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1. INTRODUCTION

The aim of this paper is to study the following iterative system with delays
(1.1)
x′i(t) = fi(t, x1(t), x2(t), x1(x1(t− τ1)), x2(x2(t− τ2))), t ∈ [t0, b], i = 1, 2,

with the initial conditions
(1.2) xi(t) = ϕi(t), t ∈ [t0 − τi, t0], i = 1, 2,
where

(H1) t0 < b, τ1, τ2 > 0, τ1 < τ2;
(H2) fi ∈ C([t0, b]× ([t0 − τ1, b]× [t0 − τ2, b])2,R), i = 1, 2;
(H3) ϕ1 ∈ C([t0 − τ1, t0], [t0 − τ1, b]), ϕ2 ∈ C([t0 − τ2, t0], [t0 − τ2, b]);
(H4) there exists Lfi > 0 such that:

|fi(t, u1, u2, u3, u4)− fi(t, v1, v2, v3, v4)| ≤ Lfi(
4∑

k=1
|uk − vk|),

for all t∈ [t0, b],(u1,u2, u3, u4),(v1,v2,v3,v4)∈([t0 − τ1, b]×[t0 − τ2, b])2,
i = 1, 2.

By a solution of (1.1)–(1.2) we understand a function (x1, x2) with
x1 ∈ C([t0 − τ1, b], [t0 − τ1, b]) ∩ C1([t0, b], [t0 − τ1, b])
x2 ∈ C([t0 − τ2, b], [t0 − τ2, b]) ∩ C1([t0, b], [t0 − τ2, b])
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which satisfies (1.1)–(1.2).
The problem (1.1)–(1.2) is equivalent with the following fixed point equa-

tions:
(3a)

x1(t)=
{
ϕ1(t), t ∈ [t0 − τ1, t0],
ϕ1(t0)+

∫ t
t0
f1(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds,t∈ [t0, b],

(3b)

x2(t)=
{
ϕ2(t), t ∈ [t0 − τ2, t0],
ϕ2(t0)+

∫ t
t0
f2(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds,t∈ [t0, b],

where x1 ∈ C([t0 − τ1, b], [t0 − τ1, b]), x2 ∈ C([t0 − τ2, b], [t0 − τ2, b]).
On the other hand, the system (1.1) is equivalent with

(4a)

x1(t)=
{
x1(t), t ∈ [t0 − τ1, t0],
x1(t0)+

∫ t
t0
f1(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds,t∈ [t0, b],

(4b)

x2(t)=
{
x2(t), t ∈ [t0 − τ2, t0],
x2(t0)+

∫ t
t0
f2(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds,t∈ [t0, b],

and x1 ∈ C([t0 − τ1, b], [t0 − τ1, b]), x2 ∈ C([t0 − τ2, b], [t0 − τ2, b]).
We shall use the weakly Picard operators technique to study the systems

(3a)–(3b) and (4a)–(4b).
The literature in differential equations with modified arguments, especially

of retarded type, is now very extensive. We refer the reader to the following
monographs: J. Hale [2], Y. Kuang [4], V. Mureşan [3], I. A. Rus [7] and to
our papers [5], [6]. The case of iterative system with retarded arguments has
been studied by many authors: I. A. Rus and E. Egri [10], J. G. Si, W. R. Li
and S. S. Cheng [11], S. Stanek [12]. So our paper complement in this respect
the existing literature.

Let us mention that the results from this paper are obtained as a con-
cequence of those from [10] where is considered the case of boundary value
problems.

2. WEAKLY PICARD OPERATORS

In this paper we need some notions and results from the weakly Picard
operator theory (for more details see I. A. Rus [9], [8], M. Serban [13]).

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:
FA := {x ∈ X | A(x) = x} - the fixed point set of A;
I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅} - the family of the nonempty invariant

subset of A;
An+1 := A ◦An, A0 = 1X , A1 = A, n ∈ N;
P (X) := {Y ⊂ X | Y 6= ∅} - the set of the parts of X;
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H(Y,Z) := max{sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)} -the Pompeiu–Housdorff

functional on P (X)× P (X).

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X is
a Picard operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗},
(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Remark 2.2. Accordingly to the definition, the contraction principle in-
sures that, if A : X → X is a α -contraction on the complet metric space X,
then it is a Picard operator.

Theorem 2.3. (Data dependence theorem). Let (X, d) be a complete metric
space and A,B : X → X two operators. We suppose that

(i) the operator A is a α -contraction;
(ii) FB 6= ∅;

(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀x ∈ X.

