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1. INTRODUCTION

The aim of this paper is to study the following iterative system with delays

(1.1)
zh(t) = filt,x1(t), zo(t), 21 (x1(t — 1)), 22 (22 (t — 7)), t € [to,b], i = 1,2,

with the initial conditions

(1.2) xz(t) = (pz‘(t), t e [to — Ti,t()], 1=1,2,
where
(Hl) tg < b, T, T2 >0, 7 < T9;
(HQ) f@ S C([to,b] X ([to — Tl,b] X [to — Tg,b])Z,R) =1,2;
(Hz) »1 € C([to — 71, t0), [to — 71,8]), w2 € C([to — 72, 0], [to — 72, 0]);
(Hy) there exists Ly, > 0 such that:
4
| fi(t, w1, ug, ug, ug) — fi(t, vi,v2,v3,v4)| Z |ug — vil),

=1
for all t € [to, b], (u1,us, us, us),w1,v3,v304) € (to — 71, b] X [to — T2, b])?,
i=1,2.
By a solution of ([1.1))—(1.2) we understand a function (x1,x2) with
x| € C([to — Tl,b], [to — Tl,b]) N Cl([to,b], [t(] — Tl,b])
X9 € C([to — Tg,b], [to — Tg,b]) N Cl([to,b], [to — Tg,b])
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which satisfies ([1.1)—(1.2)).
The problem is equivalent with the following fixed point equa-
tions:
(3a)
iL‘l(t): ng(t), t Et [to — Tl,to],
@1(to) + fy, f1(s,21(8), 22(8), 2121 (8—71)), DA T2 (5 —72) ) 8.t € [t0, V],

(3b)
$(t)— 902(25), t e [to—TQ,tQ],
2T ealto)+ fi, fa(s, wa(s), wa(s), wa(wr (s—71)), wolwa (s —72)) st € [to, b,

where z1 € C([to — Tl,b], [to — Tl,b]),iL‘Q € C([to — TQ,b], [to — TQ,b]).
On the other hand, the system is equivalent with
(4a)
xl(t) _ { xl(t), t Et [to —T1, t()],
xl(to)—i—ftofl(s, z1(8), x2(8), x1(z1(s—71)), oA 22 (5 —T2)) M8, € [t0, b],

(4b)

. (t): .fUQ(t), t e [to —Tg,to],
2 xg(to)—i—ﬁofg(s, z1(s), x2(s), x1(z1(s—71)), o x2(s—72)) MdS5,t € [to, b],

and x1 € C([to — 71, b], [t() —T1, b]), T2 € C([to — T2, b], [t[) — T2, b])

We shall use the weakly Picard operators technique to study the systems
()~ @B) and (@) ().

The literature in differential equations with modified arguments, especially
of retarded type, is now very extensive. We refer the reader to the following
monographs: J. Hale [2], Y. Kuang [4], V. Muresan [3], I. A. Rus [7] and to
our papers [5], [6]. The case of iterative system with retarded arguments has
been studied by many authors: I. A. Rus and E. Egri [10], J. G. Si, W. R. Li
and S. S. Cheng [11], S. Stanek [12]. So our paper complement in this respect
the existing literature.

Let us mention that the results from this paper are obtained as a con-
cequence of those from [I0] where is considered the case of boundary value
problems.

2. WEAKLY PICARD OPERATORS

In this paper we need some notions and results from the weakly Picard
operator theory (for more details see I. A. Rus [9], [8], M. Serban [13]).

Let (X, d) be a metric space and A : X — X an operator. We shall use the
following notations:

Fa:={x € X | A(x) =z} - the fixed point set of A;

I(A):={Y C X | A(Y) CY,Y # (0} - the family of the nonempty invariant
subset of A;

Al = Ao A", AV =1y, A=A, neN;

P(X):={Y C X | Y # 0} - the set of the parts of X;
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H(Y,Z) := max{supinfd(y,z),supinfd(y,z)} -the Pompeiu-Housdorff
yeyzEZ 2€ZYEY
functional on P(X) x P(X).

