APPROXIMATION PROPERTIES OF MODIFIED STANCU BETA OPERATORS

L. REMPULSKA* and M. SKORUPKA*

Abstract

In this paper we give approximation theorems for modified Stancu beta operators of differentiable functions. The Stancu beta operators were examined in $[8,1,2,5]$ and other papers.

MSC 2000. 41A36, 41A25.
Keywords. Beta operator, degree of approximation, Voronovskaya theorem.

1. INTRODUCTION

1.1. In 1995 D. D. Stancu ([8]) introduced and examined approximation properties of the following beta operators

$$
\begin{equation*}
L_{n}(f ; x):=\frac{1}{B(n x, n+1)} \int_{0}^{\infty} \frac{t^{n x-1}}{(1+t)^{n x+n+1}} f(t) \mathrm{d} t \tag{1.1}
\end{equation*}
$$

$x \in I=(0, \infty), n \in N=\{1,2, \ldots\}$, of real-valued functions f bounded on I, where B is the Euler beta function ([4]) defined by the formula

$$
\begin{equation*}
B(a, b):=\int_{0}^{1} t^{a-1}(1-t)^{b-1} \mathrm{~d} t \equiv \int_{0}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} \mathrm{~d} t, \quad a, b>0 \tag{1.2}
\end{equation*}
$$

In [8] it was proved that if f is continuous and bounded on I, then

$$
\begin{equation*}
\left|L_{n}(f ; x)-f(x)\right| \leq(1+\sqrt{x(x+1)}) \omega_{1}\left(f ; \frac{1}{\sqrt{n-1}}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|L_{n}(f ; x)-f(x)\right| \leq(3+x(x+1)) \omega_{2}\left(f ; \frac{1}{\sqrt{n-1}}\right) \tag{1.4}
\end{equation*}
$$

for all $x \in I$ and $n \geq 2$, where $\omega_{k}(f ; \cdot), k=1,2$, is the modulus of continuity of the order k of f.

It is known ([1], [8]) that if f is continuous and bounded on I with derivatives f^{\prime} and $f^{\prime \prime}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(L_{n}(f ; x)-f(x)\right)=\frac{x(x+1)}{2} f^{\prime \prime}(x) \quad \text { at every } \quad x \in I \tag{1.5}
\end{equation*}
$$

[^0]and the order $O\left(\frac{1}{n}\right)$ of approximation of r times differentiable functions f, $r \geq 3$, by L_{n} cannot be improved.
1.2. In this paper we shall show that the approximation order of differentiable functions by beta operators can be improved by some modification of formula (1.1]. We use the Kirov type method given for Bernstein operators in [6] (see also [7).

Similarly to [3] let $p \in N_{0}=N \cup\{0\}$,

$$
\begin{equation*}
w_{0}(x):=1, \quad w_{p}(x):=\left(1+x^{p}\right)^{-1} \quad \text { if } \quad p \geq 1, \quad x \in I, \tag{1.6}
\end{equation*}
$$

and let C_{p} be the set of all real-valued functions f defined on I, for which $w_{p} f$ is uniformly continuous and bounded on I and the norm

$$
\begin{equation*}
\|f\|_{p}:=\sup _{x \in I} w_{p}(x)|f(x)| . \tag{1.7}
\end{equation*}
$$

We have $C_{p} \subset C_{q}$ if $p<q$ and $\|f\|_{q} \leq\|f\|_{p}$ for $f \in C_{p}$.
In this paper we shall consider the functions class $C^{r}, r \in N_{0}$, of all $f \in C_{r}$ having derivatives $f^{(k)} \in C_{r-k}, 0 \leq k \leq r$. Clearly $C^{0} \equiv C_{0}$.
1.3. Analogously to [8] we denote by

$$
\begin{equation*}
b_{u, v}(t):=\frac{t^{u-1}}{B(u, v)(1+t)^{u+v}}, \quad t>0 \tag{1.8}
\end{equation*}
$$

for positive parameters u and v, where B is the beta function defined by (1.2).
Let $r \in N_{0}$. For $f \in C^{r}$ we define the following modified Stancu beta operators:

$$
\begin{equation*}
L_{n ; r}(f ; x):=\int_{0}^{\infty} b_{n x, n+1}(t) F_{r}(x, t) \mathrm{d} t \tag{1.9}
\end{equation*}
$$