Then if FA = {x∗A} and x∗B ∈ FB, we have

d(x∗A, x∗B) ≤ η
1−α .

Definition 2.4. Let (X, d) be a metric space. An operator A : X → X is
a weakly Picard operator (WPO) if the sequence (An(x))n∈N converges for all
x ∈ X, and its limit ( which may depend on x ) is a fixed point of A.

Theorem 2.5. Let (X, d) be a metric space and A : X → X an operator.
The operator A is weakly Picard operator if and only if there exists a partition
of X,

X = ∪
λ∈Λ

Xλ

where Λ is the indices set of partition, such that:
(a) Xλ ∈ I(A), λ ∈ Λ;
(b) A|Xλ : Xλ → Xλ is a Picard operator for all λ ∈ Λ.

Definition 2.6. If A is weakly Picard operator then we consider the oper-
ator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

It is clear that A∞(X) = FA.

Definition 2.7. Let A be a weakly Picard operator and c > 0. The operator
A is c-weakly Picard operator if

d(x,A∞(x)) ≤ cd(x,A(x)), ∀x ∈ X.
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Example 2.8. Let (X, d) be a complete metric space and A : X → X a
continuous operator. We suppose that there exists α ∈ [0, 1) such that

d(A2(x), A(x)) ≤ α(x,A(x)), ∀x ∈ X.
Then A is c-weakly Picard operator with c = 1

1−α .

Theorem 2.9. Let (X, d) be a metric space and Ai : X → X, i = 1, 2.
Suppose that

(i) the operator Ai is ci-weakly Picard operator, i = 1, 2;
(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀x ∈ X.
Then

H(FA1 , FA2) ≤ ηmax(c1, c2).

Theorem 2.10. (Fibre contraction principle). Let (X, d) and (Y, ρ) be two
metric spaces and A : X × Y → X × Y, A = (B,C), ( B : X → X, C :
X × Y → Y ) a triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;
(ii) the operator B is Picard operator;

(iii) there exists l ∈ [0, 1) such that C(x, ·) : Y → Y is a l-contraction, for
all x ∈ X;

(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.
Then the operator A is Picard operator.

3. CAUCHY PROBLEM

In what follows we consider the fixed point equations (3a) and (3b).
Let

Af :C([t0−τ1, b],[t0−τ1, b])×C([t0−τ2, b],[t0−τ2, b])→C([t0−τ1, b],R)×C([t0−τ2, b],R),
given by the relation

Af (x1, x2) = (Af1(x1, x2), Af2(x1, x2)),
where Af1(x1, x2)(t) := the right hand side of (3a) and Af2(x1, x2)(t) := the
right hand side of (3b).

Let L1, L2 > 0, L = max{L1, L2} and
CL([t0−τ1, b], [t0−τ1, b])× CL([t0−τ2, b], [t0−τ2, b]) :=
= {(x1, x2)∈C([t0−τ1, b], [t0−τ1, b])×C([t0−τ2, b], [t0−τ2, b]) :
|xi(t1)− xi(t2)| ≤ Li |t1 − t2| , ∀(t1, t2) ∈ [t0 − τ2, b], i = 1, 2}.

It is clear that CL([t0−τ1, b], [t0−τ1, b])×CL([t0−τ2, b], [t0−τ2, b]) is a complete
metric space with respect to the metric

d(x, x) := max
t0≤t≤b

|x(t)− x(t)| .
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We remark that CL([t0−τ1, b], [t0−τ1, b])×CL([t0−τ2, b], [t0−τ2, b]) is a closed
subset in C([t0−τ1, b], [t0−τ1, b])× C([t0−τ2, b], [t0−τ2, b]).

We have

Theorem 3.1. We suppose that
(i) the conditions (H1)–(H4) are satisfied;

(ii) ϕ1 ∈ CL([t0 − τ1, t0], [t0 − τ1, b]), ϕ2 ∈ CL([t0 − τ2, t0], [t0 − τ2, b]);
(iii) mfi and Mfi ∈ R, i = 1, 2 are such that

(iiia) mfi≤ fi(t, u1, u2, u3, u4)≤Mfi ,∀t ∈ [t0, b], (u1,u2, u3, u4),(v1,v2,v3,v4)
∈([t0−τ1, b]×[t0−τ2, b])2,