DEFINITION 2.1. Let (X,d) be a metric space. An operator A : X — X s
a Picard operator (PO) if there exists ™ € X such that:

(i) Fa={2"},
(ii) the sequence (A™(zo))nen converges to x* for all xo € X.

REMARK 2.2. Accordingly to the definition, the contraction principle in-
sures that, if A: X — X is a « -contraction on the complet metric space X,
then it is a Picard operator.

THEOREM 2.3. (Data dependence theorem). Let (X, d) be a complete metric
space and A, B : X — X two operators. We suppose that

(i) the operator A is a « -contraction;
(i) Fp # 0
(iii) there exists n > 0 such that

A(A(x), B(x)) <, Va € X.
Then if Fa = {z%} and x5 € Fp, we have

d(zy,zp) < %

DEFINITION 2.4. Let (X,d) be a metric space. An operator A : X — X is
a weakly Picard operator (WPO) if the sequence (A™(x))nen converges for all
x € X, and its limit ( which may depend on x ) is a fixed point of A.

THEOREM 2.5. Let (X,d) be a metric space and A : X — X an operator.

The operator A is weakly Picard operator if and only if there exists a partition
of X,

X = U X,
AEA

where A is the indices set of partition, such that:
(a) Xpn€I(A), N A;
(b) Alx, : Xn — X is a Picard operator for all X € A.

DEFINITION 2.6. If A is weakly Picard operator then we consider the oper-
ator A% defined by

A% X = X, A®(x) := lim A"(z).

n—0o0

It is clear that A>(X) = Fjy.

DEFINITION 2.7. Let A be a weakly Picard operator and ¢ > 0. The operator
A is c-weakly Picard operator if

d(z, A”(x)) < cd(z, A(z)), YV € X.
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ExXAMPLE 2.8. Let (X,d) be a complete metric space and A : X — X a
continuous operator. We suppose that there exists « € [0, 1) such that
d(A%(z), A(z)) < afz, A(z)), Yz € X.

Then A is c-weakly Picard operator with ¢ = ﬁ

THEOREM 2.9. Let (X,d) be a metric space and A; : X — X, i = 1,2.
Suppose that

(i) the operator A; is ci-weakly Picard operator, i = 1,2;
(i) there exists n > 0 such that
d(Ai(x), As(x)) <n, Vo € X.
Then
H(Fy4,,Fa,) <nmax(cy,ca).

THEOREM 2.10. (Fibre contraction principle). Let (X,d) and (Y, p) be two
metric spaces and A : X xY —- X xY, A= (B,C), (B: X = X, C:
X xY =Y ) a triangular operator. We suppose that

(i) (Y, p) is a complete metric space;
(ii) the operator B is Picard operator;
(iii) there exists | € [0,1) such that C(x, ) : Y — Y is a l-contraction, for
all x € X;
(iv) if (z*,y*) € Fa, then C(-,y*) is continuous in z*.

Then the operator A is Picard operator.

3. CAUCHY PROBLEM

In what follows we consider the fixed point equations and .
Let

Ay :C(to—1,bl[to—T1,b) xC (to—T2, b[to—T2, b)) = C(to—71, bJR)xC (to—72, b} R),
given by the relation

Af(xth) = (Afl ($17$2)7 Afz(x17x2))a
where Ay, (x1,22)(t) := the right hand side of and Ay, (x1,22)(t) := the
right hand side of .
Let L1,Ly >0, L = max{Ll, LQ} and
CL([tO_Tla b]a [tO_Th b]) X CL([tO_T% b]? [t0_7-27 b]) =
= {(w1,22) € C([to—T71, b, [to—T71,b]) x C([to—72, b], [to— T2, b]) :
‘J}i(tl) — :L'i(tz)’ <L; ‘tl — t2’ , V(tl,tg) € [to — Tg,b], 1= 1,2}.

