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point theorems, existence results for integral equations and inclusions.
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1. NOTATIONS AND NOTIONS

Throughout this paper, the standard notations and terminologies in non-
linear analysis are used. For the convenience of the reader we recall some of
them.

Let (X, d) be a metric space and f : X — X an operator. By Fizf := {z €
X| x = f(z)} we will denote the fixed point set of the operator f.

The following concept was introduced by I.A. Rus (see [7]).

DEFINITION 1. Let (X,—) be an L-space. An operator f : X — X is, by
definition, a Picard operator if:
(i) Fixf={a"};

(ii) f™(z) = z*, asn — o0, forallzeX.

We will also use the following symbols:

PX):={Y|Y Cc X}, P(X):={Y C X|Y is nonempty},

Py(X):={Y € P(X)| Y is closed}, P.,(X) :={Y € P(X)|Y is convex }
(for a normed space X).

Let A and B be nonempty subsets of the metric space (X,d). The gap
between these sets is

D(A, B) = inf{d(a,b)| a € A, b€ B}.

In particular, D(zg, B) = D({zo}, B) (where 2y € X) is called the distance
from the point z( to the set B.

The Pompeiu-Hausdorff generalized distance between the nonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:

H(A, B) :== max { 21612 l}g}fg d(a,b), 222 31612 d(a, b)}
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It is well-known that if (X,d) is a complete metric space, then the pair
(Py(X), H) is a (generalized) complete metric space.

The symbol T': X — Y means T': X — P(Y), i. e. T is a multi-valued
operator from X to Y. We will denote by Graf(T) := {(z,y) € X x Y|y €
T(x)} the graph of T'. Recall that the multi-valued operator is called closed
if Graf(T) is closed in X x Y.

For T : X — P(X) the symbol FixT := {z € X| z € T(x)} denotes the
fixed point set of the multi-valued operator T

A sequence of successive approximations of 1" starting from x € X is a
sequence (p)nen of elements of X with g =z, x,41 € T(zy,), for n € N.

2. THE SINGLE-VALUED CASE

Let ¢ : Ry — Ry. Then ¢ is said to be a comparison function (see [6]) if
it is increasing and ¢¥(t) — 0, as k — +o0o. As consequence, we also have
©(t) < t, for each t > 0, ¢(0) = 0 and ¢ is continuous in 0.

In particular, ¢(t) = at, (where a € [0, 1[), ¢(t) = %5, and ¢(t) = In(1+1),
t € R, are examples of comparison functions.

Also, a function ¢ : Ry — Ry is said to be a strict comparison function
(see [6]) if it is strictly increasing and > 02 ; ¢"(t) < +o0, for each ¢t > 0.

The following auxiliary result is known (see Dugundji-Granas [3]).

LEMMA 2. Let (X,d) be a complete metric space and f: X — X. Assume:

i) for each € > 0 there is 6(¢) > 0 such that if d(x, f(x)) < 0, then
f(B(a;e) C B(w;¢);
i) lim d(f" (o), fM(z0)) = 0, for some x € X.

n—-+o0o

Then the sequence (f™(xg))nen converges to a fized point for f.

We start this section with a straightforward modified version of a well-known
result (J. Matkowski see [3] pp. 15 and I. A. Rus [6]).

THEOREM 3. Let (X,d) be a complete metric space and f : X — X such
that d(f(x), f(y)) < p(d(z,y)), for all x,y € X, where ¢ : Ry — R satisfies
the following assumptions:

i) ¢ is increasing and upper semi-continuous;
ii) the function ¥ : Ry — Ry, ¥(t) :=t —@(t), is strictly increasing and
tlggloib(t) -
Then:

a) the operator f is Picard (denote by x} the unique fived point);

b) if g: X — X is an operator having at least a fixed point ry, € X and
there exists 1 > 0 such that d(f(z),g(x)) <n, for each x € X, then
d(ah, xy) <P~ H(n).
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Proof. Let zo € X be arbitrary. Denote d,, := d(f" 1 (xq), f*(x0)),n € N".
Then d,, < ¢(dp—1) < dp—1,n € N". Hence the sequence (d,)nenn converges
to a certain element d € R, .

