementarity and the linear independence constraint
qualification. Beyond that, the topological structure of the optimal solutions
satisfying the strict complementarity will be determined.
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1. INTRODUCTION

Consider the linear programming (LP) problem of the form
(P) {min cTx : x ∈ Rn, Ax ≤ b}

and its dual
(D) {max(−b)Ty : x ∈ Rm, ATy = −c, y ≥ 0}.

(Here A is an m by n matrix, c ∈ Rn, b ∈ Rm, I = {1, 2, . . . ,m} 6= ∅ is the set
of row indices of A, J = {1, 2, . . . , n} 6= ∅ is the set of column indices of A.)

There are a number of trivial and non-trivial examples for sufficient con-
ditions as well as for necessary conditions for the uniqueness of the primal
optimal solution, and also for those of the dual optimal solution. For exam-
ple, it is obvious that if (P) has only one feasible point, it is, of course, an
optimal solution, too; and this is also true for (D). Hence, the trivial condition
that the corresponding feasible set has one element, is a sufficient condition
for the uniqueness of the optimal solution for (P) and (D), respectively. From
the strict complementary slackness theorem it follows that — if there is an
optimal solution either for (P) or for (D) — there are optimal solutions of (P)
and (D) that meet the strict complementary condition (SCC). Thus, this last
condition is a necessary condition for the uniqueness of the optimal solution
for (P) and (D), respectively.
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Some other examples. It is well-known that if there is an optimal solution x0
for (P) and the linear independence constraint qualification (LICQ) is fulfilled
at x0 — i.e. the rows of A corresponding to the active indices at x0 are linearly
independent — then the dual has exactly one optimal solution.

(The set of active indices at a primal feasible solution x0 is defined as

I(x0) = {i ∈ I : aT
i is a row of A, aT

i x0 = bi},

while at a dual feasible solution y0 is defined as I(y0) = {i ∈ I; y0
i = 0}. y0

i

denotes the ith element of vector y0.) Therefore, satisfaction of LICQ at a
primal optimal solution x0 is a sufficient condition for the uniqueness of the
dual optimal solution. On the other hand, it is also known that if the primal
feasible set is nonempty, but it has no inner point, then there is no unique
dual optimal solution. Hence, the Slater constraint qualification is a necessary
condition for the uniqueness of the dual optimal solution.

The above-mentioned conditions are either necessary or sufficient condi-
tions. However, it would be important to get necessary and sufficient condi-
tions for the uniqueness

• of the primal optimal solution
• of the dual optimal solution
• of both the primal and at the same time the dual optimal solution.

In the paper results of that kind will be presented as a primary purpose,
with the help of LICQ and SCC. Although, in [3] some necessary and suffi-
cient conditions for the uniqueness of the primal optimal solution have been
presented, they are too difficult to apply. Thus, the secondary purpose of the
paper is to give easy-to-use conditions for the resolution of the question.

First of all, an assumption will be described. Since in case of c = 0, every
feasible solution is optimal, and since in case of c 6= 0 at every primal optimal
solution there is at least one active index in I(x0), from now on it will be
assumed that I(x0) 6= ∅.

2. BASIC DEFINITIONS AND THEOREMS

In nonlinear programming (NLP), in connection with optimality, the so
called Kuhn-Tucker condition (KTC) plays a crucial role. It is said that the
KTC is fulfilled for (P) at a feasible point x0 iff
KTC:

{λ ∈ Rm : ∇f(x0)+
∑

i∈I(x0)
λi∇gi(x0)= 0,λi≥ 0, i ∈ I(x0), λi = 0, i /∈ I(x0)} 6= ∅

This equation-inequality system is called the KT system.
(The corresponding NLP problem: {min f(x) : x ∈ Rn, gi(x) ≤ 0, i ∈

I(x0)}.)
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Its equivalent dual form:
KTCdu:

{x ∈ Rn : ∇f(x0)Tx < 0, ∇gi(x0)Tx ≤ 0, i ∈ I(x0)} = ∅

(One can get the equivalent form by applying Motzkin’s theorem of the alter-
native, see [2])

From now on, the phrases ‘for (P)’ and ‘at x0’ will be omitted everywhere
where their use is unambiguous.

A feasible point x0 at which KTC is fulfilled is called a KT point (KTP),
a vector λ satisfying KTC is called a KT vector (KTV). (Sometimes it is
called a multiplier vector.) It is said that at a feasible point x0 the strict
complementary condition in connection with KTC (KT-SCC) is fulfilled iff
there is a KTV with λi > 0 for all i ∈ I(x0). A feasible point x0 at which
KT-SCC is fulfilled is called a KT-SC point (KT-SCP), a vector λ satisfying
the KT-SCC is called a KT-SC vector (KT-SCV).

In linear programming KTC and KTCdu have the following forms.
KTC:

{y ∈ Rm :
∑

i∈I(x0)
aiyi = −c, yi ≥ 0, i ∈ I(x0), yi = 0, i /∈ I(x0)} 6= ∅

KTCdu:
{x ∈ Rn : cTx < 0, aT

i x ≤ 0, i ∈ I(x0)} = ∅
In LP the concept of strict complementarity is defined as follows. An optimal

solution x0 is said to satisfy the strict complementary condition (OPT-SCC)
iff there is a dual optimal solution y0 for which:

(b−Ax0)Ty0 = 0 and b−Ax0 + y0 > 0.

A primal feasible point x0 at which OPT-SCC is fulfilled is called an OPT-SC
point (OPT-SCP), a dual feasible point y0 satisfying OPT-SCC at some x0
primal feasible point is called an OPT-SC vector (OPT-SCV).

In case of linear programming the above two kinds of strict complementarity
coincide. Namely, the following assertions are true. (They are well-known and
can be found in many linear programming textbooks. Therefore, their proofs
are omitted from the paper. All of the following propositions pertain to linear
programming.)

Theorem 2.1. A primal feasible point x0 is an optimal solution for (P) iff
it is a KTP.

Theorem 2.2. A dual feasible point y0 is an optimal solution for (D) iff it
is a KTV for some primal optimal solution x0.

Theorem 2.3. For every primal optimal solution the set of KTVs is the
same.
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Corollary 2.4. The set of all dual optimal solutions is equal to the set of
all KTVs.

