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Abstract. In this paper double inequalities of Newton’s quadrature rule are
given.
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1. INTRODUCTION

In the papers [1], [2], [3], [4], [5], [7] and [8] relatively double inequalities of
quadratures rules of the trapezoid and Simpson were given. In this note we
will obtain upper and lower error bounds for Newton’s quadrature rule.

Let f : [a, b]→ R, f ∈ C4([a, b]) and x1, x2 ∈ [a, b] so that x1 = 2a+b
3 , x2 =

a+2b
3 , then as it is well known [6] the relation is obtained

(1.1)
∫ b

a
f(x)dx = b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] +R,

where

(1.2) R =
∫ b

a
ϕ(x)f (4)(x)dx.

The function ϕ is given by the relation (h denotes b−a
3 ):

(1.3) ϕ(x) =


(x−a)4

4! − 3h
8

(x−a)3

3! , x ∈ [a, x1]
(x−a)4

4! − 3h
8

(x−a)3

3! − 9h
8

(x−x1)3

3! , x ∈ [x1, x2]
(x−a)4

4! − 3h
8

(x−a)3

3! − 9h
8

(x−x1)3

3! − 9h
8

(x−x2)3

3! , x ∈ [x2, b].

2. MAIN RESULT

Under the assumptions of the quadrature formula (1.1) we have the next
theorem:
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Theorem 2.1. Let f ∈ C4(a, b). Then:

23γ4−15S3
51840 (b− a)5 ≤ b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)]−
∫ b

a
f(x)dx

≤ 23Γ4−15S3
51840 (b− a)5,

(2.1)

where γ4, Γ4 ∈ R, γ4 ≤ f (4)(x) ≤ Γ4, for any x ∈ [a, b] and S3 = f (3)(b)−f (3)(a)
b−a .

If γ4 = min
x∈[a,b]

f (4)(x), Γ4 = max
x∈[a,b]

f (4)(x) then inequalities are sharp.

Proof. From (1.2) integrating by parts we get :

(2.2)
∫ b

a
ϕ(x)f (4)(x)dx =

∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] .

It is easy to see [6] that we get the equality:

(2.3)
∫ b

a
ϕ(x)dx=− (b−a)5

6480 .

From (2.2) and (2.3) we get the equalities:∫ b

a

[
f (4)(x)− γ4

]
ϕ(x)dx =

=
∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] + γ4
6480(b− a)5

(2.4)

and ∫ b

a

[
Γ4 − f (4)(x)

]
ϕ(x)dx =

= −
∫ b

a
f(x)dx+ b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)]− Γ4
6480(b− a)5.

(2.5)

On the other hand:

(2.6)
∫ b

a

[
f (4)(x)− γ4

]
ϕ(x)dx ≤ max

x∈[a,b]
|ϕ(x)|

∫ b

a

∣∣∣f (4)(x)− γ4
∣∣∣ dx.

From (1.3) we get:

(2.7) max
x∈[a,b]

|ϕ(x)| = (b−a)4

3456 .

On the other hand the equality follows:∫ b

a

∣∣∣f (4)(x)− γ4
∣∣∣ dx =

∫ b

a
(f (4)(x)− γ4)dx

= f (3)(b)− f (3)(a)− γ4(b− a) = (S3 − γ4)(b− a).
(2.8)

From the relations (2.4), (2.6), (2.7) and (2.8) it follows :∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] ≤

≤ 15S3−23γ4
51840 (b− a)5,

(2.9)
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the first inequality of (2.1).
We also have:

(2.10)
∫ b

a

[
Γ4 − f (4)(x)

]
ϕ(x)dx ≤ max

x∈[a,b]
|ϕ(x)|

∫ b

a

∣∣∣Γ4 − f (4)(x)
∣∣∣ dx

and

(2.11)
∫ b

a

∣∣∣Γ4 − f (4)(x)
∣∣∣ dx =

∫ b

a
(Γ4 − f (4)(x))dx =

= Γ4(b− a)+f (3)(a)− f (3)(b) = (Γ4 − S3)(b− a).
By analogy from (2.5), (2.7), (2.10) and (2.11) we get:∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] ≥

≥ 15S3−23Γ4
51840 (b− a)5.

(2.12)

The last relation and (2.9) lead us to the inequality (2.1).
To show that inequality (2.1) is sharp we consider the function f given by

the relation f(x) = (x− a)4. It is easy to see that the equalities f (4)(x) = 24
and γ4 = Γ4 = 24, S3 = 24 are obtained.