It is clear that C([to—71,b], [to—T71,b]) X CL([to—T72, b], [to—T2, b]) is a complete
metric space with respect to the metric

d(z,T) = max, lz(t) — Z(t)] .
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We remark that Cp,([to—71,b], [to—71,b]) x CL([to—T2, b], [to—T2, b]) is a closed
subset in C([to—71, 0], [to—71,b]) x C([to—72,b], [to—T2,b]).
We have

THEOREM 3.1. We suppose that
(i) the conditions (H;)—(Hy) are satisfied;
(ii) Y1 € CL([tO — Tl,t()], [to — Tl,bD, HAS CL([to — Tg,to], [to — Tg,b]);
(iii) my, and My, € R, i = 1,2 are such that
(iiia) mg, < fl (t, Ui, u2,us, U4) < Mfi s Vit € [to, b], (ul,uQ, us, U4),(1)1,’U2,’U3,1)4)
S ([to—Tl, b] X [t[)—TQ, bD2,

(iiib)
to — 7 < @i(to) + my, (b—to) formy, <O,
to — 7i < @i(to) Jor my, >0,
b > pi(to) for My, <0,
b > pi(to) + My, (b — to) for My, >0,

(iiic) L+Mf¢ <1;
(iV) (b—to)(Lfl +Lf2)(L+2) < 1.

Then the Cauchy problem (1.1)—(1.2)) has, in CL([to—71,b], [to —T1,b]) X
Cr([to—T2,b], [to—T2,b]) a unique solution. Moreover the operator

Af:CL([to—Tl, b],[t()—Tl, bD XCL([to—TQ, b],[to—’i‘g, b])—>
CL([to*Tl, b},Cthngl, b],[tole, b])) XCL([tO*TQ, b],CthQ*’TQ, b],[tong, b]))

is a c-Picard operator with ¢ = =l

1
Ly +Lg,)(L+2)"

Proof. (a) Cr(to—T1,b}[to—71,b) X CL(to— T2, b][to — T2, b)) is an invariant
subset for Ay.

Indeed,

to— 7 < Ag, (21, 22)(t) < b,

(z1,22)(t) € [to — 71,0] x [to — 72,b], t € [to,b], 1 =1,2.

From (iila) we have my, and My, € R such that

mg; < fl(ta uy, u2,us, U4) < Mflv

Vit € [to, b], (ul,uQ, Uus, ’LL4),(U1,U2,’L)3,’U4) S ([to — 71, b] X [to — Ty, bDQ, 1=1,2.

This implies that

ftto my,ds < ftto fi(s,z1(8), 22(s), z1(x1(s—71)), x2(22(5—T2)))ds < ftto My,ds,
Vt € [to, b], that is

(pi<t0) + mfi(b - to) < Afi (xla x2)(t) < (Pi(to) + Mfi(b - t0>7 te [th b]-

Therefor if condition (iii) holds, we have satisfied the invariance property for
the operator Af in C([to—Tl, b], [to—Tl, b]) X C([tQ—TQ, b], [to—TQ, b])

Now, consider ty,ty € [tg — 71, to] :

[Ap (@1, 22)(t1) = Apy (@1, 22)(E2)| = [@1(t1) — @1(t2)| < L [ty — tof

because 1 € Cr([to—T1, o], [to—T1,b])-



152 Diana Otrocol 6

Similarly, for ¢1,te € [tg — 72, 0] :

|Ap, (21, 72)(t1) — Ay (21, 72)(t2)| = |p2(t1) — @a(te)| < Lot — taf,

that follows from (ii), too.
On the other hand, if t1,t2 € [to, b], we have

‘Afi (1'1,1’2)(t1) - Afi(xlvl'?)(t?” =

@i(tl)—%(t2)+/t:1fi(87961(8),-%‘2(8)7961(1‘1(8—71))7$2(932(8—72)))d3—

to

- \ fi(s,21(8), x2(s), x1(x1(s—71)), xA 22 (5 —T2)))ds| <

SLi‘tl—tg‘—l—Mﬂ ’tl—t2| < (L—i—Mfi)’tl—tg‘, 1=1,2.