Corollary 2.5. The set of all OPT-SCPs is equal to the set of all KT-
SCPs.

Corollary 2.6. The set of all OPT-SCVs is equal to the set of all KT-
SCVs.

Hence, OPT-SCP and KT-SCP are the same concepts, and the same is true
for OPT-SCV and KT-SCV. Therefore, from now on it will be written simply
SCP and SCV.

Corollary 2.7. The set of all SCPs for (P) is equal to the set of all SCVs
for (D) and vice versa.

The first one of the following two theorems is called the weak complementary
slackness theorem, while the second one is called the strict complementary
slackness theorem.

Theorem 2.8. A primal feasible point x0 and a dual feasible point y0 are
optimal solutions for (P) and (D), respectively iff they satisfy the condition
(b−Ax0)Ty0 = 0.

Theorem 2.9. Let (P) or (D) has an optimal solution. Then the other has
an optimal solution, too, and there are a primal optimal point x0 and a dual
optimal point y0 with b−Ax0 +y0 > 0. (Hence, x0 is a SCP and y0 is a SCV.)

3. TOPOLOGICAL STRUCTURE OF THE POINTS SATISFYING STRICT

COMPLEMENTARITY

In this section the topological structure of SCPs and SCVs will be investi-
gated within the optimal solution set of (P) and (D), respectively. First, the
support of a feasible solution will be defined.

The support of a primal feasible solution x0: supp(x0) = {i ∈ I : i /∈ I(x0)},
while the support of a dual feasible solution y0: supp(y0) = {i ∈ I : i /∈ I(y0)}.

The next two theorems immediately follow from the strict complementary
slackness theorem.

Theorem 3.1. An optimal solution of (P) is a SCP iff it is an optimal
point for (P) of maximal support. An optimal solution of (D) is a SCV iff it
is an optimal point for (D) of maximal support.

(Maximality means that the given support is a set of maximal number of
elements among the supports in question.)

The following propositions show the structure of SCPs and SCVs.
Theorem 3.2. Let (P) or (D) has an optimal solution. Then there is ex-

actly one maximal support among the supports belong to the primal optimal
solutions, and there is exactly one maximal support among the supports belong
to the dual optimal solutions.
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Proof. The theorem follows from the fact that the optimal sets of (P) and
(D) are convex sets, and if e.g. x1 and x2 are two different primal optimal
solutions of maximal support, then every inner point x0 of the line segment
between x1 and x2 is an optimal solution with supp(x0) = supp(x1)∪supp(x2).

�

Corollary 3.3. SCPs are identical with the relative interior points of the
primal optimal solution set (if there is any primal optimal solution) and SCVs
are identical with the relative interior points of the dual optimal solution set
(if there is any dual optimal solution).

Corollary 3.4. If there is only one optimal solution of (P), it is a SCP.
If there is only one optimal solution of (D), it is a SCV.

Corollary 3.5. Every optimal solution of (P) is a SCP iff the set of opti-
mal solutions of (P) is nonempty and relatively open. Every optimal solution
of (D) is a SCV iff the set of optimal solutions of (D) is nonempty and rela-
tively open.

4. UNIQUENESS OF THE PRIMAL OPTIMAL SOLUTION

First, two conditions will be defined that are modifications of KTC. The first
one is called the strict KTC (STKTC), the second one is called the weak strict
KTC (WSTKTC). (Here and from now on in the paper only the equivalent
dual forms of the conditions will be described. The index “du” will be omitted.)

STKTC:
{x ∈ Rn : cTx ≤ 0, aT

i x ≤ 0, i ∈ I(x0)} = {0}
WSTKTC:

{x ∈ Rn : cTx = 0, aT
i x ≤ 0, i ∈ I(x0)} = {0}

(The name WSTKTC can be explained by the dual form. It can be thought
that first KTCdu had been strengthened to STKTC, and then, by a weaken-
ing of STKTC, namely, substituting cTx ≤ 0 by cTx = 0 was done to get
WSTKTC.)

By means of these two conditions it is possible to give necessary and suffi-
cient conditions for the uniqueness of the primal optimal solution.

Theorem 4.1. A primal feasible point x0 is the only optimal solution of
(P) iff STKTC is satisfied at x0.

Proof. 1) Necessity. Let x0 be the only optimal solution of (P). Then:
{x ∈ Rn : cTx ≤ cTx0, a

T
i x ≤ bi, i ∈ I} = {x0}, aT

i x0 = bi, i ∈ I(x0) and
aT

i x0 < bi, i /∈ I(x0). On the contrary, assume that STKTC is not fulfilled at
x0. Then there exists a vector z 6= 0 for which cTz ≤ 0, aT

i z ≤ 0, i ∈ I(x0).
One can choose z in such a way that aT

i z < bi − aT
i x0 could also be satisfied

for all i /∈ I(x0). Then the vector x0 + z is also an optimal solution for (P)
different from x0, what is a contradiction to the assumption.
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2) Sufficiency. Let x0 be a primal feasible point and let STKTC be satisfied
at x0. On the contrary, assume that it is not true that x0 is the only optimal
solution for (P). Then there exists a primal feasible solution x 6= x0 for which
cTx ≤ cTx0 , aT

i x ≤ bi, i ∈ I. Let z = x − x0. Then z 6= 0 and cTz ≤ 0,
aT

i z ≤ 0, i ∈ I(x0), and this is a contradiction to the satisfaction of STKTC
at x0. �

Remark 4.2. Theorem 4.1 is slightly different from the equivalence of (i)
and (iii) of Theorem 2 in [3], since from Theorem 2 — writing the O matrix
instead of A and −C instead of C in Theorem 2 — one can have that if x0
is a primal optimal solution, then x0 is the unique optimal solution of (P) iff
STKTC is fulfilled. Since the preassumption in Theorem 4.1 is weaker than
the one in Theorem 2, Theorem 4.1 had to be proved.

Theorem 4.3. A primal optimal solution x0 is the only optimal solution of
(P) iff WSTKTC is satisfied at x0.

