THE EQUIVALENCE BETWEEN THE KRASNOSELSKIJ, MANN AND ISHIKAWA ITERATIONS

B. E. RHOADES* and ŞTEFAN M. ŞOLTUZ[†]

Abstract. We shall prove that Krasnoselskij iteration converges if and only if Mann-Ishikawa iteration converges, for certain classes of strongly pseudocontractive mappings.

MSC 2000. 47H10.

Keywords. Krasnoselskij, Mann and Ishikawa iterations, strongly pseudocontractive map.

1. INTRODUCTION

Let X be a real Banach space $T: X \to X$ a map and $x_0, u_0 \in X$. In [6] is introduced the following iteration

(1)
$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n T u_n,$$

where $\{\alpha_n\} \subset (0,1)$. The Krasnoselskij iteration is defined by, ([5])

$$(2) x_{n+1} = (1 - \lambda)x_n + \lambda Tx_n,$$

where $\lambda \in (0,1)$.

The map $J: X \to 2^{X^*}$ given by $J(x) := \{f \in X^* : \langle x, f \rangle = ||x||^2, ||f|| = ||x||\}, \forall x \in X$, is called the normalized duality mapping. Note the following inequality

$$(3) \qquad \langle y, j(x) \rangle < \|x\| \|y\|, \forall x, y \in X, \forall j(x) \in J(x).$$

DEFINITION 1. Let X be a real Banach space. Let B be a nonempty subset. A map $T: B \to B$ is called strongly pseudocontractive if there exists $k \in (0,1)$ and a $j(x-y) \in J(x-y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le k \|x - y\|^2, \forall x, y \in B.$$

In [1], the following open question was given: "are Krasnoselskij iteration and Mann iteration equivalent in sense (of [8]) for enough large classes of mappings?" We shall give a positive answer to this question, for the class of strongly pseudocontractive mappings.

We recall the following results from [2], [10] and [7].

 $^{^{\}ast}$ Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, U.S.A., rhoades@indiana.edu.

[†]"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 400110 Cluj-Napoca, Romania, e-mail: soltuzul@yahoo.com.

Lemma 2. [2] If X is a real normed space, then the following relation is true

(5)
$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y)\rangle, \ \forall x, y \in X, \forall j(x+y) \in J(x+y).$$

LEMMA 3. [10] Let $\{a_n\}$ be a nonnegative sequence which satisfies the following inequality

$$a_{n+1} \le (1 - \lambda_n)a_n + \sigma_n,$$

where $\lambda_n \in (0,1)$, $\forall n \in \mathbb{N}$, $\sum_{n=1}^{\infty} \lambda_n = \infty$, and $\sigma_n = o(\lambda_n)$. Then $\lim_{n \to \infty} a_n = 0$.

LEMMA 4. [7] Let X be a smooth Banach space. Suppose that J is uniformly continuous on any bounded subset of X. Then for any $\varepsilon > 0$ and any bounded subset B there is a $\delta > 0$ such that

(6)
$$||tx + (1-t)y||^{2} \le 2 \langle J(y), x \rangle t + 2\varepsilon t + (1-2t)||y||^{2},$$

for any $x, y \in B$ and $t \in [0, \delta)$.

The following result is a slight generalization of Lemma 1 from [7].

LEMMA 5. Let $\{a_n\}$ be a nonnegative sequence which satisfies

$$a_{n+1} \le (1 - \lambda_n)a_n + \lambda_n \varepsilon + \lambda_n \delta_n, \forall n \ge n_0,$$

for some fixed n_0 and $\varepsilon > 0$ where $\lambda_n \in (0,1)$, $\forall n \in \mathbb{N}$, $\sum_{n=1}^{\infty} \lambda_n = \infty$ and $\lim_{n \to \infty} \delta_n = 0$. Then

$$0 \le \lim_{n \to \infty} \sup a_n \le 2\varepsilon.$$

Proof. Since $\lim_{n\to\infty} \delta_n = 0$, there exists an n_0 such that $\delta_n \leq \varepsilon$, $\forall n \geq n_0$. Thus

(7)
$$a_{n+1} \le (1 - \lambda_n) a_n + 2\lambda_n \varepsilon, \forall n \ge n_0.$$

Using (7) it can be shown that

$$a_{n+1} \leq (1 - \lambda_n) (1 - \lambda_{n-1}) \dots (1 - \lambda_1) a_1 + 2\varepsilon.$$

Since $\sum \lambda_n = \infty$, the conclusion follows.

The following Remark is from [3].

Remark 1. If X is real Banach space with a uniformly convex dual, then $J(\cdot)$ is single valued and uniformly continuous on every bounded set of X.