$x \in I$ and $r \leq n \in N$, where

$$
\begin{equation*}
F_{r}(x, t):=\sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j}, \quad x, t \in I . \tag{1.10}
\end{equation*}
$$

If $r=0$ and $f \in C^{0}$, then by (1.9), (1.10) and (1.1) we have

$$
\begin{equation*}
L_{n ; 0}(f ; x) \equiv L_{n}(f ; x)=\int_{0}^{\infty} b_{n x, n+1}(t) f(t) \mathrm{d} t \quad \text { for } \quad x \in I, \quad n \in N . \tag{1.11}
\end{equation*}
$$

In Section 2 we shall prove that $L_{n ; r}, r \in N, n \geq 2 r$, is a linear operator acting from C^{r} into C_{r}. Moreover we shall prove that L_{n} is a linear positive operator acting from C_{r} into C_{r} if $n \geq 2 r$ and $r \in N$.
1.4. It is known ($\left[1,[8)\right.$ that operators $L_{n}(f)$ given by (1.1) are well defined for functions $f_{s}(x)=x^{s}, x \in I, s \in N, n \geq s$, and $L_{n}\left(f_{s}\right)$ are algebraic polynomials of the order s. In [1] and [8] it was proved that

$$
\begin{gather*}
L_{n}(1 ; x)=1, \quad L_{n}(t ; x)=x \quad \text { for } \quad x>0, \quad n \geq 1, \tag{1.12}\\
L_{n}\left((t-x)^{2} ; x\right)=\frac{x(x+1)}{n-1}, \quad x>0, n \geq 2, \tag{1.13}
\end{gather*}
$$

and for every $s \in N$ there exists a positive constant $M_{1}(s)$ depending only on s such that

$$
\begin{equation*}
w_{2 s}(x) L_{n}\left((t-x)^{2 s} ; x\right) \leq M_{1}(s) n^{-s} \text { for } x>0, n \geq 2 s . \tag{1.14}
\end{equation*}
$$

2. LEMMAS

In this paper we shall denote by $M_{i}(\alpha, \beta), i \in N$, suitable positive constants depending only on indicated parameters α and β.
We shall apply the following inequalities

$$
\begin{equation*}
\left(w_{p}(x)\right)^{2} \leq w_{2 p}(x), \quad \frac{1}{\left(w_{p}(x)\right)^{2}} \leq \frac{4}{w_{2 p}(x)}, \quad \frac{w_{p+s}(x)}{w_{p}(x) w_{s}(x)} \leq 3, \tag{2.1}
\end{equation*}
$$

for $x>0$ and $p, s \in N_{0}$, which can be easily obtained from (1.6).
Applying the Hölder inequality and (1.12), (2.1) and (1.14), we immediately obtain

Lemma 2.1. For every $s \in N$ there exists $M_{2}(s)=$ const. >0 such that

$$
w_{s}(x) L_{n}\left(|t-x|^{s} ; x\right) \leq M_{2}(s) n^{-\frac{s}{2}} \quad \text { for } \quad x>0, \quad n \geq 2 s
$$

Lemma 2.2. Let $p, s \in N$. Then there exist positive constants $M_{3}(p)$ and $M_{4}(p, s)$ such that

$$
\begin{equation*}
w_{p}(x) L_{n}\left(\frac{1}{w_{p}(t)} ; x\right) \leq M_{3}(p) \quad \text { for } \quad x>0, \quad n \geq 2 p \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{p+s}(x) L_{n}\left(\frac{|t-x|^{s}}{w_{p}(t)} ; x\right) \leq M_{4}(p, s) n^{-s / 2} \tag{2.3}
\end{equation*}
$$

for $x>0$ and $n \geq 2(p+s)$.
Proof. By (1.6) we have

$$
\frac{1}{w_{p}(t)}=1+t^{p} \leq 2^{p}\left(1+x^{p}+|t-x|^{p}\right), \quad t, x \in I, \quad p \in N,
$$

which by (1.1), (1.2) and (1.12) implies that

$$
L_{n}\left(\frac{1}{w_{p}(t)} ; x\right) \leq 2^{p}\left(1+x^{p}+L_{n}\left(|t-x|^{p} ; x\right)\right) .
$$