Proof. It is similar to the proof of Theorem 4.1. �

The following two theorems are a little bit stronger than the equivalence
of (i) and (iv), as well as that of (i) and (x) of Theorem 2 in [3]. Denote by
I(x0, y0) the set I(x0, y0) = I(x0) ∩ I(y0).

Theorem 4.4. Let x0 be the unique primal optimal solution. Then for every
dual optimal solution y0:
{x ∈ Rn : aT

i x = 0, i ∈ supp(y0), aT
i x ≤ 0, i ∈ I(x0, y0)} = {0}.

Let x0 be a primal optimal solution. Assume that there exists a dual optimal
solution y0 for which:
{x ∈ Rn : aT

i x = 0, i ∈ supp(y0), aT
i x ≤ 0, i ∈ I(x0, y0)} = {0}. Then x0 is

the unique primal optimal solution.

Proof. It can be proved similarly as it was done in the proof in [3]. �

Introduce the following notation. Let AK be the sub-matrix of A consisting
of those rows of A indices of which belong to the index set K, where K ⊆ I.
Denote by p the cardinality of I(x0), i.e. let p = card(I(x0)).

Theorem 4.5. Let x0 be the unique primal optimal solution. Then the
columns of the matrix AI(x0) are linearly independent, and for every dual op-
timal solution y0: {v ∈ Rp :

∑
i∈I(x0)

viai = 0, vi > 0, i ∈ I(x0, y0)} 6= ∅.

Let x0 be a primal optimal solution. Assume that the columns of the matrix
AI(x0) are linearly independent, and there exists a dual optimal solution y0 for
which: {v ∈ Rp :

∑
i∈I(x0)

viai = 0, vi > 0, i ∈ I(x0, y0)} 6= ∅. Then x0 is the

unique primal optimal solution.

Proof. For the condition in Theorem 4.4:
{x ∈ Rn : aT

i x = 0, i ∈ supp(y0), aT
i x ≤ 0, i ∈ I(x0, y0)} = {0} ⇔
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⇔ ({x ∈ Rn : aT
i x = 0, i ∈ I(x0)} = {0} and

{x ∈ Rn :aT
i x = 0, i ∈ supp(y0), aT

i x ≤ 0, i ∈ I(x0, y0),
∑

i∈I(x0,y0)
aT

i x < 0} = ∅)

⇔ the columns of the matrix AI(x0)are linearly independent, and

{v ∈ Rp :
∑

i∈I(x0)
viai = 0, vi > 0, i ∈ I(x0, y0)} 6= ∅

(The last equivalence has been got by Tucker’s theorem of the alternative,
see [2].) �

Now, it will be assumed that x0 is a vertex of the primal feasible set. A
primal feasible point x0 is said to be a vertex of the primal feasible set iff there
is no line segment belonging to the feasible set and which contains x0 as an
inner point. It is well-known that x0 is a vertex of the primal feasible set iff
x0 is a primal feasible point and there are i1, i2, ..., in different active indices
in I(x0) for which vectors ai1 , ai2 , ..., ain are linearly independent. (Vector aT

ij

is the row of A that belongs to the index ij , j = 1, 2, ..., n.) It is also widely
known that if there is an optimal solution and the set of feasible solutions has
a vertex, then there is an optimal solution that is a vertex.

First, three conditions, the weak KTC (WKTC), the strict weak KTC
(STWKTC) and the weak strict weak KTC (WSTWKTC) will be introduced:

WKTC:

{x ∈ Rn : cTx < 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

STWKTC:

{x ∈ Rn : cTx ≤ 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

WSTKTC:

{x ∈ Rn : cTx = 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

(The names WKTC, STWKTC and WSTWKTC can be explained in the
following way. It can be thought that first KTC was weakened to the condition
WKTC, then by a strengthening of WKTC, namely, substituting cTx < 0 by
cTx ≤ 0 was done to get STWKTC. Finally, by weakening this last condition
by substituting cTx ≤ 0 by cTx = 0, one can get WSTWKTC.)

Theorem 4.6. Let x0 be a vertex of the set of primal feasible solutions.
Then it is an optimal solution of (P) iff WKTC is satisfied at x0.
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Proof. A feasible point x0 is an optimal solution of (P) iff it is a KTP, i.e.:
x0 is an optimal solution of (P) ⇔

⇔ {x ∈ Rn : cTx < 0, aT
i x ≤ 0, i ∈ I(x0)} = ∅

⇔ {x ∈ Rn : cTx < 0, aT
i x = 0, i ∈ I(x0)} = ∅ and

{x ∈ Rn : cTx < 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

Since x0 is a vertex of the primal feasible set, there are i1, i2, ..., in different
active indices in I(x0) for which the vectors ai1 , ai2 , ..., ainare linearly indepen-
dent, and hence {x ∈ Rn : aT

i1x = 0, aT
i2x = 0, ..., aT

in
x = 0} = {0}.

Thus {x ∈ Rn : aT
i x = 0, i ∈ I(x0)} = {0}.

Therefore {x ∈ Rn : cTx < 0, aT
i x = 0, i ∈ I(x0)} = ∅, and hence the

optimality of x0 is equivalent to the satisfaction of WKTC. �

Theorem 4.7. A primal feasible point x0 is the only optimal solution of
(P) iff it is a vertex of the primal feasible set and STWKTC is satisfied at x0.

Proof. By Theorem 4.1, a primal feasible point x0 is the only optimal solu-
tion of (P) iff {x ∈ Rn : cTx ≤ 0, aT

i x ≤ 0, i ∈ I(x0)} = {0}.
But the last condition is equivalent to

{x ∈ Rn : cTx ≤ 0, aT
i x = 0, i ∈ I(x0)} = {0} and

{x ∈ Rn : cTx ≤ 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

1)Sufficiency. Let x0 be a vertex of the primal feasible set. Then — as it was
proved in the proof of Theorem 4.6 — {x ∈ Rn : aT

i x = 0, i ∈ I(x0)} = {0}.
Therefore {x ∈ Rn : cTx ≤ 0, aT

i x = 0, i ∈ I(x0)} = {0}. This is the first
condition described in the beginning of the proof; and since STWKTC is just
the second condition, x0 is the only optimal solution of (P) and sufficiency has
been proved.