So we can affirm that Vti,ts € [to,b], t1 < t2, and doe to (iii), Ay is L-Lipshitz.
Thus, according to the above, we have Cr([tg — 71, ], [to — 71, b]) X Cr([to —
T2, b], [to — T2, b]) S I(Af).
(b) Ay is a La, -contraction with La, = (b —t0)(Lys, + Ly,)(L +2).
For t € [t(] — Tl,to], we have ]Afl(xl,:):g)(t) — Afl (51,52)(75)‘ =0.
For t € [t(] — Tg,to], we have ’Afz(.%'l,l‘g)(t) — AfQ(fl,fQ)(t” =0.
For t € [to, 0] :

[Ag (21, 22) (1) = Ay, (T1,T2) ()] =

:’/tj[fl(s,:m(S),a?z(s),xl(azl(s—rl)),3;2(952(5_72)))
_f1(57x1(5)7$2(3),1'1(1}1(8—7'1))73;2(1-2(3_7—2)))](15{

< Lp(lza(s) =71 ()| + |z2(s) —T2(s)| + [z1(z1(s—71)) —Z1(T1 (s —71)) |
+|z2(z2(5—72)) — T2(T2(s—72)) ) (b — to)
< (b=to) Ly [[lz1=Z1c + [[z2—Z2ll o + [#1(21(s—71)) =21 (T2 (s —71))|
+lz1(T1(s—711)) —Z1(T1(s—71))| + |x2(z2(5—T2)) —22(T2(5—T2))]
HzoATa(s—72)) —T2(TAs—72))[| < (b—to) Ly [lz1 —Z1 | o+ [[ 22— 2|
+L1 ||z — T1|lo + ||o1 — Z1l| o + La |22 — T2l + [lz2 — T2l ]
< (b—=to)Lp (L +2)(|lz1 — Tulle + [[v2 — T2l 0)-
In the same way
|Ag, (21, 22) (1) — A, (T1,T2) ()] < (b —to) Ly (L +2)([|l21 — Ta || + ||lz2 — Z2]).
Then we have the following relation

[Af(z1,22) — Ap(T1,T2) || o < (b—to)(Lpy + Lp, ) (L +2) [[(z1,22) — (T1,T2) | ¢

So Ay is a c-Picard operator with ¢ = ﬁ. O
f
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In what follows, consider the following operator
Bf : CL([tO_Tlv b]a [t0_7-17 b]) X CL([t0_727 b]? [to_7—27 b]) —
Cr([to—71, 0], [to—71,0]) x CL([to—72, b], [to—T72, b]),
given by the relation
By(x1,x2) = (B, (w1, 2), Bp, (71, 72)),
where By, (1, 22) := the right hand side of and By, (x1,x2) := the right
hand side of .

THEOREM 3.2. In the conditions of Theorem|[3.1], the operator By : Cr([to—
Tlab]7 [tO - 7—17b]) X CL([tO - 7—27b]7 [t() - 7_27b]) — CL([tO - Tlab]a [to - Tlab]) x
Cr([to — 72, 0], [to — 72,0]) is WPO.

Proof. The operator By is a continuous operator but it is not a contraction
operator. Let take the following notation:

Xy = {1 € Cto—71,0L[to—71,0)| Z1litg—r1,0) = P11
Xgoz = {.132 € C([tO_T??b]a[tO_TQabD‘ x2|[t077'2,t0] = 902}

Then we can write

(5)

CL([to—Tl,b],[to—Tl,bDXCL([to—TQ,b],[to—TQ,bD: U XQDIXX@Q.
i €Cr(to—Ts,tol{to—T:,b)

We have that X,, x Xy, € I(By) and By|x, xx,, is a Picard operator be-
cause is the operator which appears in the proof of Theorem By applying
Theorem [2.5, we obtain that By is WPO. O

4. INCREASING SOLUTION OF (77)
4.1. Inequalities of Chapligin type.

THEOREM 4.1. We suppose that
(a) the conditions of the Theorem[3.1] are satisfied;
(b) (ul,uQ, us, U4),(’U1,’U2,1)3,U4) S ([t[) — 71, b] X [to — T2, bD2, Ug < Uy, ] = m,
imply that
fi(t, w1, uz,uz,us) < filt, v1,v2,v3,v4),
i=1,2, for all t € [to,b].