Now by (1.6) and Lemma 2.1 follows (2.2).
Applying the Hölder inequality and (1.14), (2.1), (2.2) and (1.6), we get

$$
\begin{aligned}
& w_{p+s}(x) L_{n}\left(\frac{|t-x|^{s}}{w_{p}(t)} ; x\right) \leq 3 w_{p}(x) w_{s}(x) L_{n}\left(\frac{|t-x|^{s}}{w_{p}(t)} ; x\right) \leq \\
& \quad \leq 6\left(w_{2 s}(x) L_{n}\left((t-x)^{2 s} ; x\right)\right)^{1 / 2}\left(w_{2 p}(x) L_{n}\left(\frac{1}{w_{2 p}(t)} ; x\right)\right)^{1 / 2} \\
& \quad \leq M_{4}(p, s) n^{-s / 2} \quad \text { for } \quad x>0, n \geq 2(p+s),
\end{aligned}
$$

and we complete the proof.

Lemma 2.3. Let $p \in N$. Then there exists $M_{5}(p)=$ const. >0 such that for every $f \in C_{p}$ we have

$$
\begin{equation*}
\left\|L_{n}(f)\right\|_{p} \leq M_{5}(p)\|f\|_{p} \quad \text { for } \quad n \geq 2 p \tag{2.4}
\end{equation*}
$$

If $f \in C_{0}$, then $\left\|L_{n}(f)\right\|_{0} \leq\|f\|_{0}$ for $n \geq 1$.
The formula (1.1) and (2.4) show that $L_{n}, n \geq 2 p$, is a positive linear operator from the space C_{p} into $C_{p}, p \in N_{0}$.

Proof. By (1.1), (1.2), (1.8) and (1.6) we have for $f \in C_{p}, p \in N_{0}$,

$$
w_{p}(x)\left|L_{n}(f ; x)\right| \leq\|f\|_{p} w_{p}(x) L_{n}\left(\frac{1}{w_{p}(t)} ; x\right), \quad x>0, \quad n \geq 2 p
$$

which by (2.2) and (1.7) yields (2.4).
Lemma 2.4. Let $r \in N$. Then there exists $M_{6}(r)=$ const. >0 such that

$$
\begin{equation*}
\left\|L_{n ; r}(f)\right\|_{r} \leq M_{6}(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\|_{r-j} \tag{2.5}
\end{equation*}
$$

for every $f \in C^{r}$ and $n \geq 2 r$.
The formulas (1.9) and (1.10 and (2.5) show that $L_{n ; r}, n \geq 2 r$, is a linear operator from the space C^{r} into $C_{r}, r \in N$.

Proof. It is obvious that if $f \in C^{r}, r \in N$, then there exist $\left\|f^{(j)}\right\|_{r-j}$ for $0 \leq j \leq r$. This fact and (1.8)-1.11) and (1.7) imply that

$$
\begin{aligned}
\left|L_{n ; r}(f ; x)\right| & \leq \sum_{j=0}^{r} \frac{1}{j!} L_{n}\left(\left|f^{(j)}(t)\right||t-x|^{j} ; x\right) \leq \\
& \leq \sum_{j=0}^{r}\left\|f^{(j)}\right\|_{r-j} L_{n}\left(\frac{|t-x|^{j}}{w_{r-j}(t)} ; x\right)
\end{aligned}
$$

for $f \in C^{r}$. Now applying Lemma 2.1 and Lemma 2.2 we obtain

$$
w_{r}(x)\left|L_{n ; r}(f ; x)\right| \leq M_{6}(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\|_{r-j} n^{-j / 2}
$$

for $x>0$ and $n \geq 2 r$, which by (1.7) yields (2.5).

3. THEOREMS

3.1. First we shall give theorems on the order of approximation of function f by operators L_{n} and $L_{n ; r}$. We shall use the modulus of continuity $\omega_{k}(f)$ of the order $k=1,2$ of $f \in C_{p}$, i.e.

$$
\begin{equation*}
\omega_{k}\left(f ; C_{p} ; t\right):=\sup _{0 \leq h \leq t}\left\|\Delta_{h}^{k} f(\cdot)\right\|_{p}, \quad t \geq 0 \tag{3.1}
\end{equation*}
$$

where $\Delta_{h}^{1} f(x) \equiv \Delta_{h} f(x)=f(x+h)-f(x)$ and $\Delta_{h}^{2} f(x) \equiv \Delta_{h}\left(\Delta_{h} f(x)\right)=$ $f(x)-2 f(x+h)+f(x+2 h)$ for $x>0$ and $h \geq 0$.