2)Necessity. Assume that x0 is the only optimal solution of (P). By Corol-
lary 3.4 it is a SCP. By Corollary 3.5 the set of optimal solutions of (P) is
relatively open. It could be in the only possible way that x0 is a vertex. The
satisfaction of STWKTC follows from the equivalent relations described in the
beginning of the proof. �

Theorem 4.8. A primal optimal solution x0 is the only optimal solution of
(P) iff it is a vertex of the primal feasible set and WSTWKTC is satisfied at
x0.

Proof. By Theorem 4.3, a primal optimal solution x0 is the only optimal
solution of (P) iff {x ∈ Rn : cTx = 0, aT

i x ≤ 0, i ∈ I(x0)} = {0}. The
remaining part of the proof is the same as that of the proof of Theorem 4.7,
with the exception that cTx = 0 has to be written instead of cTx ≤ 0 and
Theorem 4.3 has to be applied in the proof instead of Theorem 4.1. �



9 Uniqueness of the optimal solution in LP 233

The following theorem shows the connection between strict complementarity
and WSTWKTC.

Theorem 4.9. Let x0 be a primal optimal solution. Then x0 is a SCP iff
WSTWKTC is satisfied at x0.

Proof. Since x0 is a primal optimal solution, it is a KTP, too. x0 is a SCP

⇔{λ ∈ Rm : c+
∑

i∈I(x0)
λiai = 0, λi > 0, i ∈ I(x0), λi = 0, i /∈ I(x0)} 6= ∅

(by Tucker’s theorem of the alternative, [2])

⇔{x ∈ Rn : cTx ≤ 0, aT
i x ≤ 0, i ∈ I(x0), cTx+

∑
i∈I(x0)

aT
i x < 0} = ∅

⇔{x ∈ Rn : cTx < 0, aT
i x ≤ 0, i ∈ I(x0)} = ∅ and

{x ∈ Rn : cTx = 0, aT
i x ≤ 0, i ∈ I(x0),

∑
i∈I(x0)

aT
i x < 0} = ∅

⇔KTC and WSTWKTC.

Since x0 is a KTP, KTC is fulfilled. Hence, x0 is a SCP iff WSTWKTC is
satisfied at x0. �

Corollary 4.10. A primal optimal solution x0 is the only optimal solution
of (P) iff it is a vertex of the primal feasible set and x0 is a SCP.

Proof. It comes immediately from Theorems 4.8 and 4.9. �

5. UNIQUENESS OF THE DUAL OPTIMAL SOLUTION

First of all, the Kyparisis’ regularity condition (KYPRC) for NLP will be
introduced (see [1]).

KYPRC: At x0 there is a KTV λ for which – denoting by INN (λ(x0)) the
set of indices of its zero components within I(x0) – it is true that

{v ∈ Rm :
∑

i∈I(x0)
vi∇gi(x0) = 0, vi ≥ 0, i ∈ INN (λ(x0))} = {0}.

In nonlinear programming the following well-known assertion is true: There
exists a unique KTV at x0 iff KYPRC is fulfilled at x0 (see [1]). The result
can be applied also for LP.

Since in case of LP, by Theorem 2.1 the primal optimal solutions and KTPs
are identical, and by Corollary 2.4 the dual optimal solutions and KTVs are
identical, and, furthermore, by Theorem 2.3 for every primal optimal solution
the set of KTVs is the same, in case of LP KYPRC has the following form,
and the above assertion about the uniqueness of the KTV can be reformulated
in a slightly stronger form in Theorem 5.1 as follows.
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KYPRC: At a given primal optimal solution x0 there is a dual optimal
solution y0 such that

{v ∈ Rm :
∑

i∈I(x0)
viai = 0, vi ≥ 0, i ∈ I(x0, y0)} = {0}

or equivalently, doing the same as in the proof of Theorem 4.5, but making
use of Motzkin’s theorem of the alternative instead of Tucker’s theorem of the
alternative:

KYPRCdu: At a given primal optimal solution x0 there is a dual optimal
solution y0 such that

{x ∈ Rn : aT
i x = 0, i ∈ supp(y0), aT

i x > 0, i ∈ I(x0, y0)} 6= ∅
is satisfied and vectors ai, i ∈ supp(y0) are linearly independent.

Theorem 5.1. If there are a primal optimal solution x0 and a dual optimal
solution y0 such that KYPRC is satisfied, then y0 is the only dual optimal
solution.

If y0 is the only dual optimal solution, then for y0 and every primal optimal
solution x0 KYPRC is satisfied.

Corollary 5.2. If at some SCP x0 LICQ is satisfied, then there exists a
unique dual optimal solution y0.

If y0 is the only dual optimal solution, then at every SCP x0 LICQ is sat-
isfied.

Proof. In the case when x0 is a SCP, applying the strict complementary
slackness theorem, there exists a dual optimal solution y0 that is a SCV at x0.
I(x0, y0) = ∅, and hence I(x0) = supp(y0). Therefore, condition
{x ∈ Rn : aT

i x = 0, i ∈ supp(y0), aT
i x > 0, i ∈ I(x0, y0)} 6= ∅ in KYPRC

becomes the condition {x ∈ Rn : aT
i x = 0, i ∈ I(x0)} 6= ∅. But, this is always

true, since 0∈ {x ∈ Rn : aT
i x = 0, i ∈ I(x0)}. Hence, in the case when x0 is a

SCP KYPRC is satisfied at x0 iff LICQ is satisfied at x0. �

Theorem 5.3. If there is a unique dual optimal solution, then LICQ is
satisfied at every primal optimal solution.

If there is a primal optimal solution in which LICQ is satisfied, then there
is a unique dual optimal solution.

Proof. 1) Assume first that there is a unique dual optimal solution. Accord-
ing to the duality theorem (or to Theorem 2.9) there exists a primal optimal
solution. Take an arbitrary primal optimal solution x0. By Theorem 2.1, it
is a KTP, and the KT system belonging to x0 has a unique solution, since
there is a unique dual optimal solution. From this, it follows that system
{
∑

i∈I(x0)
λiai = −c} has a unique solution. Hence vectors ai, i ∈ I(x0) are

linearly independent.
2) Assume now that there is a primal optimal solution in which LICQ is

satisfied. By Theorem 2.1, it is a KTP, and the KT system that belongs to x0
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has a solution, i.e. system {
∑

i∈I(x0)
λiai = −c, λi ≥ 0, i ∈ I(x0)} has a solution.