(iiib)
t0 − τi ≤ ϕi(t0) +mfi(b− t0) for mfi < 0,
t0 − τi ≤ ϕi(t0) for mfi ≥ 0,
b ≥ ϕi(t0) for Mfi ≤ 0,
b ≥ ϕi(t0) +Mfi(b− t0) for Mfi > 0,

(iiic) L+Mfi < 1;
(iv) (b− t0)(Lf1 + Lf2)(L+ 2) < 1.
Then the Cauchy problem (1.1)–(1.2) has, in CL([t0− τ1, b], [t0− τ1, b]) ×

CL([t0−τ2, b], [t0−τ2, b]) a unique solution. Moreover the operator
Af :CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b])→

CL([t0−τ1, b],CL([t0−τ1, b],[t0−τ1, b]))×CL([t0−τ2, b],CL([t0−τ2, b],[t0−τ2, b]))
is a c-Picard operator with c = 1

(b−t0)(Lf1+Lf2 )(L+2) .

Proof. (a) CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b]) is an invariant
subset for Af .

Indeed,
t0 − τi ≤ Afi(x1, x2)(t) ≤ b,

(x1, x2)(t) ∈ [t0 − τ1, b]× [t0 − τ2, b], t ∈ [t0, b], i = 1, 2.
From (iiia) we have mfi and Mfi ∈ R such that

mfi ≤ fi(t, u1, u2, u3, u4) ≤Mfi ,

∀t ∈ [t0, b], (u1,u2, u3, u4),(v1,v2,v3,v4)∈([t0 − τ1, b]×[t0 − τ2, b])2, i = 1, 2.
This implies that∫ t
t0
mfids ≤

∫ t
t0
fi(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds ≤

∫ t
t0
Mfids,

∀t ∈ [t0, b], that is
ϕi(t0) +mfi(b− t0) ≤ Afi(x1, x2)(t) ≤ ϕi(t0) +Mfi(b− t0), t ∈ [t0, b].

Therefor if condition (iii) holds, we have satisfied the invariance property for
the operator Af in C([t0−τ1, b], [t0−τ1, b])×C([t0−τ2, b], [t0−τ2, b]).

Now, consider t1, t2 ∈ [t0 − τ1, t0] :
|Af1(x1, x2)(t1)−Af1(x1, x2)(t2)| = |ϕ1(t1)− ϕ1(t2)| ≤ L1 |t1 − t2| ,

because ϕ1 ∈ CL([t0−τ1, t0], [t0−τ1, b]).
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Similarly, for t1, t2 ∈ [t0 − τ2, t0] :

|Af2(x1, x2)(t1)−Af2(x1, x2)(t2)| = |ϕ2(t1)− ϕ2(t2)| ≤ L2 |t1 − t2| ,

that follows from (ii), too.
On the other hand, if t1, t2 ∈ [t0, b], we have

|Afi(x1, x2)(t1)−Afi(x1, x2)(t2)| =

=
∣∣∣∣ϕi(t1)−ϕi(t2)+

∫ t1

t0
fi(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds−

−
∫ t2

t0
fi(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))ds

∣∣∣∣ ≤
≤ Li |t1 − t2|+Mfi |t1 − t2| ≤ (L+Mfi) |t1 − t2| , i = 1, 2.

So we can affirm that ∀t1, t2 ∈ [t0, b], t1 ≤ t2, and doe to (iii), Af is L-Lipshitz.
Thus, according to the above, we have CL([t0− τ1, b], [t0− τ1, b])×CL([t0−

τ2, b], [t0 − τ2, b]) ∈ I(Af ).
(b) Af is a LAf -contraction with LAf = (b− t0)(Lf1 + Lf2)(L+ 2).
For t ∈ [t0 − τ1, t0], we have |Af1(x1, x2)(t)−Af1(x1, x2)(t)| = 0.
For t ∈ [t0 − τ2, t0], we have |Af2(x1, x2)(t)−Af2(x1, x2)(t)| = 0.
For t ∈ [t0, b] :

|Af1(x1, x2)(t)−Af1(x1, x2)(t)| =

=
∣∣∣∣ ∫ t

t0
[f1(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))

−f1(s, x1(s), x2(s), x1(x1(s−τ1)), x2(x2(s−τ2)))]ds
∣∣∣∣

≤ Lf1(|x1(s)−x1(s)|+ |x2(s)−x2(s)|+ |x1(x1(s−τ1))−x1(x1(s−τ1))|
+ |x2(x2(s−τ2))− x2(x2(s−τ2))|)(b− t0)
≤ (b−t0)Lf1 [‖x1−x1‖C + ‖x2−x2‖C + |x1(x1(s−τ1))−x1(x1(s−τ1))|

