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1. NOTATIONS AND NOTIONS

Throughout this paper, the standard notations and terminologies in non-
linear analysis are used. For the convenience of the reader we recall some of
them.

Let (X, d) be a metric space and f : X → X an operator. By Fixf := {x ∈
X| x = f(x)} we will denote the fixed point set of the operator f .

The following concept was introduced by I.A. Rus (see [7]).

Definition 1. Let (X,→) be an L-space. An operator f : X → X is, by
definition, a Picard operator if:

(i) Fix f = {x∗};
(ii) fn(x)→ x∗, as n→∞, for all x ∈ X.

We will also use the following symbols:
P(X) := {Y |Y ⊂ X} , P (X) := {Y ⊂ X| Y is nonempty},
Pcl(X) := {Y ∈ P (X)| Y is closed}, Pcv(X) := {Y ∈ P (X)| Y is convex }

(for a normed space X).
Let A and B be nonempty subsets of the metric space (X, d). The gap

between these sets is

D(A,B) = inf{d(a, b)| a ∈ A, b ∈ B}.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the distance
from the point x0 to the set B.

The Pompeiu-Hausdorff generalized distance between the nonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:

H(A,B) := max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.
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It is well-known that if (X, d) is a complete metric space, then the pair
(Pcl(X), H) is a (generalized) complete metric space.

The symbol T : X ( Y means T : X → P (Y ), i. e. T is a multi-valued
operator from X to Y . We will denote by Graf(T ) := {(x, y) ∈ X × Y |y ∈
T (x)} the graph of T . Recall that the multi-valued operator is called closed
if Graf(T ) is closed in X × Y .

For T : X → P (X) the symbol Fix T := {x ∈ X| x ∈ T (x)} denotes the
fixed point set of the multi-valued operator T .

A sequence of successive approximations of T starting from x ∈ X is a
sequence (xn)n∈N of elements of X with x0 = x, xn+1 ∈ T (xn), for n ∈ N.

2. THE SINGLE-VALUED CASE

Let ϕ : R+ → R+. Then ϕ is said to be a comparison function (see [6]) if
it is increasing and ϕk(t) → 0, as k → +∞. As consequence, we also have
ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is continuous in 0.

In particular, ϕ(t) = at, (where a ∈ [0, 1[), ϕ(t) = t
1+t , and ϕ(t) = ln(1 + t),

t ∈ R+ are examples of comparison functions.
Also, a function ϕ : R+ → R+ is said to be a strict comparison function

(see [6]) if it is strictly increasing and
∑∞

n=1 ϕ
n(t) < +∞, for each t > 0.

The following auxiliary result is known (see Dugundji-Granas [3]).

Lemma 2. Let (X, d) be a complete metric space and f : X → X. Assume:
i) for each ε > 0 there is δ(ε) > 0 such that if d(x, f(x)) < δ, then
f(B(x; ε) ⊂ B(x; ε);

ii) lim
n→+∞

d(fn−1(x0), fn(x0)) = 0, for some x0 ∈ X.

Then the sequence (fn(x0))n∈N converges to a fixed point for f .

We start this section with a straightforward modified version of a well-known
result (J. Matkowski see [3] pp. 15 and I. A. Rus [6]).

Theorem 3. Let (X, d) be a complete metric space and f : X → X such
that d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X, where ϕ : R+ → R+ satisfies
the following assumptions:

i) ϕ is increasing and upper semi-continuous;
ii) the function ψ : R+ → R+, ψ(t) := t−ϕ(t), is strictly increasing and

lim
t→∞

ψ(t) =∞.

Then:
a) the operator f is Picard (denote by x∗f the unique fixed point);
b) if g : X → X is an operator having at least a fixed point x∗g ∈ X and

there exists η > 0 such that d(f(x), g(x)) ≤ η, for each x ∈ X, then
d(x∗f , x∗g) ≤ ψ−1(η).
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Proof. Let x0 ∈ X be arbitrary. Denote dn := d(fn−1(x0), fn(x0)), n ∈ Nn.
Then dn ≤ ϕ(dn−1) ≤ dn−1, n ∈ Nn. Hence the sequence (dn)n∈Nn converges
to a certain element d ∈ R+.

Suppose d > 0. Then ψ(d) > ψ(0) = 0. So d > ϕ(d). On the other hand,
since dn ≤ ϕ(dn−1) and using the upper semi-continuity of ϕ, we get that
d ≤ lim sup

n→+∞
ϕ(dn−1) ≤ ϕ(d). The contradiction proves that d = 0. Hence

lim
n→+∞

d(fn−1(x0), fn(x0)) = 0, for each x0 ∈ X (This property is usually
called the asymptotic regularity of f).

Let ε > 0 and define δ(ε) := ε − ϕ(ε). Suppose d(x, f(x)) < δ and let
z ∈ B(x; ε). We have:
d(f(z), x) ≤ d(f(z), f(x)) + d(f(x), x) ≤ ϕ(d(x, z)) + δ ≤ ε. The conclusion
follows from Lemma 2.