But, as LICQ is satisfied at x0, it has a unique solution, i.e. there is a unique
KTV belonging to x0. Hence, by Theorems 2.3 and 2.2 there is a unique dual
optimal solution. �

Corollary 5.4. If there is a primal optimal solution at which LICQ is
satisfied, then LICQ is satisfied at every primal optimal solution.

Proof. It follows from Theorem 5.3. �

Corollary 5.5. In case of linear programming, KYPRC and LICQ are
equivalent, assuming that they are investigated at a primal optimal solution.

Proof. Making use of Theorem 5.3 and Corollary 2.4 and taking into account
that there is a unique KTV at x0 iff KYPRC is satisfied at x0, the proof will
be complete. �

Theorem 5.6. Let x0 be a primal optimal solution. If x0 is a SCP for
which SCC is satisfied with every dual optimal solution, then LICQ is fulfilled
at x0.

Proof. According to the assumption, there is a dual optimal solution, and
every dual optimal solution is a SCV. Hence, by Corollary 3.5, the set of dual
optimal solutions is nonempty and relatively open. But it is well-known that
an LP problem in the form of {max(−b)Ty : y ∈ Rm, ATy = −c, y ≥ 0} always
has a feasible solution that is a vertex, provided it has a feasible solution.
Therefore (see in Section 4), there is a dual optimal solution that is a vertex.
Thus, the set of dual optimal solutions can not be relatively open, except for
the case when it consists only of one point. In such a way, there is a unique
dual optimal solution, and applying Corollary 5.2, it follows that LICQ is
satisfied a x0. �

Theorem 5.7. The conversion of Theorem 5.3 is not true, namely from the
fact that at a primal optimal solution x0 LICQ is satisfied, it does not follow
that every dual optimal solution y0 is a SCV that belongs to x0 .

Proof. Consider the following counterexample.
(P) {min(−x1 − x2) : x1 ≤ 0, x2 ≤ 0, x3 ≤ 0}.

Of course, x0 = 0 ∈ R3 is an optimal solution for (P). I(x0) = {1, 2, 3}
and LICQ is satisfied at x0. The only dual feasible point, and hence the only
dual optimal solution is yT

0 = (1, 1, 0). But with x0 and y0 SCC is not fulfilled,
since 3 ∈ I(x0) and at the same time the third component of y0 is zero.
(Nevertheless, zT

0 = (0, 0, 1) is another primal optimal solution with which y0
satisfies SCC, and LICQ is satisfied at z0.) �

6. UNIQUENESS OF THE PRIMAL AND THE DUAL OPTIMAL SOLUTIONS

In the preceding two sections necessary and sufficient conditions have been
shown for the uniqueness of the primal optimal solution, as well as for the
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dual optimal solution. In this section the two questions will be investigated
simultaneously.

The first theorem uses the concepts of the vertex, SCP and LICQ.

Theorem 6.1. If there is a unique primal optimal solution x0 and at the
same time there is a unique dual optimal solution, then for x0 the following
conditions are satisfied:

• x0 is a vertex
• x0 is a SCP
• LICQ is satisfied at x0.

If there is a primal optimal solution x0 for which the above three properties
are satisfied, then x0 is the only primal optimal solution and at the same time
there is a unique dual optimal solution.

Proof. Applying Corollary 4.10 and Theorem 5.3, Theorem 6.1 will be
proved. �

The following theorem gives a connection between LICQ and the cardinality
of I(x0).

Theorem 6.2. Let x0 be a vertex of the set of primal feasible solutions.
Then LICQ is satisfied at x0 iff the cardinality of I(x0) is equal to n, i.e.
card(I(x0)) = n.

Proof. Since x0 is a vertex, there are i1, i2, ..., in different active indices in
I(x0) for which vectors ai1 , ai2 , ..., ain are linearly independent (see Section 4).
Thus {ij , j = 1, 2, . . . , n} ⊆ I(x0).

1) Necessity. On the contrary, assume that card(I(x0)) 6= n. Then
card(I(x0)) > n. But, by LICQ it would be more than n linear independent
vector in Rn. It is a contradiction.

2) Sufficiency. If card(I(x0)) = n, then {ij , j = 1, 2, . . . , n} = I(x0), and
since vectors {aij , j = 1, 2, . . . , n} are linearly independent, LICQ is fulfilled
at x0. �

In the following two propositions it is assumed that there is a primal optimal
solution.

Theorem 6.3. If there is a unique primal optimal solution x0 and at the
same time there is a unique dual optimal solution, then for x0 the following
conditions are satisfied:

• x0 is a vertex
• (AT

I(x0))
−1c < 0

• LICQ is satisfied at x0

If there is a primal optimal solution x0 for which the above three properties
are satisfied, then x0 is the only primal optimal solution and at the same time
there is a unique dual optimal solution.
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(For notation AT
I(x0) see the definition of AK before Theorem 4.5.)

Proof. 1) Sufficiency. By Theorem 6.1, it is enough to prove only that x0
is a SCP.

As x0 is a vertex and LICQ is satisfied at x0, by Theorem 6.2, card(I(x0)) =
n. Thus, matrix AT

I(x0) is a quadratic one and has an inverse. Let vector
y0 ∈ Rm be defined as follows: let y0

i be the ith component of the vector
−(AT

I(x0))
−1c if i ∈ I(x0) and let y0

i = 0 if i /∈ I(x0). Then, by the assumption:
−(AT

I(x0))
−1c > 0. Thus y0 ≥ 0. On the other hand:

ATy0 = AT
I(x0)y

0
I(x0) + AT

supp(x0)y
0
supp(x0) = −c, as y0

supp(x0) = 0. Hence, y0 is
a dual feasible solution. Then, by the construction of y0, for x0 and y0 SCC
is fulfilled. Therefore, by the complementary slackness theorem, y0 is a dual
optimal solution and x0 is a SCP.

