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A-STATISTICAL CONVERGENCE FOR A CLASS OF POSITIVE
LINEAR OPERATORS
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Abstract. In this paper, we introduce a sequence of positive linear operators
defined on the space C[0, a] (0 < a < 1), and provide an approximation theorem
for these operators via the concept of A-statistical convergence. We also compute
the rates of convergence of these approximation operators by means of the first
and second order modulus of continuity and the elements of the Lipschitz class.
Furthermore, by defining the generalization of r-th order of these operators we
show that the similar approximation properties are preserved on C[0, a].
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1. INTRODUCTION

The concept of a limit of a sequence has been extended to statistical limit
([15], [17], [18]) by using the natural density δ of a set K of positive integers:
δ(K) := limn

1
n{the number k ≤ n such that k ∈ K} whenever the limit exists

(for the natural density, see [27]). A sequence x = (xk) is said to be statis-
tically convergent to a number L if for every ε > 0, δ{k : |xk − L| ≥ ε} = 0
and it is denoted by st − limk xk = L. Let A = (ajn), j, n = 1, 2, ..., be an
infinite summability matrix. The A-transform of the sequence x, denoted by
Ax := {(Ax)j}, is given by (Ax)j :=

∑∞
n=1 ajnxn provided the series converges

for each j. A is said to be regular if limj(Ax)j = L whenever limj xj = L [4].
Assume that A is a nonnegative regular summability matrix. The A-density
of K, denoted by δA(K), is defined by δA(K) := limj

∑∞
n=1 ajnχK(n) provided

the limit exists, where χK is the characteristic function of K. Then, x = (xn)
is said to be A-statistically convergent to a number L if, for every ε > 0,
δA{n ∈ N : |xn − L| ≥ ε} = 0; or equivalently limj

∑
n: |xn−L|≥ε ajn = 0. We

denote this limit by stA − lim x = L (see [16], [19], [23], [26]). The case in
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which A = C1, the Cesáro matrix of order one, reduces to the statistical con-
vergence, and also if A = I, the identity matrix, then it coincides with the
ordinary convergence. We note that if A = (ajn) is a nonnegative regular
summability matrix such that limj maxn{ajn} = 0, then A-statistical conver-
gence is stronger than convergence [23].

Chlodovsky [9] was the first to notice that the Bernstein polynomials,

Bn(f ;x) =
n∑
k=0

(n
k

)
xk(1− x)n−kf( kn),

converge to middle of jump at the point of simple discontinuity of a function.
That is, if x is a point of discontinuity of first kind, then

lim
n
Bn(f ;x) = f(x+)+f(x−)

2 =: f(x).

But this phenomenon does not always take place for general positive linear
approximation operators. An example was given by Bojanic and Cheng in [5]
where they showed that the Hermit-Fejer interpolation operator,

Hn(f ;x) =
n∑
k=1

f(xn,k)(1− xxn,k)
{

Tn(x)
n(x−xn,k)

}2
,

where the nodes xn,k = cos( (2k−1)π
2n ) are the zeros of Chebyshev polynomials

Tn(x) = cos(n cos−1 x), does not converge at a point of simple discontinuity.
However, Bojanic and Khan [6] showed that the Cesáro averages of the Hermit-
Fejer operator, 1

n

∑n
k=1Hk(f ;x), do converge to the mid point of the jump

discontinuity. So, it shows that this summability method is stronger than the
classical sense in approximation theory. In recent years another form of regular
summability transformation has shown to be quite effective in “summing” non-
convergent sequences which may have unbounded subsequences (see [16], [17]).
Furthermore, some Korovkin type approximation theorems have been studied
via statistical convergence and A-statistical convergence in [11], [12], [13], [20].

The aim of the present paper is to provide an A-statistical approximation
theorem for Agratini type operators [1]. Note that Agratini’s operators are a
Stancu type generalization (see [29]) of the operators in [10]. We also give the
rates of A-statistical convergence of these operators by means of the first and
second order modulus of continuity and the elements of the Lipschitz class.