+ |x1(x1(s−τ1))−x1(x1(s−τ1))|+ |x2(x2(s−τ2))−x2(x2(s−τ2))|
+|x2(x2(s−τ2))−x2(x2(s−τ2))|]≤(b−t0)Lf1 [‖x1−x1‖C+‖x2−x2‖C

+L1 ‖x1 − x1‖C + ‖x1 − x1‖C + L2 ‖x2 − x2‖C + ‖x2 − x2‖C ]
≤ (b− t0)Lf1(L+ 2)(‖x1 − x1‖C + ‖x2 − x2‖C).

In the same way

|Af2(x1, x2)(t)−Af2(x1, x2)(t)| ≤ (b− t0)Lf2(L+ 2)(‖x1 − x1‖+ ‖x2 − x2‖).

Then we have the following relation

‖Af (x1, x2)−Af (x1, x2)‖C ≤ (b− t0)(Lf1 +Lf2)(L+ 2) ‖(x1, x2)− (x1, x2)‖C

So Af is a c-Picard operator with c = 1
1−LAf

. �
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In what follows, consider the following operator

Bf : CL([t0−τ1, b], [t0−τ1, b])×CL([t0−τ2, b], [t0−τ2, b])→
CL([t0−τ1, b], [t0−τ1, b])×CL([t0−τ2, b], [t0−τ2, b]),

given by the relation

Bf (x1, x2) = (Bf1(x1, x2), Bf2(x1, x2)),

where Bf1(x1, x2) := the right hand side of (4a) and Bf2(x1, x2) := the right
hand side of (4b).

Theorem 3.2. In the conditions of Theorem 3.1, the operator Bf : CL([t0−
τ1, b], [t0 − τ1, b]) × CL([t0 − τ2, b], [t0 − τ2, b]) → CL([t0 − τ1, b], [t0 − τ1, b]) ×
CL([t0 − τ2, b], [t0 − τ2, b]) is WPO.

Proof. The operator Bf is a continuous operator but it is not a contraction
operator. Let take the following notation:

Xϕ1 := {x1 ∈ C([t0−τ1, b],[t0−τ1, b])| x1|[t0−τ1,t0] = ϕ1},
Xϕ2 := {x2 ∈ C([t0−τ2, b],[t0−τ2, b])| x2|[t0−τ2,t0] = ϕ2}.

Then we can write
(5)
CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b])=

⋃
ϕi∈CL([t0−τi,t0],[t0−τi,b])

Xϕ1×Xϕ2 .

We have that Xϕ1×Xϕ2 ∈ I(Bf ) and Bf |Xϕ1×Xϕ2
is a Picard operator be-

cause is the operator which appears in the proof of Theorem 3.1. By applying
Theorem 2.5, we obtain that Bf is WPO. �

4. INCREASING SOLUTION OF (??)

4.1. Inequalities of Chapligin type.

Theorem 4.1. We suppose that
(a) the conditions of the Theorem 3.1 are satisfied;
(b) (u1,u2, u3, u4),(v1,v2,v3,v4) ∈ ([t0 − τ1, b]× [t0 − τ2, b])2, uj ≤ vj , j = 1, 4,

imply that

fi(t, u1, u2, u3, u4) ≤ fi(t, v1, v2, v3, v4),

i = 1, 2, for all t ∈ [t0, b].
Let (x1, x2) be an increasing solution of the system (1.1) and (y1, y2) an

increasing solution for the system of inequalities

y′i(t) ≤ fi(t, y1(t), y2(t), y1(y1(t− τ1)), y2(y2(t− τ2))), t ∈ [t0, b],

Then

yi(t) ≤ xi(t), t ∈ [t0 − τi, t0], i = 1, 2⇒ (y1, y2) ≤ (x1, x2).
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Proof. In the terms of the operator Bf , we have

(x1, x2) = Bf (x1, x2) and (y1, y2) ≤ Bf (y1, y2).

However, from the condition (b), we have that the operator B∞f is increasing,

(y1, y2) ≤ B∞f (y1, y2) = B∞f (ỹ1|[t0−τ1,t0], ỹ2|[t0−τ2,t0])
≤ B∞f (x̃1|[t0−τ1,t0], x̃2|[t0−τ2,t0]) = (x1, x2).