2) Necessity. By Theorem 6.1, x0 is a vertex and LICQ is satisfied at x0.
Then, by Theorem 6.2, matrix AT

I(x0) is a quadratic one and has an inverse.
Then, since y0 is a SCV with the SCP x0: −(AT

I(x0))
−1c > 0 is fulfilled. �

The following two corollaries follow immediately from Theorems 6.2 and
6.3.

Corollary 6.4. If there is a unique primal optimal solution x0 and at the
same time a unique dual optimal solution, then for x0 the following conditions
are satisfied:

• x0 is a vertex
• (AT

I(x0))
−1c < 0

• I(x0) has exactly n elements
If there is a primal optimal solution x0 for which the above three properties

are satisfied, then x0 is the only primal optimal solution and at the same time
there is a unique dual optimal solution.

Corollary 6.5. If there is a unique primal optimal solution x0 and at the
same time a unique dual optimal solution, then for x0 the following conditions
are satisfied:

• x0 is a vertex
• x0 is a SCP
• I(x0) has exactly n elements

If there is a primal optimal solution x0 for which the above three properties
are satisfied, then x0 is the only primal optimal solution and at the same time
there is a unique dual optimal solution.

Remark 6.6. There is apparently a contradiction in the case when both
(P) and (D) have exactly one optimal solution each. (It is easy to create such
an LP problem.) Namely, the conditions mentioned in Theorems 4.5 and 5.1,
i.e. {v ∈ Rp :

∑
i∈I(x0)

viai = 0, vi > 0, i ∈ I(x0, y0)} 6= ∅ and
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{v ∈ Rm :
∑

i∈I(x0)
viai = 0, vi ≥ 0, i ∈ I(x0, y0)} = {0} seem to be contra-

dictory, since an apparently wider set is empty, while its subset is nonempty.
However, if I(x0, y0) = ∅, there will be no contradiction. And now that is the
case.

7. UNIQUENESS OF THE OPTIMAL SOLUTIONS IN THE CASE OF THE SIMPLEX

METHOD

In this section conditions and theorems that are pendants of the ones oc-
curring in the preceding sections will be given for the optimal solution(s) to
be unique when the primal problem is given in the form for which the pri-
mal simplex method can be applied. Thus, in this case, the LP problem is
considered to be in the form:

(P’) {max cTx : x ∈ Rn, Ax = b, x ≥ 0}
and its dual

(D’) {min bTy : y ∈ Rm, ATy ≥ c}.
It is well-known that if there is an optimal solution for (P’), then (a proper

variant of) the simplex method results an optimal solution for (P’) that is a
vertex of the feasible set of (P’).

First, the pendants of the results got in the preceding sections for the pair
of (P) and (D) will be given for the pair of (P’) and (D’), and after that these
new results will be specialized for the special optimal solutions got by the
simplex method. (These last results are mostly widely known.)

First, the pendants of some definitions occurred in the preceding sections
will be described. Let x0 be a feasible solution for (P’) and y0 for (D’). For
problem pair (P’) and (D’):
J(x0) = {j ∈ J : x0

j = 0}, J(y0) = {j ∈ J : (ATy0)j = cj}, where x0
j and

(ATy0)j denote the jth elements of vectors x0 and ATy0, respectively.
LICQ: vectors ai, i ∈ I and ej , j ∈ J(x0) are (together) linearly independent

KTC:

{(λT, µT) ∈ Rn+m : c+
∑

j∈J(x0)
λjej +

∑
i∈I

µiai = 0, λj ≥ 0, j ∈ J(x0)} 6= ∅,

or equivalently:
{y ∈ Rm : (ATy)j ≥ cj , j ∈ J(x0), (ATy)j = cj , j /∈ J(x0)} 6= ∅
KTCdu:

{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = ∅

(By Motzkin’s theorem of the alternative.)
The definition of a KTP is the same as it was earlier. A vector (λT, µT)

satisfying KTC is called a KT vector (KTV). It is said that at a feasible point
x0 the strict complementary condition in connection with KTC (KT-SCC) is
fulfilled iff there is a KTV with λj > 0 for all j ∈ J(x0). A feasible point
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x0 at which KT-SCC is fulfilled is called a KT-SC point (KT-SCP), a vector
(λT, µT) satisfying the KT-SCC is called a KT-SC vector (KT-SCV).

OPT-SCC at x0: There is a dual optimal solution y0 for which
xT

0 (ATy0 − c) = 0 and x0 +ATy0 − c > 0.
The definitions OPT-SCP and OPT-SCV are the same as earlier.
supp(x0) = {j ∈ J : j /∈ J(x0)} and supp(y0) = {j ∈ J : j /∈ J(y0)} and

J(x0, y0) = J(x0) ∩ J(y0).

Theorem 7.1. All the propositions of Sections 2 and 3 remain valid for the
case of the pair (P’) and (D’). The only difference is that in case of a KTV
(λT, µT) one has to consider its last m components as a dual optimal solution
y0.

The definition of a vertex for (P’) is the same as it was earlier for (P). It is
well-known that a feasible solution for (P’) is a vertex iff it is a feasible basic
solution.

The pendants of the conditions introduced in Sections 4 and 5 are the
following. STKTC:

{x ∈ Rn : cTx ≤ 0, xj ≤ 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = {0}

WSTKTC:

{x ∈ Rn : cTx = 0, xj ≤ 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = {0}

WKTC:

{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0),
∑

j∈J(x0)
xj < 0, aT

i x = 0, i ∈ I} = ∅

STWKTC:

{x ∈ Rn : cTx ≤ 0, xj ≤ 0, j ∈ J(x0),
∑

j∈J(x0)
xj < 0, aT

i x = 0, i ∈ I} = ∅

WSTWKTC:

{x ∈ Rn : cTx = 0, xj ≤ 0, j ∈ J(x0),
∑

j∈J(x0)
xj < 0, aT

i x = 0, i ∈ I} = ∅

KYPRC: there is such an optimal solution y0 of (D’) that

{(λT, µT) ∈ Rn+m :
∑

j∈J(x0)
λjej +

∑
i∈I

µiai = 0, λj ≥ 0, j ∈ J(x0, y0)} = {0},

or equivalently (by Motzkin’s theorem of the alternative):

{x ∈ Rn : aT
i x = 0, i ∈ I, xj < 0, j ∈ J(x0, y0), xj = 0, j ∈ supp(y0)} 6= ∅

and the rows of the matrix
( A

Esupp(y0)

)
are linearly independent.