2. STATISTICAL APPROXIMATION OF POSITIVE OPERATORS

In this section, we give a generalization of Agratini’s operators [1] and obtain
an approximation theorem for these operators by using A-statistical conver-
gence.
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Let A = (ajn) be a nonnegative regular summability matrix and let (αn),
(βk) and (γn,k) be real sequences satisfying the following conditions, respec-
tively:

(2.1) αn ≥ 1 (for any n ∈ N) and stA − lim
n
αn = 1,

(2.2) 0 ≤ βk ≤ βk+1 (k = 0, 1, 2, ...),

(2.3) 0 ≤ γn,k ≤ c
n (for some c > 0 and any n ∈ N, k = 0, 1, 2, ...).

Let (ρn,k) be a sequence of positive integers such that

(2.4) max{k, n} ≤ ρn,k ≤ ρn,k+1 (for any n ∈ N and k = 0, 1, 2, ...).

Assume now that a sequence of functions (ϕn) has the following properties:
(1◦) Let a ∈ (0, 1). Every function ϕn is analytic on a domain containing

the disk {z ∈ C : |z| ≤ a},
(2◦) ϕ(0)

n (0) = ϕn(0) > 0 (for every n ∈ N),
(3◦) ϕ(k)

n (0) = αn(ρn,k + βk)(1 + γn,k)ϕ
(k−1)
n (0) (for every k, n ∈ N),

where ϕ(k)
n (0) denotes dk

dxk
ϕn(0) (for every k, n ∈ N), and also the sequences

(αn), (βk), (γn,k) and (ρn,k) satisfy the conditions (2.1), (2.2), (2.3) and (2.4),
respectively.

We now introduce the sequence of operators Ωn on C[0, a], the space of all
continuous functions on [0, a], by

(2.5) Ωn(f ;x) = 1
ϕn(x)

∞∑
k=0

f
(

k
ρn,k+βk

)
ϕ(k)
n (0)xk

k! , (f ∈ C[0, a], n ∈ N).

Now we analyze our operators Ωn and give their applications in approxima-
tion theory settings. To obtain that we first assume

mn,k(x) =
(n+k
k

)
xk(1− x)n+1.

If we choose βk = 1, ρn,k = n+k, ϕn(x) = (1−x)−n−1, then our operators Ωn

given by (2.5) turn out to be unmodified Meyer-König and Zeller Operators
[25]

Mn(f ;x) =
∞∑
k=0

mn,k(x)f
(

k
k+n+1

)
.

Choosing βk = 0, ρn,k = n + k, ϕn(x) = (1 − x)−n−1, then the operators Ωn

reduce to Cheney and Sharma’s operators [8]

Sn(f ;x) =
∞∑
k=0

mn,k(x)f
(

k
k+n

)
.
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Taking βk = 1, ρn,k = n + k, ϕn(x) = (1 − x)−n−1 exp
(
tx
x−1

)
for t ≤ 0, then

the operators Ωn coincide with the operators of Khan [21]

Kn(f ;x) = (1− x)n+1 exp
(
tx

1−x
) ∞∑
k=0

Lnk(t)xkf
(

k
k+n+1

)
,

where Lnk(t) denotes the Laguerre polynomial of degree k defined by

Lnk(t) =
k∑
r=0

(−1)r Γ(k+n+1)
(k+r)!Γ(n+r+1)r! t

r.

We should note that choosing ρn,k = k+n in (2.4) and replacing the matrix
A by the identity matrix I conditions (2.1)-(2.4) reduce to all those in [1].

It is easy to see that each Ωn is positive and linear, and also Ωn(1;x) = 1
(for every n ∈ N) holds.

Throughout the paper we denote the usual norm of the space C[0, a] by ‖·‖ ,
i.e.,

‖f‖ = sup
x∈[0,a]

|f(x)| , (f ∈ C[0, a]).

To construct our A-statistical approximation theorem for the sequence {Ωn}
we need the following two lemmas whose proofs can immediately be obtained
with the similar methods used in [11] and [14].

Lemma 2.1. Let A = (ajn) be a nonnegative regular summability matrix.
Then we have

stA − lim
n
‖Ωn(t;x)− x‖ = 0,

where ‖ . ‖C[0,a] denotes the ordinary sup norm on the space C[0, a].

Lemma 2.2. Let A = (ajn) be a nonnegative regular summability matrix.
Then we have

stA − lim
n

∥∥∥Ωn(t2;x)− x2
∥∥∥ = 0.