Thus (y1, y2) ≤ (x1, x2).
Here, for (x̃1, x̃2) we used the notation x̃1 ∈ Xx1|[t0−τ1,t0] , x̃2 ∈ Xx1|[t0−τ2,t0] .

�

4.2. Comparison theorem. In the next result we want to study the
monotony of the solution of the problem (1.1)–(1.2) with respect to ϕi and
fi, i = 1, 2. We shall use the result below:

Lemma 4.2. (Abstract comparison lemma). Let (X, d,≤) be an ordered
metric space and A,B,C : X → X such that:

(i) A ≤ B ≤ C;
(ii) the operators A,B,C are WPO;
(iii) the operator B is increasing.
Then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

In this case we can establish the theorem.

Theorem 4.3. Let f ji ∈ C([t0, b] × ([t0−τ1, b] × [t0−τ2, b])2), i = 1, 2, j =
1, 2, 3.

We suppose that
(a) f2

i (t, ·, ·, ·, ·) : ([t0−τ1, b] × [t0−τ2, b])2→ ([t0−τ1, b] × [t0−τ2, b])2 are
increasing;

(b) f1
i ≤ f2

i ≤ f3
i .

Let (xj1, x
j
2) be an increasing solution of the systems

x′i(t)=f ji(t, x1(t), x2(t), x1(x1(t−τ1)), x2(x2(t−τ2))),t ∈ [t0,b], i = 1, 2,j = 1, 2, 3.

If x1
i (t) ≤ x2

i (t) ≤ x3
i (t), t ∈ [t0 − τi, t0] then x1

i ≤ x2
i ≤ x3

i , i = 1, 2.

Proof. The operators Bj
f , j = 1, 2, 3 are WPO. Taking into consideration

the condition (a) the operator B2
f is increasing. From (b) we have that B1

f ≤
B2
f ≤ B3

f . We note that (xj1, x
j
2) = Bj∞

f (x̃j1, x̃
j
2), j = 1, 2, 3. Now, using the

Abstract comparison lemma, the proof is complete. �
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5. DATA DEPENDENCE: CONTINUITY

Consider the Cauchy problem (1.1)–(1.2) and suppose the conditions of
Theorem 3.1 are satisfied. Denote by (x1, x2)(·;ϕ1, ϕ2, f1, f2), i = 1, 2 the
solution of this problem. We can state the following result:

Theorem 5.1. Let ϕj1, ϕ
j
2, f

j
1 , f

j
2 , j = 1, 2 be as in Theorem 3.1. We suppose

that there exists η1, η2, η3
i , i = 1, 2 such that

(i)
∣∣ϕ1

1(t)− ϕ2
1(t)

∣∣ ≤ η1, ∀t ∈ [t0 − τ1, t0] and
∣∣ϕ1

2(t)− ϕ2
2(t)

∣∣ ≤ η2, ∀t ∈
[t0 − τ2, t0];

(ii)
∣∣f1
i (t, u1, u2, u3, u4)− f2

i (t, v1, v2, v3, v4)
∣∣ ≤ η3

i , i = 1, 2, (u1, u2, u3, u4),
(v1, v2, v3, v4)∈([t0 − τ1, b]×[t0 − τ2, b])2.

Then∣∣∣(x1, x2)(t;ϕ1
1, ϕ

1
2, f

1
1 , f

1
2 )− (x1, x2)(t;ϕ2

1, ϕ
2
2, f

2
1 , f

2
2 )
∣∣∣≤ η1+η2+(η3

1+η3
2)(b−t0)

(b−t0)(Lf1+Lf2 )(L+2) ,

where Lfi = max(Lf1
i
, Lf2

i
), i = 1, 2.

Proof. Consider the operators A
ϕj1,ϕ

j
2,f

j
1 ,f

j
2
, j = 1, 2. From Theorem 3.1 these

operators are contractions.
Then∥∥∥Aϕ1

1,ϕ
1
2,f

1
1 ,f

1
2
(x1, x2)−Aϕ2

1,ϕ
2
2,f

2
1 ,f

2
2
(x1, x2)

∥∥∥
C
≤ η1 + η2 + (η3

1 + η3
2)(b− t0),

∀(x1, x2) ∈ CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b]).
Now the proof follows from Theorem 2.3, with A := Aϕ1

1,ϕ
1
2,f

1
1 ,f

1
2
, B =

Aϕ2
1,ϕ

2
2,f

2
1 ,f

2
2
, η = η1 + η2 + (η3

1 + η3
2)(b − t0) and α := LAf = (b − t0)(Lf1 +

Lf2)(L+ 2) where Lfi = max(Lf1
i
, Lf2

i
), i = 1, 2. �

From the Theorem above we have:

Theorem 5.2. Let f1
i and f2

i be as in Theorem 3.1, i = 1, 2. Let SB
f1
i

, SB
f2
i

be the solution set of the system (1.1) corresponding to f1
i and f2

i , i = 1, 2.
Suppose that there exists ηi > 0, i = 1, 2 such that

(6)
∣∣∣f1
i (t,u1,u2, u3, u4)−f2

i (t,v1,v2,v3,v4)
∣∣∣ ≤ ηi

for all t ∈ [t0, b], (u1,u2, u3, u4),(v1,v2,v3,v4)∈([t0 − τ1, b]×[t0 − τ2, b])2, i = 1, 2.
Then

H‖·‖C (SB
f1
i

, SB
f2
i

) ≤ (η1+η2)(b−t0)
1−(Lf1+Lf2 )(L+2)(b−t0) ,

where Lfi := max(Lf1
i
, Lf2

i
) and H‖·‖C denotes the Pompeiu-Housdorff func-

tional with respect to ‖·‖C on CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b]).

Proof. We will look for those c1 and c2 for which in condition of Theorem
3.1 the operators Bf1

i
and Bf2

i
, i = 1, 2 are c1-WPO and c2-WPO.
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Let
Xϕ1 := {x1 ∈ C([t0−τ1, b], [t0−τ1, b])| x1|[t0−τ1,t0] = ϕ1},
Xϕ2 := {x2 ∈ C([t0−τ2, b], [t0−τ2, b])| x2|[t0−τ2,t0] = ϕ2}.

It is clear that Bf1
i
|Xϕ1×Xϕ2

= Af1
i
, Bf2

i
|Xϕ1×Xϕ2

= Af2
i
. So from Theorem

2.5 and Theorem 3.1 we have∥∥∥B2
f1
i
(x1,x2)−Bf1

i
(x1,x2)

∥∥∥
C
≤ (b−t0)(Lf1

1
+Lf1

2
)(L+2)

∥∥∥Bf1
i
(x1,x2)−(x1,x2)

∥∥∥
C
,∥∥∥B2

f2
i
(x1,x2)−Bf2

i
(x1,x2)

∥∥∥
C
≤ (b−t0)(Lf2

1
+Lf2

2
)(L+2)

∥∥∥Bf2
i
(x1,x2)−(x1,x2)

∥∥∥
C
,

for all (x1, x2) ∈ CL([t0−τ1, b],[t0−τ1, b])×CL([t0−τ2, b],[t0−τ2, b]), i = 1, 2.
Now choosing

α1 = (b− t0)(Lf1
1

+ Lf1
2
)(L+ 2),

α2 = (b− t0)(Lf2
1

+ Lf2
2
)(L+ 2),

we get that Bf1
i

and Bf2
i

are c1-WPO and c2-WPO with c1 = (1−α1)−1, c2 =
(1− α2)−1. From (6) we obtain that∥∥∥Bf1

i
(x1, x2)−Bf2

i
(x1, x2)

∥∥∥
C
≤ (η1 + η2)(b− t0),

for all (x1, x2) ∈ CL([t0− τ1, b],[t0− τ1, b])×CL([t0− τ2, b],[t0− τ2, b]), i = 1, 2.
Applying Theorem 2.9 we have that

H‖·‖C (SB
f1
i

, SB
f2
i

) ≤ (η1+η2)(b−t0)
1−(b−t0)(Lf1+Lf2 )(L+2) ,

where Lfi := max(Lf1
i
, Lf2

i
) and H‖·‖C denotes the Pompeiu-Housdorff func-

tional with respect to ‖·‖C on CL([t0 − τ1, b], [t0−τ1, b])×CL([t0 − τ2, b], [t0 −
τ2, b]), i = 1, 2. �

6. DATA DEPENDENCE: DIFFERENTIABILITY

Consider the following Cauchy problem with parameter
(7) x′i(t) = fi(t, x1(t), x2(t), x1(x1(t−τ1)), x2(x2(t−τ2));λ), t ∈ [t0, b], i = 1, 2,