Calculating the three members of the inequality (2.1) under the given cir-
cumstances, we notice that these have the common value given by the expres-
sion 1

270(b− a)5. Hence, we deduce that the inequality (2.1) is sharp. �

Another relation is given by the next theorem:

Theorem 2.2. Under the assumptions of Theorem 2.1 we have:

7γ4−15S3
51840 (b− a)5 ≤

∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)]

≤ 7Γ4−15S3
51840 (b− a)5.

(2.13)

If γ4 = min
x∈[a,b]

f (4)(x),Γ4 = max
x∈[a,b]

f (4)(x) then the inequalities (2.13) are

sharp.

Proof. From (2.4), (2.6), (2.7)and (2.8) we have:

−
∫ b

a
f(x)dx+ b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] ≤

≤ 15S3−7γ4
51840 (b− a)5.

(2.14)

By analogy from (2.5), (2.10), (2.11) and (2.12) we have:∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] ≤

≤ 7Γ4−15S3
51840 (b− a)5.

(2.15)

From (2.14) and (2.15) we will have immediately the inequalities (2.13).
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To show that the inequalities are sharp we choose f(x) = (x − a)4 and we
follow the steps of the proof for Theorem 2.1. �

The next theorem offers us inequalities which do not depend upon S3.

Theorem 2.3. Under the assumptions of Theorem 2.1 we have:

7γ4−23Γ4
103680 (b− a)5 ≤

∫ b

a
f(x)dx− b−a

8 [f(a) + 3f(x1) + 3f(x2) + f(b)] ≤

≤ 7Γ4−23γ4
103680 (b− a)5.

(2.16)

If γ4 = min
x∈[a,b]

f (4)(x), Γ4 = max
x∈[a,b]

f (4)(x) then the inequalities (2.16) are

sharp.

Proof. The inequalities (2.16) are easily deduced by (2.9) and (2.14) , re-
spectively (2.12) and (2.15). To show that the inequalities are sharp we follow
the steps of the proof for Theorem 2.1. �

In use the next theorem is important:

Theorem 2.4. Under the assumptions of Theorem 2.1 we have:

23γ4−15S3
51840n4 (b− a)5 ≤

≤ b−a
8n

[
f(a) + f(b) + 2

n−1∑
i=1

f(xi) + 3
n∑
i=1
f(x′i) + 3

n∑
i=1
f(x′′i )

]
−
∫ b

a
f(x)dx

≤ 23Γ4−15S3
51840n4 (b− a)5,

(2.17)

where xi = a + ih, h = b−a
n , i = 0, 1, ..., n and x′i, x

′′
i divide every interval

[xi, xi+1] in three equal parts.

Proof. We divide each interval [xi, xi+1] in the equal parts by points x′i, x′′i ,
then we use Theorem 2.1 on the interval [xi, xi+1] :

23γ4−15Si
3

51840 (xi+1 − xi)5 ≤

≤ xi+1−xi

8
[
f(xi) + 3f(x′i) + 3f(x′′i ) + f(xi+1)

]
−
∫ xi+1

xi

f(x)dx

≤ 23Γ4−15Si
3

51840 (xi+1 − xi)5,

(2.18)

where Si3 = f (3)(xi+1)−f (3)(xi)
h , i = 0, 1, ..., n−1. By adding the formula we have

got so far for i = 0, 1, ..., n− 1 and by noticing that
n−1∑
i=0

Si3 = f (3)(b)−f (3)(a)
h we

get the relation we wanted. �

From Theorem 2.2, following the steps done, we get:
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Theorem 2.5. Under the assumptions of Theorem 2.1 we have:

7γ4−15S3
51840n4 (b− a)5 ≤

≤
∫ b

a
f(x)dx− b−a

8n

[
f(a) + f(b) + 2

n−1∑
i=1

f(xi) + 3
n∑
i=1
f(x′i) + 3

n∑
i=1
f(x′′i )

]
≤ 7Γ4−15S3

51840n4 (b− a)5.

(2.19)

Proof. Proving this theorem is similarly to proving Theorem 2.4. Then we
use Theorem 2.2. �

Also Theorem 2.3 leads us to:

Theorem 2.6. Under the assumptions of Theorem 2.1 we have:

7γ4−23Γ4
103680n4 (b− a)5 ≤

≤
∫ b

a
f(x)dx− b−a

8n

[
f(a) + f(b) + 2

n−1∑
i=1

f(xi) + 3
n∑
i=1
f(x′i) + 3

n∑
i=1
f(x′′i )

]
≤ 7Γ4−23γ4

103680n4 (b− a)5.

(2.20)

Proof. Proving this theorem is similarly to proving Theorem 2.4. Then we
use Theorem 2.3. �
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[7] Ujević, N., Some double integral inequalities and applications, Acta Math. Univ. Come-

nianae, 71 (2), pp. 187, 2002.
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