Combining Lemmas 2.1 and 2.2 we have the following main result.

Theorem 2.3. Let A = (ajn) be a nonnegative regular summability matrix.
Then, for all f ∈ C[0, a], we have

stA − lim
n
‖Ωn(f ;x)− f(x)‖ = 0.

Proof. By Lemmas 2.1 and 2.2, we immediately get

stA − lim
n

∥∥∥Ωn(ti;x)− xi
∥∥∥ = 0, i = 0, 1, 2.

So, the result follows from Theorem 1 in [20], (see also [12]). We note that
Theorem 1 in [20] is given for statistical convergence, but the proof also works
for A-statistical convergence. �

When the matrix A is replaced by the identity matrix I in Theorem 2.3,
then the following result holds at once.
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Corollary 2.4. For all f ∈ C[0, a], the sequence {Ωn(f)} converges uni-
formly to f on [0, a].

The following example shows that A-statistical approximation in Theorem
2.3 is stronger than ordinary norm-wise convergence in Corollary 2.4.

Let A = C1 = (cjn), the Cesáro matrix of order one, defined by

cjn =
{ 1

n ; if n ≤ j
0; otherwise.

Then C1-statistical convergence is known as statistical convergence [15]. As-
sume that (un) is defined by

un =
{

0; if n is a square
1; if n is a nonsquare.

Observe that (un) is non-convergent, but it is statistically convergent to 1, i.e.,
st− limn un = 1. Let {Ωn} be the sequence of positive linear operators given
(2.5). Now define the operators Ω∗n by

Ω∗n(f ;x) := unΩn(f ;x), f ∈ C[0, a], 0 < a < 1.

Then we may write, for all f ∈ C[0, a], that

Ω∗n(f ;x)− f(x) = unΩn(f ;x)− f(x) + unf(x)− unf(x)
= un (Ωn(f ;x)− f(x)) + f(x) (un − 1)

and hence

(2.6) ‖Ω∗n(f ;x)− f(x)‖ ≤ ‖Ωn(f ;x)− f(x)‖+ C |un − 1| .

Since, for all f ∈ C[0, a], the sequence {Ωn(f)} converges uniformly to f and
also (un) converges statistically to 1, it follows from (2.6) that

st− lim
n
‖Ω∗n(f ;x)− f(x)‖ = 0.

Hence Theorem 2.3 holds for the operators Ω∗n. However, since (un) is non-
convergent, the sequence {Ω∗n(f)} is not uniformly convergent to f, which does
not satisfy Corollary 2.4.

Before closing this section, we should remark that choosing ρn,k = n + k
and replacing (2.2) by the condition 0 ≤ βk ≤ 1 + βk+1 Theorem 2.3 reduces
to Theorem 3 of [11].

3. RATES OF A-STATISTICAL CONVERGENCE

In this section, we compute the rates of A-statistical convergence in Theo-
rem 2.3 by means of the first and second order modulus of continuity and the
elements of the Lipschitz class.

Let f ∈ C[0, a]. The first order modulus of continuity of f, denoted by
w(f, δ), is defined to be
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w(f, δ) = sup
|t−x|<δ, t,x∈[0,a]

|f(t)− f(x)|

(see [2], [24] for details).
It is well known that for any δ > 0 and each t, x ∈ [0, a]

(3.1) |f(t)− f(x)| ≤ w(f, δ)
(
|t−x|
δ + 1

)
.

The next result gives the rate of A-statistical convergence of the sequence
{Ωn(f)} (for all f ∈ C[0, a]) in Theorem 2.3 by means of first order modulus
of continuity.

Theorem 3.1. For all f ∈ C[0, a], we have

‖Ωn(f ;x)− f(x)‖ ≤ (1 +B
1/2
3 )w(f, δn),

where

(3.2)
B3 = max{a, ac, 2a2, 2a2c, a2c2},
δn =

{
(αn − 1)(αn + 2) + αn(αn+1)

n2 + αn(αn+2)
n

}1/2
.