Let (x1,22) be an increasing solution of the system and (y1,y2) an
increasing solution for the system of inequalities

yi(t) < filt,ya(t), y2(t), y1 (w1 (t — 71)), y2(y2(t — 2))), t € [to, D],
Then
yi(t) < xi(t), t € [to— T to), = 1,2 = (y1,42) < (w1, 72).
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Proof. In the terms of the operator By, we have

(z1,22) = By(x1,22) and (y1,y2) < Br(y1,y2).

However, from the condition (b), we have that the operator B]?O is increasing,

B?)(ylv yQ) = B?O(§1|[t0_7—17t0], 372|[t0—7'2,t0])
B (T1|tg—71,t0]> T2 [tg—r2,t0]) = (21, T2).

Thus (y1,y2) < (x1,z2).

Here, for (Z1,72) we used the notation z7; € X, ,To € X,

[ —r1.t0] ttg—r2.t0]"

4.2. Comparison theorem. In the next result we want to study the
monotony of the solution of the problem (1.1)—(1.2)) with respect to ¢; and
fi, 1 =1,2. We shall use the result below:

LEMMA 4.2. (Abstract comparison lemma). Let (X,d, <) be an ordered
metric space and A, B,C : X — X such that:

(i) A< B <,

(ii) the operators A, B,C are WPO;
(iii) the operator B is increasing.
Then

r<y<z=A"(x) < B®(y) < C™(z).
In this case we can establish the theorem.

THEOREM 4.3. Let flj S C([to,b] X ([to—Tl,b] X [tO—TQ,b])z), 1=1,2,5 =
1,2,3.
We suppose that
(a’) fZQ(t7 ERE) '7') : ([t0_7—17b] X [tO_T27b])2 — ([tO_Tlub] X [t0_7-27b])2 are
increasing;

(b) fL<f?<f3

Let (acjl, acj) be an increasing solution of the systems
ac/i(t):fg(t,xl(t),xg(t),931(301(75—71)),xg(xg(t—Tg))),t € [tod], 1 =1,2,5 =1,2,3.
If x}(t) < z2(t) < x}(t), t € [to — Ti,to] then z} < az? < a3, i=1,2.

Proof. The operators B , j=1,2,3 are WPO. Taking into consideration
the condition (a) the operator B]% is increasing. From (b) we have that B} <
B}% < BJSC. We note that (27,27) = B}OO(%{,%%), j =1,2,3. Now, using the
Abstract comparison lemma, the proof is complete. O
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5. DATA DEPENDENCE: CONTINUITY

Consider the Cauchy problem (1.1)—(1.2) and suppose the conditions of
Theorem are satisfied. Denote by (z1,22)(; p1, 92, f1, f2),7 = 1,2 the
solution of this problem. We can state the following result:

THEOREM 5.1. Let gol, <p2, f17f2a j=1,2beasin Theorem. We suppose
that there exists 17 n?,n} ,z = 1,2 such that
i) pi(t) = @1(t)| < n', YVt € [to — 11, t0] and |p3(t) — 3(1)] < 0, Vt €
[t(] —Tg,to];
(ii) |fi1(t,U1,U2,U3,U4) f (t,v1,v2,v3, 04 | < f’ i=1,2, (u1,us, us, uq),
(vl,vg,vg,m) € ([tg — Tl,b] [to — TQ,b])Q.
Then

+n2+ (3 +n3) (b—t
@1, 0h 0h, 11 1) — @, 2 (66, 08, 17, 13| < Gt ill o)

where Ly, = maX(Lf_l,Lf_z),i =1,2.

Proof. Consider the operators A . ,7 =1,2. From Theoremthese

J
502 7f1 7f2
operators are contractions.