Theorem 3.1. Suppose that $f \in C_{p}, p \in N_{0}$, is twice differentiable function on I and f^{\prime} and $f^{\prime \prime}$ belong to C_{p} also. Then there exists $M_{7}(p)=$ const. >0 such that

$$
\begin{equation*}
\left\|L_{n}(f)-f\right\|_{p+2} \leq M_{7}(p)\left\|f^{\prime \prime}\right\|_{p} n^{-1} \tag{3.2}
\end{equation*}
$$

for $n \geq 2 p+4$.
Proof. For f satisfying our assumptions we have

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\int_{x}^{t} \int_{x}^{s} f^{\prime \prime}(u) \mathrm{d} u \mathrm{~d} s, \quad t, x>0 .
$$

By elementary calculations we get

$$
f(t)=f(x)+f^{\prime}(x)(t-x)+\int_{x}^{t}(t-u) f^{\prime \prime}(u) \mathrm{d} u
$$

and next by (1.1) and (1.12) we can write

$$
L_{n}(f(t) ; x)=f(x)+L_{n}\left(\int_{x}^{t}(t-u) f^{\prime \prime}(u) \mathrm{d} u ; x\right)
$$

and

$$
\left|L_{n}(f(t) ; x)-f(x)\right| \leq L_{n}\left(\left|\int_{x}^{t}(t-u) f^{\prime \prime}(u) \mathrm{d} u\right| ; x\right) .
$$

Using the inequality

$$
\begin{aligned}
\left|\int_{x}^{t}(t-u) f^{\prime \prime}(u) \mathrm{d} u\right| & \leq\left\|f^{\prime \prime}\right\|_{p}\left|\int_{x}^{t} \frac{|t-u|}{w_{p}(u)} \mathrm{d} u\right| \\
& \leq\left\|f^{\prime \prime}\right\|_{p}\left(\frac{1}{w_{p}(t)}+\frac{1}{w_{p}(x)}\right)(t-x)^{2} \quad \text { for } \quad t, x>0,
\end{aligned}
$$

and (2.1) we get

$$
\begin{aligned}
w_{p+2}(x)\left|L_{n}(f ; x)-f(x)\right| \leq & \left\|f^{\prime \prime}\right\|_{p}\left(w_{p+2}(x) L_{n}\left(\frac{(t-x)^{2}}{w_{p}(t)} ; x\right)\right. \\
& \left.+3 w_{2}(x) L_{n}\left((t-x)^{2} ; x\right)\right)
\end{aligned}
$$

and next by (2.3), (1.6), (1.13) and (1.7) we obtain (3.2) for $n \geq 2 p+4$.
Now we shall prove analogue of 1.4 for $f \in C_{p}$.
Theorem 3.2. Let $p \in N_{0}$. Then there exists $M_{8}(p)=$ const. >0 such that for every $f \in C_{p}$ and $n \geq 2 p+4$ we have

$$
\begin{equation*}
\left\|L_{n}(f)-f\right\|_{p+2} \leq M_{8}(p) \omega_{2}\left(f ; C_{p} ; \frac{1}{\sqrt{n}}\right) . \tag{3.3}
\end{equation*}
$$

Proof. Similarly to [3] we apply the following Steklov function f_{h} of $f \in C_{p}$:

$$
f_{h}(x):=\frac{4}{h^{2}} \int_{0}^{h / 2} \int_{0}^{h / 2}(2 f(x+s+t)-2 f(x+2(s+t))) \mathrm{d} s \mathrm{~d} t, \quad x, h>0 .
$$

It is known ([3]) that f_{h} and derivatives $f_{h}^{\prime}, f_{h}^{\prime \prime}$ belong to C_{p} if $f \in C_{p}$. Moreover for $h>0$ we have

$$
\begin{equation*}
\left\|f-f_{h}\right\|_{p} \leq \omega_{2}\left(f ; C_{p} ; h\right) \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{h}^{\prime \prime}\right\|_{p} \leq 9 h^{-2} \omega_{2}\left(f ; C_{p} ; h\right) . \tag{3.5}
\end{equation*}
$$