Suppose d > 0. Then ¢(d) > ¥(0) = 0. So d > ¢(d). On the other hand,
since d, < ¢(d,—1) and using the upper semi-continuity of ¢, we get that
d < limsup p(dp—1) < ¢(d). The contradiction proves that d = 0. Hence

n—-4o00

lim d(f" " (zo), f"(x0)) = 0, for each zp € X (This property is usually

n——+oo

called the asymptotic regularity of f).

Let ¢ > 0 and define d(¢) := ¢ — ¢(e). Suppose d(z, f(z)) < § and let
z € B(z;¢e). We have:
d(f(z),z) < d(f(2), f(x)) +d(f(z),z) < p(d(z,2)) + 9 < e. The conclusion
follows from Lemma [21

For the second conclusion observe that

d(x},xg) < d(f(x}), f(zg)) + d(f(zg),9(xg)) < w(d(z},25)) +n. Hence
d(ay,xy) < ¢¥~H(n). O

As an application of the above result we can prove the following

THEOREM 4. Consider the integral equation:

b
(1) x(t):/a K(t,s,2(s))ds + g(t), t € [a,b].

Suppose:

i) K :[a,b] x[a,b] x R" - R" and g : [a,b] = R"™ are continuous;

ii) there exist a continuous function p : [a,b] X [a,b] — R4 and an increas-
ing function ¢ : Ry — Ry such that ¥ : Ry — Ry, ¥(t) :=t — (1) is
strictly increasing and tlim Y(t) = oo, such that

—00

| K (t,s,u) — K(t,s,v)|| <p(t,s)e(||lu—v|), for each t,s € [a,b], u,v € R".

b
iii) sup / p(t,s)ds < 1.
telab] Ja

Then:
a) the integral equation (1) has an unique solution x* in C([a,b],R™);
b) if
b
(2) y(#) = [ Lit5,y(s)ds+ h(t), ¢ € [a}]
is another integral equation having at least one solution y* € C([a, b], R™)
and there are ni,m2 > 0 such that |K(t,s,u) — L(t,s,u)|| < m and
lg(t) — h(t)|| < m2, for each t,s € [a,b] and u € C(Ja,b],R™), then
lz* =yl < ¥~ (m - (b= a) + ma).
Proof. Define A : C([a,b],R™) — C([a,b],R™), by the formula

b
Ax(t) = /a K(t,s,z(s))ds + g(t), t € [a,b].
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Observe that [|Ax(t) — Ay(t)|| < ff K (t,s,xz(s)) — K(t,s,y(s))]|lds <
Ja p(t. )l (la(s) = u(s)Dds < @l — ylle) Jy p(t, $)ds. Thus
Az — Ayllc < o(llz = ylle), for each x,y € C([a,b],R™)
(here ||| stands for the sup-norm in C([a, b], R™). The first conclusion follows
from Theorem [3

For the second conclusion, consider B : C([a, b],R") — C([a,b],R™), given
by the formula

b
Ba(t) = / L(t, s, 2(s))ds + h(t), t € [a, b].

Then Az (t) — Be()l] < [ 1Kt s,2(5)) — L(t, 5, 2(s))llds + l}g(t) — h®)]| <
m - (b—a) + n2, for each t € [a,b]. Hence | Az — Bz|lc < n1-(b—a)+ n.

Then from the second conclusion of Theorem [3[ we conclude ||z* — y*||¢
- (b —a) + ).

ExaMPLE 1. If g € CJa, b], then the integral equation

[IRVAN

(1) /b 5) 45+ (), for each t € [a, ]

z(t)= [ s-————ds , for a,
o L1+x(s) g

has a unique solution in C[a,b]. The conclusion follows by an application of

Theorem || with ¢(t) = l%rt

EXAMPLE 2. If g € CJa, b], then the integral equation

b
x(t) = / In(1+ z(s))ds + g(t), for each t € [a, b]

has a unique solution in C[a,b]. The conclusion follows by an application of
Theorem |4 with ¢(t) = In(1 + ¢).

3. THE MULTI-VALUED CASE

The following result is known in the literature as Wegrzyk’s theorem (see
[10].

THEOREM 5. Let (X,d) be a complete metric space and T : X — P.y(X)
be such that H(T(x),T(y)) < ¢(d(x,y)), for each x,y € X. Assume that
v : Ry — Ry is a strict comparison function. Then FixT is nonempty and
for any xo € X there exists a sequence of successive approximations of T
starting from xy which converges to a fized point of T'.