Then
HAso%,sa;,fo; (21, 22) — Az o2 2 2 (3«“179:2)\)0 <0t + 07+ () +13) (b — to),

V(x1,22) € Cr(to—T1,bl[to—T71, b)) x CL.(to — T2, b],[to — T2, b]).
Now the proof follows from Theorem with A == Aji 1o, B =

Ap gz 2 gz ="+ 0"+ (0} +03)(b—to) and a == La, = (b—to)(Ly, +
LfQ)(L + 2) where Lfi = max(Lf;,Lf_z),i = 1,2. O

From the Theorem above we have:

THEOREM 5.2. Let f! and f? be as in Theorem|3.1, i = 1,2. Let SBfl,SBf2

be the solution set of the system corresponding to fi and f*i = 1,2.
Suppose that there exists n; > 0,1 = 1,2 such that

(6)

fO’I" allt € [to, b], (’U,l,UQ, us, U4),(’U1,'U2,1)3,U4) S ([t() - T1, b] X [to — T9, b])2,’i =1,2.
Then

Lt ug,ug, uz ug) — f7 (tvl,vzw&m)’ <

SB ) (71+m2)(b-to0)

HII-HC(SB = T—(Ly, +Ly,)(L+2)(bt0)

i
where Ly, 1= maX(Lf1 sz) and H” | denotes the Pompeiu-Housdorff func-
tional with respect to ||-||~ on CL(to—T1,b}[to—71, b)) x Cr (to—T2, b [to— T2, b]).

Proof. We will look for those ¢; and ¢y for which in condition of Theorem
@ the operators By and Bj2,i = 1,2 are ¢;-WPO and c;-WPO.
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Let
Xy = {w1 € O([to—71,b], [to—71,0])| Z1l[tg—ri ) = P11
Xy 1= {x2 € C([to—72,b], [to—72,b])| 2ljtg—rs,t0] = P2}

It is clear that Bf1|Xq,1Xx¢2 Afil, Bfi2|X<p1xX¢2 = Aff' So from Theorem
B3 and Theorem B.1] we have

x1,19) — B pi(xy,x H
HBfil 1 2 1 L42 c

IN

(b—to) L +L gy XL+2) [Bpwras) —@ras)

N

[Bned—B o, < O-toXLpt X4 [Byned—rad]

for all (z1,x2) € Cr(to—T1,b}[to—71,b) x Cr(to—72, b, [to—T2,b),i = 1,2.
Now choosing

ar = (b—to)(Lp + Lp)(L+2),
ay = (b— tg)(sz + sz)(L + 2),
we get that Bfl and sz are ¢;-WPO and co-WPO with ¢; = (1—a1)7!, ca =
(1 —az)~!. From @ we obtain that
HBfil (x1,x2) — Bf2 1,22 H (m + n2)(b — to),

for all (:El,wg) S CL([to—Tl,b],[to—Tl,b])><CL([to—TQ,b],[to—Tg,bD,i = 1,2.
Applying Theorem we have that

+12) (b=t
HII-HC(SB SB )S17(b7(t7z)1)(Ln;1)(+Lf;)))(L+2)’

7
where Ly, := max(L E L fz) and H|., denotes the Pompeiu-Housdorff func-

tional Wlth respect to |- HC on Cr([to — 11,0, [to—71,b]) x Cr([to — 72,b], [to —
T2, b)), i =1,2. O

6. DATA DEPENDENCE: DIFFERENTIABILITY

Consider the following Cauchy problem with parameter

(7) 2j(t) = filt, z1(t), xa(t), z1 (21 (t—71)), w2 (22(t—72)); N, t € [to,b],i = 1,2,

(8) Jil(t) :Q,Oi(t), t e [tQ—Ti,to],i: 1,2.
Suppose that we have satisfied the following conditions:
(C1) to < b,m1,72 > 0,71 < T2,J CR a compact interval;
( ) ©Yi GCL([tO_TivtO]v[tO_Tiab])> 121727
(C3) fl € Cl([to,b] X ([to — Tl,b] X [to — 7'2,()])2 X J,R) 1=1,2;
(C4) there exists Ly, > 0 such that