For the second conclusion observe that
d(x∗f , x∗g) ≤ d(f(x∗f ), f(x∗g)) + d(f(x∗g), g(x∗g)) ≤ ϕ(d(x∗f , x∗g)) + η. Hence

d(x∗f , x∗g) ≤ ψ−1(η). �
As an application of the above result we can prove the following

Theorem 4. Consider the integral equation:

(1) x(t) =
∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b].

Suppose:
i) K : [a, b]× [a, b]× Rn → Rn and g : [a, b]→ Rn are continuous;
ii) there exist a continuous function p : [a, b]×[a, b]→ R+ and an increas-

ing function ϕ : R+ → R+ such that ψ : R+ → R+, ψ(t) := t− ϕ(t) is
strictly increasing and lim

t→∞
ψ(t) =∞, such that

‖K(t, s, u)−K(t, s, v)‖ ≤ p(t, s)ϕ(‖u− v‖), for each t, s ∈ [a, b], u, v ∈ Rn.

iii) sup
t∈[a,b]

∫ b

a
p(t, s)ds ≤ 1.

Then:
a) the integral equation (1) has an unique solution x∗ in C([a, b],Rn);
b) if

(2) y(t) =
∫ b

a
L(t, s, y(s))ds+ h(t), t ∈ [a, b]

is another integral equation having at least one solution y∗ ∈ C([a, b],Rn)
and there are η1, η2 > 0 such that ‖K(t, s, u) − L(t, s, u)‖ ≤ η1 and
‖g(t) − h(t)‖ ≤ η2, for each t, s ∈ [a, b] and u ∈ C([a, b],Rn), then
‖x∗ − y∗‖ ≤ ψ−1(η1 · (b− a) + η2).

Proof. Define A : C([a, b],Rn)→ C([a, b],Rn), by the formula

Ax(t) :=
∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b].
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Observe that ‖Ax(t)−Ay(t)‖ ≤
∫ b

a ‖[K(t, s, x(s))−K(t, s, y(s))]‖ds ≤∫ b
a p(t, s)‖ϕ(‖x(s)− y(s)‖)ds ≤ ϕ(‖x− y‖C)

∫ b
a p(t, s)ds. Thus

‖Ax−Ay‖C ≤ ϕ(‖x− y‖C), for each x, y ∈ C([a, b],Rn)
(here ‖·‖C stands for the sup-norm in C([a, b],Rn). The first conclusion follows
from Theorem 3.

For the second conclusion, consider B : C([a, b],Rn) → C([a, b],Rn), given
by the formula

Bx(t) :=
∫ b

a
L(t, s, x(s))ds+ h(t), t ∈ [a, b].

Then ‖Ax(t)− Bx(t)‖ ≤
∫ b

a ‖K(t, s, x(s))− L(t, s, x(s))‖ds+ ‖g(t)− h(t)‖ ≤
η1 · (b− a) + η2, for each t ∈ [a, b]. Hence ‖Ax−Bx‖C ≤ η1 · (b− a) + η2.

Then from the second conclusion of Theorem 3 we conclude ‖x∗ − y∗‖C ≤
ψ−1(η1 · (b− a) + η2). �

Example 1. If g ∈ C[a, b], then the integral equation

x(t) =
∫ b

a
s · x(s)

1 + x(s)ds+ g(t), for each t ∈ [a, b]

has a unique solution in C[a, b]. The conclusion follows by an application of
Theorem 4 with ϕ(t) = t

1+t .

Example 2. If g ∈ C[a, b], then the integral equation

x(t) =
∫ b

a
ln(1 + x(s))ds+ g(t), for each t ∈ [a, b]

has a unique solution in C[a, b]. The conclusion follows by an application of
Theorem 4 with ϕ(t) = ln(1 + t).

3. THE MULTI-VALUED CASE

The following result is known in the literature as Wegrzyk’s theorem (see
[10].

Theorem 5. Let (X, d) be a complete metric space and T : X → Pcl(X)
be such that H(T (x), T (y)) ≤ ϕ(d(x, y)), for each x, y ∈ X. Assume that
ϕ : R+ → R+ is a strict comparison function. Then Fix T is nonempty and
for any x0 ∈ X there exists a sequence of successive approximations of T
starting from x0 which converges to a fixed point of T .

As an application, let us consider the following integral inclusion:

(3) x(t) ∈
∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b].