Proof. We will use Popoviciu’s technique given in [28]. Let f ∈ C[0, a]. By
linearity and monotonicity of Ωn we obtain

|Ωn(f ;x)− f(x)| = |Ωn(f(t)− f(x);x)|
≤ Ωn(|f(t)− f(x)| ;x)

= 1
ϕn(x)

∞∑
k=0

∣∣∣f ( k
ρn,k+βk

)
− f(x)

∣∣∣ϕ(k)
n (0)xk

k! .

By (3.1) and the Cauchy-Bunyakowsky-Schwarz inequality we have

|Ωn(f ;x)− f(x)| ≤ w(f,δn)
ϕn(x)

∞∑
k=0

(
1
δn

∣∣∣ k
ρn,k+βk

− x
∣∣∣+ 1

)
ϕ(k)
n (0)xk

k!

= w(f, δn)
{

1
δnϕn(x)

∞∑
k=0

∣∣∣ k
ρn,k+βk

− x
∣∣∣ϕ(k)

n (0)xk

k! + 1
}

≤ w(f, δn)

×

 1
δn

[
1

ϕn(x)

∞∑
k=0

(
k

ρn,k+βk
− x

)2
ϕ(k)
n (0)xk

k!

]1/2

+ 1


= w(f, δn)

[
1
δn

(An(x))1/2 + 1
]
,

where

(3.3) An(x) = 1
ϕn(x)

∞∑
k=0

(
k

ρn,k+βk
− x

)2
ϕ(k)
n (0)xk

k! .
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This implies that

(3.4) ‖Ωn(f ;x)− f(x)‖ ≤ w(f, δn)

 1
δn

(
sup
x∈[0,a]

An(x)
)1/2

+ 1

 .
For each x ∈ [0, a], one can write

An(x) = Ωn(t2;x)− 2xΩn(t;x) + x2

≤
∣∣∣Ωn(t2;x)− x2

∣∣∣+ 2x |Ωn(t;x)− x| .

So, by (2.9) and (2.12) we get
(3.5)

sup
x∈[0,a]

An(x) ≤
∥∥Ωn(t2;x)− x2∥∥

C[0,a] + 2a ‖Ωn(t;x)− x‖C[0,a]

≤ B2
{
α2
n − 1 + αn(αn+1)

n2 +αn(αn+1)
n

}
+ 2aB1

{
αn − 1 + αn

n

}
≤ B3

{
(αn − 1)(αn + 2) + αn(αn+1)

n2 +αn(αn+2)
n

}
= B3δ

2
n,

where B3 = max{2aB1, B2} = max{a, ac, 2a2, 2a2c, a2c2}. Combining (3.5)
with (3.4) we can write

‖Ωn(f ;x)− f(x)‖ ≤ (1 +B3
1/2)w(f, δn),

whence the result. �

Let f ∈ C[0, a]. Then the second order modulus of continuity of f denoted
by w2(f, δ) is defined as

w2(f, δ) = sup {|f(x+ h)− 2f(x) + f(x− h)| : (x∓ h) ∈ [0, 1], |h| ≤ δ}

This modulus is also known as Zygmund’s modulus for the function f.
In order to estimate this order of approximation via second modulus of

continuity we will benefit the Peetre’s K-functional.
Now we denote the space of the functions f such that f, f ′, f ′′ ∈ C[0, a] by

C2[0, a] and define the following norm in the space C2[0, a] by

‖f‖C2[0,a] := ‖f‖+
∥∥f ′∥∥+

∥∥f ′′∥∥ .
Then the following Peetre’s K-functional [3] (see also [7]) is given by

(3.6) K (f, δ) = inf
g∈C2[0,a]

{‖f − g‖+ δ ‖g‖C2[0,a]}.

Theorem 3.2. If f ∈ C[0, a] then we have

(3.7) ‖ Ωn(f ;x)− f(x) ‖≤ 2K
(
f,
(√

B3δn
)2)

where B3 and δn are the same as in (3.2).
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Proof. If g ∈ C2[0, a] then we have

(3.8) g(s)− g(x) = g′(x)(s− x) +
∫ s

x
g′′(u)(s− u)du.

Applying the operator Ωn to the (3.8) we get

(3.9) |Ωn(g;x)− g(x)| ≤
{
|Ωn((t− x);x)|+ 1

2Ωn((t− x)2;x)
}
‖g‖C2[0,a] .