‘3fi(t,m,u5;u3,u4;)\)‘ <Ly
for all t € [to, b], (U]_,UQ, us, U4) € ([to — T, b] X [to — Ty, bDQ, 1=1,2, A€ J;
(Cs) my, and My, € R, i = 1,2 are such that
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(a) myg, < fi(t,Ul,’LLQ,’LLg,Uz,L) < Mf”Vt € [t()’b]a (U1,U2,U3,U4),
(v1,v2,v3,v4) € ([to — 71, b] X [to — T2, b)),

(b)
to — T; S@i(to)—i-mfi(b—to) for my, <0,
to — 7i < wi(to) for my, > 0,
b> gOi(to) for Mfi <0,
b > @i(to) + My, (b —to) for My, > 0,

(C) L+ Mfi <1
(C6) (b — tO)(Lfl + Lf2)(L + 2) < 1.
Then, from Theorem we have that the problem (|1.1))—(1.2)) has a unique
solution (x3(-, \), z5(-, \)).
We will prove that
zi(-,\) € CL(J), forall t € [ty — Ti,t0], i = 1,2.
For this we consider the system
9) Zi(t,\) = fi(t,z1(t; N), 2a(t; N), 21 (21 (E— 713 A); N), ma (T2 (t — 725 A); A); A),
tc [to,b], Aed, x; € C([to — Ti,b] X J, [to — Ti,b] X J) N Cl([to,b] X J, [to —
Ti,b] X J), i =1,2.
THEOREM 6.1. Consider the problem (@f@, and suppose the conditions
(C1)—(Cg) holds. Then,
(i) (@—(@ has a unique solution (z7,x3%), in C([to—71,b] X J, [to —71,b]) X
C([to — T2, b] X J, [to — T2, b]),
(ii) z(-,\) € CY(J), for allt € [ty — 73,10, i = 1,2.

Proof. The problem @, is equivalent with the following functional in-
tegral equations
(10a)
i) = e1(t), t € [to — 71, 0]
! Ul Filsr (5502 (5 N a1@ils — 7130); Nwowols — 7230 0:Nds £ € Fo
(10b)
$(t;)\): (p2(t>, te [to—TQ,to]
’ Qolty+fy, fAs w1 (5N w2 (50w 1( (s — 715N s ko (s—2:0); ) Mds £ € o
Now, let take the operator
A CL([t() — Tl,b] X J, [to — Tl,b] X J)XCL([tQ — Tg,b] X J, [to — TQ,b] X J)—)
CL([to — Tl,b] X J, [t() — Tl,b] X J) XCL([t() — TQ,b] X J, [t(] — Tg,b] X J),
given by the relation
A(z1,22) = (A1(21,12), A2(71, 72)),

where Aj(z1,22)(t; A) := the right hand side of (10a)) and Ag(x1,x2)(t;A) =
the right hand side of ((10b]).
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Let X = CL([to — Tl,b] X J, [to — Tl,b]) X CL([to — Tz,b] X J, [to — Tg,b]).
It is clear from the proof of Theorem that in the conditions (C;)—(Cg)
the operator

A (X Hle) = (X1l e)

is a PO.
Let (x7, %) be the unique fixed point of A.
We consider the subset X; C X,

Xy = {(."L‘l,:L‘Q) € X‘ % € [to —Tl,to], % € [to — Tg,to]}.

