REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 35 (2006) no. 2, pp. 141-146
ictp.acad.ro/jnaat

DOUBLE INEQUALITIES OF NEWTON’S QUADRATURE RULE
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Abstract. In this paper double inequalities of Newton’s quadrature rule are
given.
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1. INTRODUCTION

In the papers [1], [2], [3], [4], [5], [7] and [8] relatively double inequalities of
quadratures rules of the trapezoid and Simpson were given. In this note we
will obtain upper and lower error bounds for Newton’s quadrature rule.

Let f : [a,b] = R, f € C*([a,b]) and z1, =2 € [a,b] so that 21 = QaT*'b, To =

“'E%, then as it is well known [6] the relation is obtained

A0 [ e =5 (7@ +37) +85(a) + 10 + R
where
(1.2) R= /ab o(z)fY (z)dz.

The function ¢ is given by the relation (h denotes b%):

z—a)? z—a)3
L N L
x—a)* z—a)? z—a1)°
(13) cp(x): ( 4!) _%( 3[) _%( 3!1) , T € [l’l,ﬂ?Q]
z—a)? z—a)3 r—x1)3 z—x9)"
Ol - ol ol st o e fa,b].

2. MAIN RESULT

Under the assumptions of the quadrature formula (1.1) we have the next
theorem:
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THEOREM 2.1. Let f € C*(a,b). Then:

(2.1) BB (b —a)® < 552 [f(a) + 3 (z1) + 3f (w2) + f(b /f

IN

231, —158 5
sisi0 (b —a),

where vy, Ty € R, v4 < fW(x) < Ty, for any x € [a,b] and S3 = w.
If y4 = m[inb]f(‘l) (x), Ty = m[a)lc)}f(‘l) (z) then inequalities are sharp.
x€|a, xe|a,

Proof. From (1.2) integrating by parts we get :

b
22) [ o) O @ae= [ ez - 5 1@ +3() +37) + 10).
It is easy to see [6] that we get the equality:

b
b—a)®
(2.3) /a p()da= — G2

From (2.2) and (2.3) we get the equalities:

/a [0 - ] pla)da =

(2.4) \
= | J(@)de = 55 [f(a) + 3f(21) + 3/ (x2) + FO)] + 55 (0 — @)?
and
b
/ [I‘4 - f(4) (ZL‘)} p(r)dr =
(2.5) ¢

b

=~ [ F@)da 4+ 552 [F(@) + 3 (@) + 3£ () + F(B)] ~ g (b~ )"

a

On the other hand:

b b
o) [ 1@ -] e < max o) [[79 @) - de.
From (1.3) we get:
(2.7) max [io(0)] = Gt

On the other hand the equality follows:
b b
() — - () —
s 0@ =l dr= [0~
= fP0) = fP(a) = —a) = (S —n)(b - a).
From the relations (2.4), (2.6), (2.7) and (2.8) it follows :

[/ F@)d — 152 [7(@) +85(@n) + 3faa) + J0)] <

1555 —23 5
< it (b—a),

(2.9)
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the first inequality of (2.1).
We also have:

(2.10) /ab [1"4 — f(4)(:[;)i| o(r)dr < max |p(z

z€la,b]

and

(2.11) /ab

=Tu(b—a)+fP(a) = () = (T4 = S)(b — a).
By analogy from (2.5), (2.7), (2.10) and (2.11) we get:

[ F@)a — 152 [7(@) +85(@n) + 31(a2) + 1) 2

1553 —230 5
> 225 (b —a).

The last relation and (2.9) lead us to the inequality (2.1).

To show that inequality (2.1) is sharp we consider the function f given by
the relation f(z) = (z — a)*. It is easy to see that the equalities f(*(z) = 24
and v4 = I'y = 24, S5 = 24 are obtained.