(8) xi(t) = ϕi(t), t ∈ [t0 − τi, t0], i = 1, 2.
Suppose that we have satisfied the following conditions:
(C1) t0 < b, τ1, τ2 > 0, τ1 < τ2, J ⊂ R a compact interval;
(C2) ϕi ∈ CL([t0 − τi, t0], [t0 − τi, b]), i = 1, 2;
(C3) fi ∈ C1([t0, b]× ([t0 − τ1, b]× [t0 − τ2, b])2 × J,R) i = 1, 2;
(C4) there exists Lfi > 0 such that∣∣∣∂fi(t,u1,u2,u3,u4;λ)

∂ui

∣∣∣ ≤ Lfi
for all t ∈ [t0, b], (u1,u2, u3, u4)∈([t0 − τ1, b]×[t0 − τ2, b])2, i = 1, 2, λ ∈ J ;

(C5) mfi and Mfi ∈ R, i = 1, 2 are such that
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(a) mfi ≤ fi(t, u1, u2, u3, u4) ≤Mfi , ∀t ∈ [t0, b], (u1, u2, u3, u4),
(v1, v2, v3, v4)∈([t0 − τ1, b]×[t0 − τ2, b])2,

(b)
t0 − τi ≤ ϕi(t0) +mfi(b− t0) for mfi < 0,
t0 − τi ≤ ϕi(t0) for mfi ≥ 0,
b ≥ ϕi(t0) for Mfi ≤ 0,
b ≥ ϕi(t0) +Mfi(b− t0) for Mfi > 0,

(c) L+Mfi < 1;
(C6) (b− t0)(Lf1 + Lf2)(L+ 2) < 1.
Then, from Theorem 3.1, we have that the problem (1.1)–(1.2) has a unique

solution (x∗1(·, λ), x∗2(·, λ)).
We will prove that

x∗i (·, λ) ∈ C1(J), for all t ∈ [t0 − τi, t0], i = 1, 2.
For this we consider the system

(9) x′i(t, λ) = fi(t, x1(t;λ), x2(t;λ), x1(x1(t−τ1;λ);λ), x2(x2(t−τ2;λ);λ);λ),
t ∈ [t0, b], λ ∈ J, xi ∈ C([t0 − τi, b] × J, [t0 − τi, b] × J) ∩ C1([t0, b] × J, [t0 −
τi, b]× J), i = 1, 2.

Theorem 6.1. Consider the problem (9)–(8), and suppose the conditions
(C1)–(C6) holds. Then,

(i) (9)–(8) has a unique solution (x∗1, x∗2), in C([t0−τ1, b]×J, [t0−τ1, b])×
C([t0 − τ2, b]× J, [t0 − τ2, b]);

(ii) x∗i (·, λ) ∈ C1(J), for all t ∈ [t0 − τi, t0], i = 1, 2.

Proof. The problem (9)–(8) is equivalent with the following functional in-
tegral equations
(10a)

x1(t;λ)=
{
ϕ1(t), t ∈ [t0 − τ1, t0]
ϕ1(t)+

∫ t
t0
f1(s,x1(s;λ),x2(s;λ),x1(x1(s−τ1;λ);λ),x2(x2(s−τ2;λ);λ);λ)ds, t∈ [t0,b]

(10b)

x2(t;λ)=
{
ϕ2(t), t ∈ [t0 − τ2, t0]
ϕ2(t)+

∫ t
t0
f2(s,x1(s;λ),x2(s;λ),x1(x1(s−τ1;λ);λ),x2(x2(s−τ2;λ);λ);λ)ds, t∈ [t0,b]

Now, let take the operator
A : CL([t0 − τ1, b]× J, [t0 − τ1, b]× J)×CL([t0 − τ2, b]× J, [t0 − τ2, b]× J)→

CL([t0 − τ1, b]× J, [t0 − τ1, b]× J)×CL([t0 − τ2, b]× J, [t0 − τ2, b]× J),
given by the relation

A(x1, x2) = (A1(x1, x2), A2(x1, x2)),
where A1(x1, x2)(t;λ) := the right hand side of (10a) and A2(x1, x2)(t;λ) :=
the right hand side of (10b).
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Let X = CL([t0 − τ1, b]× J, [t0 − τ1, b])× CL([t0 − τ2, b]× J, [t0 − τ2, b]).
It is clear from the proof of Theorem 3.1 that in the conditions (C1)–(C6)

the operator

A : (X, ‖·‖C)→ (X, ‖·‖C)

is a PO.
Let (x∗1, x∗2) be the unique fixed point of A.
We consider the subset X1 ⊂ X,

X1 := {(x1, x2) ∈ X| ∂x1
∂t ∈ [t0 − τ1, t0], ∂x2

∂t ∈ [t0 − τ2, t0]}.