As an application, let us consider the following integral inclusion:

b
3) a(t) € / K(t,s,2(s))ds + g(1), ¢ € [a,b].
THEOREM 6. Let K : [a,b] X [a,b] x R™ = Py . (R"™) and g : [a,b] — R”
such that:
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(a) there exists an integrable function M : [a,b] — Ry such that for each
t € [a,b] and u € R" we have K(t,s,u) C M(s)B(0;1), a.e. s € [a,b];

(b) for each uw € R™ K(-,-,u) : [a,b] X [a,b] = Py c(R™) is jointly mea-
surable;

(c) for each (s,u) € [a,b] x R™ K(-,s,u) : [a,b] = Pc,(R") is lower
semi-continuous;

(d) there is a strict comparison function ¢ : Ry — Ry such that for each
(t,s) € [a,b] X [a,b] and each u,v € R™ we have that

H(K(tv 37“)7K(t7 S, U)) < p(t, 3) : SO(HU’ - UH)

where p : [a,b] X [a,b] = Ry is a continuous function and

b
sup / p(t,s)ds < 1;
telab] Ja

(e) g is continuous.

Then there exists at least one solution for the integral inclusion (3).

Proof. Define the multi-valued operator T : C([a, b], R™) — P(C([a, b], R™))
by

T(x):= {U € C(la,b,R™)| v(t) € /ab K(t,s,z(s))ds+g(t), t € [a,b]}.

The proof follows the following steps.
1. T'(z) € Py(C([a,b],R™)).
From (e) and Theorem 2 in Rybinski [9] we have that for each
x € C([a,b],R™) there exists k(t,s) € K(t,s,z(s)), for all (¢,s) € [a,b], such
that k(t,s) is integrable with respect to s and continuous with respect to t.
Then

o(t) = /abk:(t,s)ds +g(t),

has the property v € T'(x). Moreover, from (a) and (b), via Theorem 8.6.4.
in Aubin and Frankowska [I], we get that T'(x) is a closed set, for each x €
C([a, 0], R™).
2. H(T(z1),T(z2)) < @(||]x1 — x2||), for each z1,x2 € C([a,b],R").
Let x1, 22 € C([a,b],R™) and vy € T'(x1). Then

vl(t)e/tK(t,s,wl(s))ds+g(t), t € [a,b].

b
It follows that vy (t) = / ki(t, s)ds + g(t),

t € [a,b], where k1(t,s) € K(t,s,z1(s)), (t,s) € [a,b] X [a,b].

From (d) we have H (K (t,s,z1(s)), K(t,s,z2(s)) < p(t,s)p(||z1(s) —x2(s)||)
< p(t, s)e(||x1 — x2||), so there exists w € K(t,s,x2(s)) such that ||ki(t,s) —
wll < pt;s)e(llz1 = z2l), L, 5 € [a, 0],
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Let us define U : [a,b] X [a,b] — P(R™), by U(t,s) = {w]| ||ki(t,s) — w| <
p(t,s)p(]|z1 — x2||)}. Since the multi-valued operator V(t,s) := U(t,s) N
K(t,s,x2(s)) is jointly measurable and lower semi-continuous in ¢ there ex-
ists ka(t,s) a selection for V, jointly measurable (and hence integrable in s)
and continuous in t. So, ka(t,s) € K(t,s,za2(s)) and [|ki(t,s) — ka(t,s)] <
p(t, s)p(||x1 — z2]|), for each ¢, s € [a, b)].

Consider va(t) = f(f ka(t, s)ds + g(t), t € [a,b]. We have:

b b
[on(®) = va(O < [ a(t,9) = ka(t,9)lds < [ p(t,)(les = aalds

< @(llz1 = 22l]).
A similar relation can be obtained by interchanging the roles of 1 and xs.
So the second step follows.
The conclusion follows from Theorem [5l O
ExampLE 3. If g € Cla,b], and K(s,u) :=
inclusion

[3ti5a)> T4a) then the integral

b
x(t) € /a K(s,z(s))ds + g(t), for each t € [a, b]

has at least one unique solution in Cfa,b]. The conclusion follows by an

application of Theorem |§| with o(t) = 5.
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