Calculating the three members of the inequality (2.1) under the given cir-
cumstances, we notice that these have the common value given by the expres-
sion 55 (b — a)°. Hence, we deduce that the inequality (2.1) is sharp. O

T, — f@ <w>! dr = / b<r4 — [P (2))dz =

a

(2.12)

Another relation is given by the next theorem:

THEOREM 2.2. Under the assumptions of Theorem 2.1 we have:

(213 00 / F(z)dz — b8 [£(a) + 3f(x1) + 3f(x2) + F(b)
< TR0 -0
If va = Hl[illl)]f(4)($)ar4 = m[a%f (ac) then the inequalities (2.13) are
xE|a, z€la

sharp.
Proof. From (2.4), (2.6), (2.7)and (2.8) we have:

[ e+ 052 @) +87) + 87 + 0] <

15857
< #(b — a)5.

By analogy from (2.5), (2.10), (2.11) and (2.12) we have:

[ Fa)te — 58 (5(0) + 37(n) + 37(e) + F0)] <
< Ty - o)
From (2.14) and (2.15) we will have immediately the inequalities (2.13).

(2.14)

(2.15)
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To show that the inequalities are sharp we choose f(z) = (z — a)* and we
follow the steps of the proof for Theorem 2.1. O

The next theorem offers us inequalities which do not depend upon Ss.

THEOREM 2.3. Under the assumptions of Theorem 2.1 we have:
(2.16)
b
Dt 0= a) < [ J@)de = 252 [£(@) + 35 (21) + 3 (22) + F(B)] <
< T 6’

If v4 = m[inb]f(‘l)(x), ry = m{a;lcj]f(‘l)(a:) then the inequalities (2.16) are
xeE|a, xE|a,

sharp.

Proof. The inequalities (2.16) are easily deduced by (2.9) and (2.14) , re-
spectively (2.12) and (2.15). To show that the inequalities are sharp we follow
the steps of the proof for Theorem 2.1. O

In use the next theorem is important:

THEOREM 2.4. Under the assumptions of Theorem 2.1 we have:

(2.17)

23~v4—15S53 _ 5
sigiont (b —a)” <

n—1 n n
<5\ fla)+ f(0) + 2D flxi) +3D f(a]) + 3Zf(x;’)] - /b F(z)dz
i=1 i=1 i=1 a

2304 —1583 (1, _ \5
SisqonT (b —a)’,

IN

where x; = a + ih, h = b_Ta,i = 0,1,...,n and x\, 2! divide every interval

1?7
[, Ti+1] in three equal parts.

/i
ivxiv

Proof. We divide each interval [z;, x;11] in the equal parts by points x
then we use Theorem 2.1 on the interval [x;, z;4+1] :
23~,—15S% 5
ssi0 (i1 — 3i)” <
Tit1

(218) < B () + 3 + 3G + fw)] = [ @

z;
23I'y—15S5% 5
51840 (Tit1 — 7i)°,

f(s)(ffi+12;f(3)(zi) ,1=0,1,

IN

...,n—1. By adding the formula we have

where Si =

n—1

got so far for ¢ = 0,1,...,n — 1 and by noticing that ZS§ = w we
i=0

get the relation we wanted. O

From Theorem 2.2, following the steps done, we get:



5 Double inequalities of Newton’s quadrature rule 145

THEOREM 2.5. Under the assumptions of Theorem 2.1 we have:
(2.19)

B0 -0 <
b n—1 n n

< [ ot = e |0+ 700 25 e 45310 53
a i=1 i=1 i=1

T4—15S3 . 5
< Siggonr (b —a)”.

Proof. Proving this theorem is similarly to proving Theorem 2.4. Then we
use Theorem 2.2. O

Also Theorem 2.3 leads us to:

THEOREM 2.6. Under the assumptions of Theorem 2.1 we have:
(2.20)

Tva—=23T4 (; _ \5
Toses0nt (0 —a)” <

n—1 n n
< [ oo - bt [f(a) 1)+ 23 f @) +3Y_f(a) + 33 f(@!)
a i=1 i=1 =1

TL4—23v4 (p 1\
< Tosesont (b —a)”.

Proof. Proving this theorem is similarly to proving Theorem 2.4. Then we
use Theorem 2.3. O
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