On the other hand, since Ωn is a linear operator, we have

|Ωn(f ;x)− f(x)| ≤ |Ωn(f − g;x)|+ |f(x)− g(x)|+ |Ωn(g;x)− g(x)| .

Thus, by using Ωn(1;x) ≡ 1 and (3.9), we can write

(3.10)
‖Ωn(f ;x)− f(x)‖ ≤ 2 ‖f − g‖+ {‖Ωn((t− x);x)‖

+ 1
2
∥∥Ωn((t− x)2;x)

∥∥} ‖g‖C2[0,a] .

After some simple calculations, using (3.4) in (3.10) we can write

(3.11)
‖Ωn(f ;x)− f(x)‖ ≤ 2 ‖f − g‖+ 2B3 {(αn − 1)(αn + 2)

+ αn(αn+1)
n2 + αn(αn+2)

n

}
‖g‖ .

By taking infimum over g ∈ C2 [0, a] on the both sides of (3.11), we obtain
(3.7). �

The following theorem estimates the rate of convergence of the sequence
{Ωn} to the function f via Zygmund modulus.

Theorem 3.3. If f ∈ C [0, a] then for each 0 ≤
(√
B3δn

)2 ≤ 1,we have

(3.12) ‖Ωn(f ;x)− f(x)‖ ≤ Cf max
{
w2
(
f,
√
B3δn

)
,
(√

B3δn
)2}

where B3 and δn are the same as in (3.2).

Proof. By using the inequality (see Proposition 3.4.1 of [7])

K(f, δ) ≤ C1
(
w2
(
f,
√
δ
)

+ min {1, δ} ‖f‖
)

in (3.7) for δ =
(√
B3δn

)2
, we have

(3.13) ‖Ωn(f ;x)− f(x)‖ ≤ 2C1
(
w2
(
f,
√
B3δn

)
+
(√

B3δn
)2 ‖f‖) .

If
(√
B3δn

)2 ≤ w2(f,
√
B3δn) then from (3.13), we have

(3.14) ‖Ωn(f ;x)− f(x)‖ ≤ 2C1 (1 + ‖f‖)w2
(
f,
√
B3δn

)
else if w2(f,

√
B3δn) <

(√
B3δn

)2 then from (3.13),we have

(3.15) ‖Ωn(f ;x)− f(x)‖ ≤ 2C1 (1 + ‖f‖)
(√

B3δn
)2

by choosing Cf := 2C1 (1 + ‖f‖) in (3.14) and (3.15), we get (3.12). �
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We will now study the rate of A-statistical convergence of the positive linear
operators Ωn by means of the elements of the Lipschitz class LipM (α), where
M > 0 and 0 < α ≤ 1.

We recall that a function f ∈ C[0, a] belongs to LipM (α) if the inequality

|f(t)− f(x)| ≤M |t− x|α , (t, x ∈ [0, a], 0 < α ≤ 1)

holds.

Theorem 3.4. For all f ∈ LipM (α), we have

‖Ωn(f ;x)− f(x)‖ ≤MB
α/2
3 δαn ,

where B3 and δn are the same as in (3.2).

Proof. Let f ∈ LipM (α) and 0 < α ≤ 1. By linearity and monotonicity of
Ωn we have

|Ωn(f ;x)− f(x)| ≤ Ωn(|(f(t)− f(x)| ;x)

= 1
ϕn(x)

∞∑
k=0

∣∣∣f ( k
ρn,k+βk

)
− f(x)

∣∣∣ϕ(k)
n (0)xk

k!

≤ M
ϕn(x)

∞∑
k=0

∣∣∣ k
ρn,k+βk

− x
∣∣∣α ϕ(k)

n (0)xk

k! .

Applying the Hölder inequality with p = 2
α
, q = 2

2− α we get

|Ωn(f ;x)− f(x)| ≤M
[

1
ϕn(x)

∞∑
k=0

(
k

ρn,k+βk
− x

)2
ϕ(k)
n (0)xk

k!

]α
2

×
[

1
ϕn(x)

∞∑
k=0

ϕ(k)
n (0)xk

k!