We remark that (x∗1, x∗2) ∈ X1, A(X1) ⊂ X1 andA : (X1, ‖·‖C)→ (X1, ‖·‖C)
is PO.

Let Y := C([t0 − τ1, b]× J)× C([t0 − τ2, b]× J).
Supposing that there exists ∂x

∗
1

∂λ
and ∂x∗2

∂λ
, from (10a)–(10b) we have that

∂x∗i
∂λ

=
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ)
∂u1

· ∂x
∗
1(s,λ)
∂λ ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ)
∂u2

· ∂x
∗
2(s,λ)
∂λ ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ)
∂u3

·
[
∂x∗1(x∗1(s−τ1;λ);λ)

∂u1
· ∂x

∗
1(s−τ1;λ)
∂λ + ∂x∗1(x∗1(s−τ1;λ);λ)

∂λ

]
ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2;λ);λ);λ)
∂u4

·

·
[
∂x∗2(x∗2(s−τ1;λ);λ)

∂u2
· ∂x

∗
2(s−τ2;λ)
∂λ + ∂x∗2(x∗2(s−τ2;λ);λ)

∂λ

]
ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2;λ);λ);λ)
∂λ ds,

t ∈ [t0, b], λ ∈ J, i = 1, 2.
The relation suggest us to consider the following operator

C : X1 × Y → Y, (x1, x2, u, v)→ C(x1, x2, u, v),

where

C(x1, x2, u, v)(t;λ) = 0 for t ∈ [t0 − τi, t0], λ ∈ J, i = 1, 2
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and

C(x1, x2, u, v)(t;λ) :=

=
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ))
∂u1

u(s;λ)ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ)
∂u2

v(s;λ)ds

+
∫ t

t0

∂fi(s,x∗1(s;λ),x∗2(s;λ),x∗1(x∗1(s−τ1;λ);λ),x∗2(x∗2(s−τ2λ);λ);λ)
∂u3

·
[
∂x1(x1(s−τ1;λ);λ)

∂u1
· u(s− τ1;λ) + ∂x1(x1(s−τ1;λ);λ)

∂λ

]
ds

+
∫ t

t0

∂fi(s,x1(s;λ),x2(s;λ),x1(x1(s−τ1;λ);λ),x2(x2(sτ2;λ);λ);λ)
∂u4

·
[
∂x2(x2(s−τ2;λ);λ)

∂u2
· v(s− τ2;λ) + ∂x2(x2(s−τ2;λ);λ)

∂λ

]
ds

+
∫ t

t0

∂fi(s,x1(s;λ),x2(s;λ),x1(x1(s−τ1;λ);λ),x2(x2(s−τ2;λ);λ);λ)
∂λ

for t ∈ [t0, b], λ ∈ J, i = 1, 2.
In this way we have the triangular operator

D : X1 × Y → X1 × Y,
(x1, x2, u, v) → (A(x1, x2), C(x1, x2, u, v)),

where A is PO and C(x1, x2, ·, ·) : Y → Y is an LC-contraction with LC =
(b− t0)(L̃f1 + L̃f2)(L+ 2), where L̃fi = max{Lfi , L · Lfi}, i = 1, 2.

From the fibre contraction Theorem we have that the operator D is PO, i.e.
the sequences

(x1,n+1, x2,n+1) := A(x1,n, x2,n), n ∈ N,
(un+1, vn+1) := C(x1,n, x2,n, un, vn), n ∈ N,

converges uniformly, with respect to t ∈ X, λ ∈ J, to (x∗1, x∗2, u∗, v∗) ∈ FD, for
all (x1,0, x2,0) ∈ X1, (u0, v0) ∈ Y .

If we take

x1,0 = 0, x2,0 = 0, u0 = ∂x1,0
∂λ

= 0, v0 = ∂x2,0
∂λ

= 0,

then
u1 = ∂x1,1

∂λ , v1 = ∂x2,1
∂λ .

By induction we prove that

un = ∂x1,n
∂λ , ∀n ∈ N,

vn = ∂x2,n
∂λ , ∀n ∈ N.
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So
x1,n

unif→ x∗1 as n→∞,

x2,n
unif→ x∗2 as n→∞,

∂x1,n
∂λ

unif→ u∗ as n→∞,
∂x2,n
∂λ

unif→ v∗ as n→∞.

From a Weierstrass argument we have that there exists ∂x
∗
i

∂λ
, i = 1, 2 and

∂x∗1
∂λ = u∗, ∂x∗2

∂λ = v∗.
�
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