Having redefined all the former concepts, it is possible to give the proposi-
tions corresponding to the ones in Sections 4, 5 and 6. Denote them by writing
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a letter ‘p’ after the name of the corresponding theorem or corollary, e.g. The-
orem 4.1p (‘p’ means pendant.) First, theorems pertaining the uniqueness of
the primal optimal solution will be given.

Theorem 7.2. All the propositions of Section 4 remain valid for the case
of the pair (P’) and (D’). The only difference is that in the case of Theorem
4.4p one must write
{x ∈ Rn : aT

i x = 0, i ∈ I, xj ≤ 0, j ∈ J(x0, y0), xj = 0, j ∈ supp(y0)} = {0}
and in the case of Theorem 4.5p

‘{(λT, µT) ∈ Rn+m :
∑

j∈J(x0)
λjej +

∑
i∈I

µiai = 0, λj > 0, j ∈ J(x0, y0)} 6= ∅,

and the columns of matrix A belonging to the indices j ∈ J−J(x0) are linearly
independent’
instead of the corresponding formulas in Section 4.

Proof. The proofs are similar to the ones in Section 4. Only the proofs of
Theorems 4.6p, 4.7p and 4.9p have to be written down.

• Proof of Theorem 4.6p. A feasible point x0 is an optimal solution of
(P’) iff it is a KTP, i.e.: x0 is an optimal solution of (P) ⇔

⇔{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = ∅

⇔{x ∈ Rn : cTx < 0, xj = 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = ∅ and

{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0),
∑

j∈J(x0)
xj < 0, aix = 0, i ∈ I} = ∅

The last condition is WKTC.
Since x0 is a vertex, it is a basic solution, hence the columns of

matrix A corresponding to j /∈ J(x0) are linearly independent. Taking
into account that xj = 0, j ∈ J(x0) :

{x ∈ Rn : xj = 0, j ∈ J(x0), aT
i x = 0, i ∈ I} =

= {x ∈ Rn : xj = 0, j ∈ J(x0),
∑
j∈J

ajxj = 0}

= {x ∈ Rn : xj = 0, j ∈ J(x0),
∑

j /∈J(x0)
ajxj = 0} = {0}.

Thus:
{x ∈ Rn : cTx < 0, xj = 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = ∅, and hence
x0 is an optimal solution of (P’) iff WKTC is fulfilled at x0.
• Proof of Theorem 4.7p. By Theorem 4.1p, a primal feasible point x0

is the only optimal solution of (P’) ⇔
{x ∈ Rn : cTx ≤ 0, xj ≤ 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = {0} ⇔
{x ∈ Rn : cTx ≤ 0, xj = 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = {0}
and
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{x ∈ Rn : cTx ≤ 0, xj ≤ 0, j ∈ J(x0),
∑

j∈J(x0)
xj < 0, aix = 0, i ∈ I} = ∅

The last condition is the STWKTC.
1)Sufficiency. Similarly to the proof of Theorem 4.6p, from the fact

that x0 is a vertex,
{x ∈ Rn : xj = 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = {0}.
Thus:

{x ∈ Rn : cTx ≤ 0, xj = 0, j ∈ J(x0), aT
i x = 0, i ∈ I} = {0},

and hence x0 is the only optimal solution of (P’) iff STWKTC is ful-
filled at x0.

2)The proof of necessity is the same as it is in Theorem 4.7.
• Proof of Theorem 4.9p. A feasible point x0 is an optimal solution of

(P’) iff it is a KTP, i.e.: x0 is an optimal solution of (P’) ⇔
{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = ∅.
x0 is SCP iff
{y ∈ Rm : (ATy0)j > cj , j ∈ J(x0), (ATy0)j = cj , j /∈ J(x0)} 6= ∅.
According to the nonhomogeneous generalization of Motzkin’s theorem
of the alternative (see [4]) the last condition is equivalent to:
{x ∈ Rn : cTx < 0, xj ≤ 0, j ∈ J(x0), aT

i x = 0, i ∈ I} = ∅
and
{x ∈ Rn :cTx = 0, xj ≤ 0, j ∈ J(x0),

∑
j∈J(x0)

xj < 0, aix = 0, i ∈ I} = ∅.

The first condition is fulfilled, since x0 is an optimal solution of (P’),
the second is WSTWKTC. Hence, in this case SCP is equivalent to
WSTWKTC.

In such a way, Theorem 7.2 has been proved. �

In the following theorem a proof using the propositions of the paper will
be given to prove the widely known result for the uniqueness of the primal
optimal solution obtained by the simplex method.

Theorem 7.3. (P’) has a unique optimal solution iff the final basis B ob-
tained by the primal simplex method as a primal optimal basis, is dual non-
degenerate (i.e. all the negative reduced costs for the non-basic variables are
positive).

Proof. 1)Necessity. Let x0 be the primal optimal solution obtained by the
simplex method, and assume that the sufficient optimality condition of the
simplex method is fulfilled in the final simplex tableau, i.e. all the negative
reduced costs are non-negative. Since x0 is a feasible basic solution for (P’), it
is a vertex, and according to Corollary 4.9p, from the fact that x0 is the only
optimal solution of (P’), it follows that x0 is a SCP. Therefore — since for all
j /∈ JB xj = 0 (where JB is the set of indices of the basic variables) —, it
is necessary that for all j /∈ JB the negative reduced cost be positive. Thus,
necessity has been proved.
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2)Sufficiency. Now, it will be shown that the dual non-degeneracy condition
is a sufficient condition for x0 to be the only primal optimal solution. Since
(P’) has an optimal solution, by Theorem 2.9p, (D’) has an optimal solution,
too.

Let y0 be an arbitrary vector for which (ATy0)j = cj , j ∈ JB. (If r(A) = m,
y0 is unique; if r(A) < m, then there are infinitely many y0 satisfying the
preceding condition.) According to the simplex tableau, (ATy0)j > cj , j /∈ JB.
Hence, y0 is a feasible solution of (D’) and satisfies the (weak) complementary
condition with x0. Therefore, by Theorem 2.8p, y0 is an optimal solution of
(D’).