We remark that (z7,23) € X1, A(X1) C Xjand A : (X4, ||-|o) = (X1, [|]lo)
is PO.
Let Y := C([to — Tl,b] X J) X C([to —TQ,b] X J)
1 0xs

Supposing that there exists % and o) from (|10af)—(10b|) we have that

oxzy tBfi(s,xi‘(s;/\),x;(s;)\),x*l‘(x{(577'1;)\);)\),x;(15(377'2)\);)\);)\).Bxi‘(s,)\)d
8)\ - to 8u1 o\

t
Ofi(s,27(s:0),23 (834),27 (@7 (s—T130);0),25 (23 (s—T2A);A);A) 8:(;;(57/\)(1
Ous o\ s

S

+

to

t
Ofi (5,27 (5;0),25(5;0), 27 (27 (s—=71;A);0),@5 (x5 (s—T2 A );A);\)
ous

+

to
, [azﬂxﬁmm\) iy 396{(58?((;;1?\)7\)] ds

ou1 oA

t
Ofi(s,27(s:0),33 (5;4),27 (@7 (5—T15A)5A),25(@5 (s—T2;A);0)5A)
Ouy

+
to

[ Ox3(@5 (s—=T13A)5A)  OmF(s—T23A) + Oz (s—T2;A);0) d

Buz ax X s

t Ofi(s,x7 (5;:0),25 (s;0),27@] (s—71;A);0) 25 (x5 (s—T2;A);A);A) d
+ N s,
to

t e [to,b],)\ e J,i=1,2.
The relation suggest us to consider the following operator

C: X1 xY — Y7 (1"171"23“’ U) - C(x1,$27uvv)a

where

C(x1, o, u,v)(t; A) =0 for t € [tog — 73, to], A € J,i =1,2
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and

C(x1, w2, u,v)(t; \) =
_ /t 8fi(s,a:*1‘(s;)\),xg(s;)\),x*l‘(xi‘(sfn;)\);)\),x;(:c;(sf‘rg)\);)\);)\))u(s; )\)dS
t

oul

0

N t8fi(s7x“1*(s;)\),x§(s;)\),x}“(:(;“{(5—7'1;)\);)\),:5;(1,‘;(S—TQA);A);)\)U(g; )\)ds

Ousg
to
+ tBfi(s,x*f(s;)\),x;(s;)\),xi (7 (5=T1;0);0), 25 (x5 (s =2 X);A); M)
Oug
to
) [3901(5101(88;T1;>\);>\) (s — T3 A) + 311(961(2;7'1;)\)9\)} ds
+ tafi(svl'l(SV\)am?(S;)\)axl(-Tlés_7'1§>\)?>\)a$2($2(37—2§>\)§>\);>\)
ug
to
_ [8272(3:2(5;27—2;)\);)\) co(s — 7o \) + 8172(302((83;72;)\)9\)} ds
[ 2l (s0).a(50) 1 (1 (5= NN (5= maN)A)N)
o\
to

for t € [to,b], AeEJ, i=1,2.
In this way we have the triangular operator
D : X1 xY — X7 x }/,

(xla Z2, U, ’U) — (A(xlv .%'2), C(xla T2, U, U))7

where A is PO and C(z1,22,+,-) : ¥ — Y is an Le-contraction with Lo =
(b — tO)(Efl + Zfz)(L + 2), where Efi = max{Lfi, L- Lfi}7 1= 1, 2.

From the fibre contraction Theorem we have that the operator D is PO, i.e.
the sequences

(Z1n41, T2nt1) = A(T1 0, T2p), N €N,
(Un+1,7)n+1) = C(xl,nva,nu u?%”n)a nc N7

converges uniformly, with respect to t € X, X € J, to (7, x5, u*,v*) € Fp, for
all (21,0, 72,0) € X1, (uo,v0) €Y.
If we take

81’170 858270

210 =0, w20=0, ug = B =0, v = B

0,

then
83)171 81‘2,1
Ul = 735> V1 = x -

By induction we prove that

o)

u, = 55, VneN,
0x2 n

vy = 5, VneN.
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So

unif
Tip — T aS M — 00,

unif
Ton — Ty aS T — OO,

O0ry , UNL
% U as n — 0o,

Oro. , UNL
aa;i ™I 0 as m — co.

*

x>
From a Weierstrass argument we have that there exists 8—;, i=1,2 and

[10]
[11]
[12]

[13]

oxry _  x Ox} *

A T U N T
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