From the above properties of f_{h} and linearity of L_{n} we deduce that

$$
\begin{aligned}
\left|L_{n}(f(t) ; x)-f(x)\right| \leq & \left|L_{n}\left(f(t)-f_{h}(t) ; x\right)\right| \\
& +\left|L_{n}\left(f_{h}(t) ; x\right)-f_{h}(x)\right|+\left|f_{h}(x)-f(x)\right|,
\end{aligned}
$$

for $x>0, h>0$ and $n \geq 2 p+2$. Applying (2.4) and (3.4) we get

$$
\begin{equation*}
w_{p}(x)\left|L_{n}\left(f(t)-f_{h}(t) ; x\right)\right| \leq M_{5}(p)\left\|f-f_{h}\right\|_{p} \leq M_{5}(p) \omega_{2}\left(f ; C_{p} ; h\right) . \tag{3.6}
\end{equation*}
$$

Theorem 3.1 and (3.5) imply that

$$
\begin{align*}
w_{p+2}(x)\left|L_{n}\left(f_{h}(t) ; x\right)-f_{h}(x)\right| & \leq M_{7}(p)\left\|f_{h}^{\prime \prime}\right\|_{p} n^{-1} \tag{3.7}\\
& \leq M_{7}(p) h^{-2} n^{-1} \omega_{2}\left(f ; C_{p} ; h\right) .
\end{align*}
$$

Using (1.6), (2.1), (3.6), (3.7) and (3.4), we get

$$
\begin{equation*}
w_{p+2}(x)\left|L_{n}(f ; x)-f(x)\right| \leq M_{9}(p) \omega_{2}\left(f ; C_{p} ; h\right)\left(1+h^{-2} n^{-1}\right) \tag{3.8}
\end{equation*}
$$

for $x, h>0$ and $n \geq 2 p+4$. Putting $h=\frac{1}{\sqrt{n}}$ in (3.8), we obtain the desired inequality (3.3) by (1.7).

Now we shall give an analogue of 1.3 for operators $L_{n ; r}$.
Theorem 3.3. Let $r \in N$. Then there exists $M_{10}(r)=$ const. >0 such that for every $f \in C^{r}$ we have

$$
\begin{equation*}
\left\|L_{n ; r}(f)-f\right\|_{r+1} \leq M_{10}(r) n^{-r / 2} \omega_{1}\left(f^{(r)} ; C_{0} ; \frac{1}{\sqrt{n}}\right), \quad n \geq 2 r+2 . \tag{3.9}
\end{equation*}
$$

Proof. The formulas (1.8)-(1.12) imply that

$$
\begin{equation*}
L_{n ; r}(f ; x)-f(x)=L_{n}\left(F_{r}(x, t)-f(x) ; x\right), \tag{3.10}
\end{equation*}
$$

for every $f \in C^{r}, x \in I$ and $n \geq 2 r+2$.
Similarly to [6] and [7] we use the following modified Taylor formula of $f \in C^{r}$ at a fixed point $t>0$:

$$
f(x)=\sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j}+\frac{(x-t)^{r}}{(r-1)!} I_{r}(x, t), \quad x>0,
$$

where

$$
\begin{equation*}
I_{r}(x, t):=\int_{0}^{1}(1-u)^{r-1}\left(f^{(r)}(t+u(x-t))-f^{(r)}(t)\right) \mathrm{d} u . \tag{3.11}
\end{equation*}
$$

Hence we have

$$
f(x)-F_{r}(x, t)=\frac{(x-t)^{r}}{(r-1)!} I_{r}(x, t), \quad t, x>0,
$$

which used to (3.10) implies that

$$
\begin{aligned}
\left|L_{n ; r}(f ; x)-f(x)\right| & \leq L_{n}\left(\left|F_{r}(x, t)-f(x)\right| ; x\right) \\
& \leq \frac{1}{(r-1)!} L_{n}\left(|t-x|^{r}\left|I_{r}(x, t)\right| ; x\right)
\end{aligned}
$$

for $x>0$ and $n \geq 2 r+2$. Applying elementary properties of ω_{1} defined by (3.1), we get from 3.11

$$
\begin{aligned}
\left|I_{r}(x, t)\right| & \leq \int_{0}^{1}(1-u)^{r-1} \omega_{1}\left(f^{(r)} ; C_{0} ; u|x-t|\right) \mathrm{d} u \\
& \leq \omega_{1}\left(f^{(r)} ; C_{0} ;|t-x|\right) \int_{0}^{1}(1-u)^{r-1} \mathrm{~d} u \\
& \leq \frac{1}{r} \omega_{1}\left(f^{(r)} ; C_{0} ; \frac{1}{\sqrt{n}}\right)(\sqrt{n}|t-x|+1)
\end{aligned}
$$