]2−α
2

= M(An(x))α/2,

where An(x) is given by (3.3). Combining this with (3.5) that

‖Ωn(f ;x)− f(x)‖ ≤MB
α/2
3 δαn

whence the result. �

4. A GENERALIZATION OF r-TH ORDER OF THE OPERATORS ΩN

By C [r][0, a] (0 < a < 1, r = 0, 1, 2, ...) we denote the set of the functions
f having the continuous r-th derivative f (r) (f (0)(x) = f(x)) on the segment
[0, a] (see [22], and also [10]).
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We consider the following generalization of the positive linear operators Ωn

defined by (2.5)

(4.1) Ωn,r(f ;x) = 1
ϕn(x)

∞∑
k=0

r∑
i=0

f (i)
(

k
ρn,k+βk

) (
x− k

ρn,k+βk

)i 1
i!ϕ

(k)
n (0)xk

k! ,

where f ∈ C [r][0, a], r = 0, 1, 2, ..., and n ∈ N. We call the operators (4.1) the
r-th order of the operators Ωn (see, for instance, [10], [22]). Note that taking
r = 0 we get the sequence {Ωn} defined by (2.5).

Now we have the following

Theorem 4.1. For all f ∈ C [r][0, a] such that f (r) ∈ LipM (α), we get

(4.2) ‖Ωn,r(f ;x)− f(x)‖ ≤ M
(r−1)!

α
α+rB(α, r)

∥∥∥Ωn(|t− x|r+α ;x)
∥∥∥ ,

where B(α, r) is the beta function and r, n ∈ N.

Proof. By (4.1) we get

(4.3)
f(x)− Ωn,r(f ;x) =

[
f(x)−

r∑
i=0

f (i)
(

k
ρn,k+βk

) (
x− k

ρn,k+βk

)i 1
i!

]
×ϕ(k)

n (0)x
k

k! .

It is known from Taylor’s formula that

(4.4)

f(x)−
r∑
i=0

f (i)
(

k
ρn,k+βk

) (
x− k

ρn,k+βk

)i 1
i! =

= 1
(r−1)!

(
x− k

ρn,k+βk

)r ∫ 1
0 (1− t)r−1

{
f (r)

(
k

ρn,k+βk

+t
(
x− k

ρn,k+βk

))
−f (r)

(
k

ρn,k+βk

)}
dt.

Because of f (r) ∈ LipM (α) one can get

(4.5)

∣∣∣f (r)
(

k
ρn,k+βk

+ t
(
x− k

ρn,k+βk

))
− f (r)

(
k

ρn,k+βk

)∣∣∣ ≤
≤Mtα

∣∣∣x− k
ρn,k+βk

∣∣∣α .
From the well known expression of the beta function we can write

(4.6)
∫ 1

0
(1− t)r−1tαdt = B(1 + α, r) = α

α+rB(α, r).

Now by using (4.5) and (4.6) in (4.4) we conclude that

(4.7)

∣∣∣∣f(x)−
r∑
i=0

f (i)
(

k
ρn,k+βk

) (
x− k

ρn,k+βk

)i 1
i!

∣∣∣∣ ≤
≤ M

(r−1)!
α
α+rB(α, r)

∣∣∣x− k
ρn,k+βk

∣∣∣r+α .
Taking into consideration (4.3) and (4.7) we have (4.2). �
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Now consider the function g ∈ C[0, a] defined by

(4.8) g(t) = |t− x|r+α

Since g(x) = 0, Theorem 2.3 yields
stA − lim

n
‖Ωn(g;x)‖ = 0.

So, it follows from Theorem 4.1 that, for all f ∈ C [r][0, a] such that f (r) ∈
LipM (α), we have

stA − lim
n
‖Ωn,r(f ;x)− f(x)‖ = 0.

Finally, taking into consideration Theorems 3.1 one can deduce the following
result from Theorem 4.1 immediately.

Corollary 4.2. For all f ∈ C [r][0, a] such that f (r) ∈ LipM (α), we have

‖Ωn,r(f ;x)− f(x)‖ ≤ M
(r−1)!

α
α+rB(α, r)(1 +B

1/2
3 )w(g, δn),

where B3 and δn are the same as in (3.2) and g is defined by (4.8).

The last result gives us the rate of A-statistical convergence of the sequence
{Ωn,r(f)} by means of the modulus of continuity and the elements of the
Lipschitz class LipM (α), respectively.
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