Consider the dual problem as a primal problem. It has the same form as
(P) has in Sections 1-6, apart from the fact that the inequalities are ≥ type
instead of ≤ type. Nevertheless, it does not have any effect on the proof.
Hence, the results of Sections 1-6 can be applied in the proof.

By Theorem 5.3, if it could be shown that there is an optimal solution of
(D’) at which LICQ is fulfilled, then the dual of the original dual problem
(D’), i.e. (P’) would have a unique optimal solution. Let y0 be a solution of
the system (ATy0)j = cj , j ∈ JB. (It has been shown that it has a solution,
and every solution y1 of it is an optimal solution of (D’) for which
(ATy1)j > cj , j /∈ JB.) Therefore J(y0) = JB. Since x0 is a basic solution,the
rows of AT corresponding to the indices j ∈ JB are linearly independent, and
hence LICQ is satisfied at y0. Thus, (P’) has a unique optimal solution.

Theorem 7.3 has been proved. �

Now, the corresponding results for the uniqueness of the dual optimal solu-
tion will be shown.

Theorem 7.4. Theorems 5.1 and 5.3, as well as Corollaries 5.2, 5.4 and
5.5 are valid for the case of the pair (P’) and (D’).

Proof. The proofs are the same as they were earlier. �

The following theorem shows what LICQ means in case of problem (P’).

Theorem 7.5. Let x0 be a vertex of the set of primal feasible solutions.
Then LICQ is satisfied at x0 iff

• matrix A has full rank, i.e. r(A) = m, and
• x0 is a non-degenerate basic solution, i.e. xj > 0, j ∈ JB, where
J = JB ∪ JN a disjoint partition of the index set J for the basic and
the non-basic indices, respectively.

Proof. 1)Necessity. From the fact that x0 is a vertex and from the definition
of LICQ it follows that r(A) = m. Hence, there is a basis B of the columns of
A consisting of m vectors. For the sake of simplicity, assume that

A = (B N). Then:

 BxB + NxN = b
xB ≥ 0

xN ≥ 0
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Hence, rank of matrix

 B N
EB O
O EN

 is equal to n. Since x0 is a basic solution,

xj = 0, j ∈ JN . Hence, JN ⊆ J(x0). But it can not be JN ⊂ J(x0), JN 6=
J(x0), as card(JN ) = n−m and if it could be, it would be card(J(x0)) > n−m,
and this is a contradiction to the assumption that LICQ is fulfilled at x0, since
in this case more than n vectors – namely m+card(J(x0)) – would be linearly
independent in Rn. Thus, it follows that JN = J(x0), i.e. xj > 0, j ∈ JB.
Necessity has been proved.

2)Sufficiency. By the assumption, r(A) = m and the basis is non-degenerate.

Hence, JN = J(x0) and matrix
(
B N
O EN

)
has full rank, i.e. LICQ is fulfilled

at x0.
Theorem 7.5 is proved. �

Making use of the preceding theorem, one can get the well-known result for
the optimal solution obtained by the primal simplex method.

Corollary 7.6. (D’) has a unique optimal solution iff r(A) = m and
the optimal basic solution of (P’) obtained by the simplex method is non-
degenerate, i.e. xj > 0, j ∈ JB.

Proof. The simplex method results an optimal solution that is a vertex.
Applying Theorems 5.3p and 7.5, the corollary will be proved. �

Finally, a necessary and sufficient condition will be given for the uniqueness
of the primal and at the same time for that of the dual optimal solution.
First, it will be described for the pair of (P’) and (D’), and then, giving a
specialization of this result, for the case when the primal optimal solution has
been got by the primal simplex method.

Theorem 7.7. Theorem 6.1 is valid also for the pair of (P’) and (D’).

Proof. The proof is the same as the proof of Theorem 6.1. �

Theorem 7.8. If there is a unique primal optimal solution x0 and at the
same time a unique dual optimal solution, then

• r(A) = m (i.e. matrix A has full rank)
and for x0 the following conditions are satisfied:

• x0 is a vertex corresponding to a basis B for which:
• xj > 0, j ∈ JB (i.e. the basis B is primal non-degenerate)
• zj − cj = cT

BB
−1aj − cj > 0, j ∈ JN , (i.e. the basis B is dual

non-degenerate); where cB is the vector that contains the components
ck, k ∈ JB, a

j is the jth column of A (i.e. the negative reduced costs
for the non-basic vectors are all positive)
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If there is a primal optimal solution x0 for which the above four properties
are satisfied, then x0 is the only primal optimal solution and at the same time
there is a unique dual optimal solution.

Proof. 1)Necessity. Since x0 is the only primal optimal solution, it is a
vertex. As there is a unique dual optimal solution, by Theorem 5.3p, at x0
LICQ is satisfied. According to Theorem 7.6, r(A) = m and xj > 0, j ∈ JB.
Making use of Corollary 4.10p, it follows that x0 is a SCP. From this, it follows
that, since the dual optimal solution is unique, too, the dual optimal solution
y0 is a SCV. Hence BTy0 = cB, i.e. yT

0 = cT
BB
−1, and (aj)Ty0 > cj , j ∈ JN .

Hence the last property is satisfied and necessity is proved.
2)Sufficiency. Since x0 is a vertex, according to zj − cj > 0 and xj > 0, j ∈

JB, x0 is a SCP. By Corollary 4.10p, x0 is the only primal optimal solution.
From r(A) = m and xj > 0, j ∈ JB, it follows that LICQ is fulfilled at x0.
Hence, by Theorem 5.3p, the dual optimal solution is unique.

Theorem 7.8 has been proved. �

Corollary 7.9. Let x0 be the optimal solution got by the primal simplex
method. Then it is the only primal optimal solution and at the same time
the dual problem has a unique optimal solution iff the following properties are
satisfied:

• r(A) = m (i.e. matrix A has full rank)
and for the optimal basis B corresponding to x0:

• xj > 0, j ∈ JB (i.e. the basis B is primal non-degenerate)
• zj − cj = cT

BB
−1aj − cj > 0, j ∈ JN , (i.e. the basis B is dual non-

degenerate)

Proof. x0 is a vertex, and the corollary follows immediately from the pre-
ceding theorem. �
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