From the above and by (1.6) and Lemma 2.1, we obtain

$$
\begin{aligned}
& w_{r+1}(x)\left|L_{n ; r}(f ; x)-f(x)\right| \leq \\
& \leq \frac{1}{r!} \omega_{1}\left(f^{(r)} ; C_{0} ; \frac{1}{\sqrt{n}}\right)\left(\sqrt{n} w_{r+1}(x) L_{n}\left(|t-x|^{r+1} ; x\right)+w_{r}(x) L_{n}\left(|t-x|^{r} ; x \mid\right)\right) \\
& \leq M_{10}(r) n^{-r / 2} \omega_{1}\left(f^{(r)} ; C_{0} ; \frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

for $x>0$ and $n \geq 2 r+2$, which by (1.7) gives (3.9).
From Theorem 3.2 and Theorem 3.3 we can derive the following corollaries.
Corollary 3.4. If $f \in C_{p}, p \in N_{0}$, then

$$
\lim _{n \rightarrow \infty}\left(L_{n}(f ; x)-f(x)\right)=0 \quad \text { at every } \quad x>0
$$

The above convergence is uniform on every interval $[a, b], 0<a<b<\infty$.
Corollary 3.5. If $f \in C^{r}, r \in N$, then

$$
\lim _{n \rightarrow \infty} n^{r / 2}\left\|L_{n ; r}(f)-f\right\|_{r+1}=0
$$

Corollary 3.6. The order of approximation of $f \in C^{r}, r \geq 2$, by operators $L_{n ; r}(f)$ is better than by $L_{n}(f)$.
3.2. In this section we shall prove the Voronovskaya type theorem for operators $L_{n ; r}$, i.e. we shall give an analogue of 1.5 .

TheOrem 3.7. Suppose that $r \in N$ and f is a function belonging to C^{r} and having derivatives $f^{(r+1)}$ and $f^{(r+2)}$ continuous and bounded on I. Then for every $x>0$ we have

$$
\begin{align*}
L_{n ; r}(f ; x)-f(x)= & \frac{(-1)^{r} f^{(r+1)}(x) L_{n}\left((t-x)^{r+1} ; x\right)}{(r+1)!} \tag{3.12}\\
& +\frac{(-1)^{r}(r+1) f^{(r+2)}(x) L_{n}\left((t-x)^{r+2} ; x\right)}{(r+2)!} \\
& +o_{x}\left(n^{(r+2) / 2}\right) \quad \text { as } \quad n \rightarrow \infty .
\end{align*}
$$

Proof. Fix function f and $x>0$. Then for every derivative $f^{(j)}, 0 \leq j \leq r$, we can write the Taylor formula at x :

$$
f^{(j)}(t)=\sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}(t-x)^{i}+\varphi_{j}(t, x)(t-x)^{r+2-j}, \quad t>0
$$

where $\varphi_{j}(t) \equiv \varphi_{j}(t, x)$ is function belonging to C_{0} and $\lim _{t \rightarrow x} \varphi_{j}(t)=\varphi_{j}(x)=0$.
Hence F_{r} defined by 1.10 can be written in the form

$$
F_{r}(x, t)=\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}(t-x)^{j+i}+\Phi_{r}(t)(t-x)^{r+2}, \quad t>0
$$

with the function

$$
\begin{equation*}
\Phi_{r}(t):=\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \varphi_{j}(t) \tag{3.13}
\end{equation*}
$$

By elementary calculations we get

$$
\begin{align*}
F_{r}(x, t)= & \sum_{j=0}^{r}(-1)^{j} \sum_{s=j}^{r+2}\binom{s}{j} \frac{f^{(s)}(x)(t-x)^{s}}{s!}+\Phi_{r}(t)(t-x)^{r+2} \tag{3.14}\\
= & \sum_{s=0}^{r} \frac{f^{(s)}(x)(t-x)^{s}}{s!} \sum_{j=0}^{s}\binom{s}{j}(-1)^{j} \\
& +\frac{f^{(r+1)}(x)(t-x)^{r+1}}{(r+1)!} \sum_{j=0}^{r}\binom{r+1}{j}(-1)^{j} \\
& +\frac{f^{(r+2)}(x)(t-x)^{r+2}}{(r+2)!} \sum_{j=0}^{r}\binom{r+2}{j}(-1)^{j}+\Phi_{r}(t)(t-x)^{r+2} .
\end{align*}
$$