Theorem 6. Let K : [a, b] × [a, b] × Rn → Pcl,cv(Rn) and g : [a, b] → Rn

such that:
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(a) there exists an integrable function M : [a, b]→ R+ such that for each
t ∈ [a, b] and u ∈ Rn we have K(t, s, u) ⊂M(s)B(0; 1), a.e. s ∈ [a, b];

(b) for each u ∈ Rn K(·, ·, u) : [a, b] × [a, b] → Pcl,cv(Rn) is jointly mea-
surable;

(c) for each (s, u) ∈ [a, b] × Rn K(·, s, u) : [a, b] → Pcl,cv(Rn) is lower
semi-continuous;

(d) there is a strict comparison function ϕ : R+ → R+ such that for each
(t, s) ∈ [a, b]× [a, b] and each u, v ∈ Rn we have that

H(K(t, s, u),K(t, s, v)) ≤ p(t, s) · ϕ(‖u− v‖)

where p : [a, b]× [a, b]→ R+ is a continuous function and

sup
t∈[a,b]

∫ b

a
p(t, s)ds ≤ 1;

(e) g is continuous.
Then there exists at least one solution for the integral inclusion (3).

Proof. Define the multi-valued operator T : C([a, b],Rn)→ P(C([a, b],Rn))
by

T (x) :=
{
v ∈ C([a, b],Rn)| v(t) ∈

∫ b

a
K(t, s, x(s))ds+ g(t), t ∈ [a, b]

}
.

The proof follows the following steps.
1. T (x) ∈ Pcl(C([a, b],Rn)).

From (e) and Theorem 2 in Rybiński [9] we have that for each
x ∈ C([a, b],Rn) there exists k(t, s) ∈ K(t, s, x(s)), for all (t, s) ∈ [a, b], such
that k(t, s) is integrable with respect to s and continuous with respect to t.
Then

v(t) :=
∫ b

a
k(t, s)ds+ g(t),

has the property v ∈ T (x). Moreover, from (a) and (b), via Theorem 8.6.4.
in Aubin and Frankowska [1], we get that T (x) is a closed set, for each x ∈
C([a, b],Rn).

2. H(T (x1), T (x2)) ≤ ϕ(‖x1 − x2‖), for each x1, x2 ∈ C([a, b],Rn).
Let x1, x2 ∈ C([a, b],Rn) and v1 ∈ T (x1). Then

v1(t) ∈
∫ t

a
K(t, s, x1(s))ds+ g(t), t ∈ [a, b].

It follows that v1(t) =
∫ b

a
k1(t, s)ds+ g(t),

t ∈ [a, b], where k1(t, s) ∈ K(t, s, x1(s)), (t, s) ∈ [a, b]× [a, b].
From (d) we have H(K(t, s, x1(s)),K(t, s, x2(s)) ≤ p(t, s)ϕ(‖x1(s)−x2(s)‖)

≤ p(t, s)ϕ(‖x1 − x2‖), so there exists w ∈ K(t, s, x2(s)) such that ‖k1(t, s) −
w‖ ≤ p(t, s)ϕ(‖x1 − x2‖), t, s ∈ [a, b].
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Let us define U : [a, b] × [a, b] → P(Rn), by U(t, s) = {w| ‖k1(t, s) − w‖ ≤
p(t, s)ϕ(‖x1 − x2‖)}. Since the multi-valued operator V (t, s) := U(t, s) ∩
K(t, s, x2(s)) is jointly measurable and lower semi-continuous in t there ex-
ists k2(t, s) a selection for V , jointly measurable (and hence integrable in s)
and continuous in t. So, k2(t, s) ∈ K(t, s, x2(s)) and ‖k1(t, s) − k2(t, s)‖ ≤
p(t, s)ϕ(‖x1 − x2‖), for each t, s ∈ [a, b].

Consider v2(t) =
∫ b

a k2(t, s)ds+ g(t), t ∈ [a, b]. We have:

‖v1(t)− v2(t)‖ ≤
∫ b

a
‖k1(t, s)− k2(t, s)‖ds ≤

∫ b

a
p(t, s)ϕ(‖x1 − x2‖)ds

≤ ϕ(‖x1 − x2‖).
A similar relation can be obtained by interchanging the roles of x1 and x2.

So the second step follows.
The conclusion follows from Theorem 5. �

Example 3. If g ∈ C[a, b], and K(s, u) := [ u
2(1+u) ,

u
1+u ] then the integral

inclusion
x(t) ∈

∫ b

a
K(s, x(s))ds+ g(t), for each t ∈ [a, b]

has at least one unique solution in C[a, b]. The conclusion follows by an
application of Theorem 6 with ϕ(t) = t

1+t .
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[8] Rus, I.A., Petruşel, A. and Ŝıntămărian, A., Data dependence of the fixed point set

of some multivalued weakly Picard operators, Nonlinear Anal., 52, pp. 1947–1959, 2003.
[9] Rybinski, L., On Carathédory type selections, Fund. Math., 125, pp. 187–193, 1985.

[10] Wegrzyk, R., Fixed point theorems for multifunctions and their applications to func-
tional equations, Disscus. Math., 201, 1982.

Received by the editors: April 12, 2006.


	1. Notations and notions
	2. The single-valued case
	3. The multi-valued case
	References