Applying equalities for $m \in N_{0}$:

$$
\begin{aligned}
& \sum_{j=0}^{m}\binom{m}{j}(-1)^{j}= \begin{cases}1 & \text { if } m=0 \\
0 & \text { if } m \geq 1,\end{cases} \\
& \sum_{j=0}^{m}\binom{m+1}{j}(-1)^{j}=(-1)^{m}
\end{aligned}
$$

and

$$
\sum_{j=0}^{m}\binom{m+2}{j}(-1)^{j}=(m+1)(-1)^{j}
$$

we derive from $(1.9)-1.11$ and $(3.14$ the following formula:

$$
\begin{align*}
L_{n ; r}(f ; x)= & f(x)+\frac{(-1)^{r} f^{(r+1)}(x) L_{n}\left((t-x)^{r+1} ; x\right)}{(r+1)!} \tag{3.15}\\
& +\frac{(-1)^{r}(r+1) f^{(r+2)}(x) L_{n}\left((t-x)^{r+2} ; x\right)}{(r+2)!} \\
& +L_{n}\left(\Phi_{r}(t)(t-x)^{r+2} ; x\right), \quad \text { for } \quad n \geq 2 r+2
\end{align*}
$$

The properties of $\varphi_{j}, 0 \leq j \leq r$, imply that Φ_{r} given by (3.13) is a function belonging to C_{0} and $\lim _{t \rightarrow x} \Phi_{r}(t)=\Phi_{r}(x)=0$. Hence there exists $L_{n}\left(\Phi_{r}^{2}(t) ; x\right)$
for $x>0$ and $n \geq 1$ and by Corollary 3.4 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}\left(\Phi_{r}^{2}(t) ; x\right)=\Phi_{r}^{2}(x)=0 . \tag{3.16}
\end{equation*}
$$

Applying the Hölder inequality, we get

$$
\left|L_{n}\left(\Phi_{r}(t)(t-x)^{r+2} ; x\right)\right| \leq\left(L_{n}\left(\Phi_{r}^{2}(t) ; x\right)\right)^{1 / 2}\left(L_{n}\left((t-x)^{2 r+4} ; x\right)\right)^{1 / 2}
$$

for $n \geq 2 r+4$, which by (3.16) and (1.12) gives

$$
\begin{equation*}
L_{n}\left(\Phi_{r}(t)(t-x)^{r+2} ; x\right)=o_{x}\left(n^{-(r+2) / 2}\right) \quad \text { as } \quad n \rightarrow \infty . \tag{3.17}
\end{equation*}
$$

Using (3.17) to (3.15), we obtain (3.12).

REFERENCES

[1] Abel, U., Asymptotic approximation with Stancu beta operators, Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 5-13, 1998. [^
[2] Abel, U. and Gupta, V., Rate of convergence for Stancu beta operators for functions of bounded variation, Rev. Anal. Numér. Théor. Approx., 33, no. 1, pp. 3-9, 2004. [^]
[3] Becker, M., Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27, no. 1, pp. 127-142, 1978.
[4] Fichtenholz, G. M., Calculus, vol. 2, Warsaw 1964.
[5] Gupta, V., Abel, U. and Ivan, M., Rate of convergence of beta operators of second kind for functions with derivatives of bounded variation, Inter. Jour. of Math. and Math. Sciences (in print).
[6] Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balkanica, 2, no. 2, pp. 147-153, 1992.
[7] Rempulska, L. and Walczak, Z., Modified Szász-Mirakyan operators, Math. Balkanica, 18, pp. 53-63, 2004.
[8] Stancu, D. D., On the beta approximating operators of second kind, Rev. Anal. Numer. Theor. Approx., 24, nos. 1-2, pp. 231-239, 1995. [^]

Received by the editors: January 8, 2005.

[^0]: * Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland, email: \{lrempuls,mariolas\}@math.put.poznan.pl.