2. MAIN RESULTS

Theorem 6. Let X be a real Banach space with a uniformly convex dual and B a nonempty, closed, convex, bounded subset of X. Let $T: B \to B$ be a continuous and strongly pseudocontractive operator. Suppose that

(8)
$$\lim_{n \to \infty} \alpha_n = 0 \text{ and } \sum_{n=1}^{\infty} \alpha_n = \infty.$$

If the Krasnoselskij iteration (2) converges to the fixed point of T and $||x_n - Tx_n|| = o(\alpha_n)$, as $n \to \infty$, then the Mann iteration (1) converges to the fixed point of T.

Proof. Since T is strongly pseudocontractive, the fixed point is unique. Denote the fixed point by x^* . If the iteration (2) converges to the fixed point of T, then $||x_{n+1} - x_n|| = \lambda ||x_n - Tx_n|| \to 0$ as $n \to \infty$. Using (3), (4) and (5) we obtain the following relations:

$$||x_{n+1} - u_{n+1}||^{2}$$

$$= ||(1 - \alpha_{n})(x_{n} - u_{n}) + \alpha_{n}(Tx_{n} - Tu_{n}) - \lambda(x_{n} - Tx_{n}) + \alpha_{n}(x_{n} - Tx_{n})||^{2}$$

$$\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} +$$

$$+ 2 \langle (\alpha_{n}(Tx_{n} - Tu_{n}) - \lambda(x_{n} - Tx_{n}) + \alpha_{n}(x_{n} - Tx_{n})), J(x_{n+1} - u_{n+1}) \rangle$$

$$\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} + 2\alpha_{n} \langle (Tx_{n} - Tu_{n}, J(x_{n+1} - u_{n+1})) \rangle$$

$$+ 2 (\alpha_{n} - \lambda) \langle x_{n} - Tx_{n}, J(x_{n+1} - u_{n+1}) \rangle$$

$$\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} + 2\alpha_{n} \langle (Tx_{n} - Tu_{n}, J(x_{n} - u_{n})) \rangle$$

$$+ 2\alpha_{n} \langle (Tx_{n} - Tu_{n}, J(x_{n+1} - u_{n+1}) - J(x_{n} - u_{n})) \rangle$$

$$+ 2 (\alpha_{n} - \lambda) \langle x_{n} - Tx_{n}, J(x_{n+1} - u_{n+1}) \rangle,$$
that is,

(9) $||x_{n+1} - u_{n+1}||^{2} \leq$ $\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} + 2\alpha_{n}k ||x_{n} - u_{n}||^{2}$ $+ 2\alpha_{n} \langle (Tx_{n} - Tu_{n}, J(x_{n+1} - u_{n+1}) - J(x_{n} - u_{n}) \rangle$ $+ 2(\alpha_{n} - \lambda) \langle x_{n} - Tx_{n}, J(x_{n+1} - u_{n+1}) \rangle$ $\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} + 2\alpha_{n}k ||x_{n} - u_{n}||^{2}$ $+ 2\alpha_{n} \langle (Tx_{n} - Tu_{n}, J(x_{n+1} - u_{n+1}) - J(x_{n} - u_{n}) \rangle$ $+ 2|\alpha_{n} - \lambda| ||x_{n} - Tx_{n}|| ||x_{n+1} - u_{n+1}||$ $\leq (1 - \alpha_{n})^{2} ||x_{n} - u_{n}||^{2} + 2\alpha_{n}k ||x_{n} - u_{n}||^{2}$

 $+2 |\alpha_n - \lambda| M_1 ||x_n - Tx_n||,$ for some positive constant M_1 . Observe that $\{||Tx_n - Tu_n||\}$ is bounded. We prove now that

(10)
$$J(x_{n+1} - u_{n+1}) - J(x_n - u_n) \to 0, (n \to \infty).$$

To prove (10) it is sufficient to show that

$$||(x_{n+1} - u_{n+1}) - (x_n - u_n)||$$

$$= ||(x_{n+1} - x_n) - (u_{n+1} - u_n)||$$

$$= ||-\lambda x_n + \lambda T x_n + \alpha_n u_n - \alpha_n T u_n|| \le$$

 $+2\alpha_n \langle (Tx_n-Tu_n,J(x_{n+1}-u_{n+1})-J(x_n-u_n)\rangle$

$$\leq \lambda \|x_n - Tx_n\| + \alpha_n \|u_n - Tu_n\|$$

$$\leq \lambda \|x_n - Tx_n\| + \alpha_n M_3 \to 0, (n \to \infty).$$

Set $M_2 = \sup_n \{ ||Tx_n - Tu_n|| \}$, and define

(11)
$$\sigma_n := 2\alpha_n M_2 \|J(x_{n+1} - u_{n+1}) - J(x_n - u_n)\| + 2 \|\alpha_n - \lambda\| M_1 \|x_n - Tx_n\|.$$

Note that the sequences $\{u_n\}$, $\{x_n\}$, $\{Tx_n\}$ and $\{Tu_n\}$ are bounded. Hence, M_1 , M_2 and M_3 above are finite. Inserting (11) into (9), we obtain

$$(12) ||x_{n+1} - u_{n+1}||^2 \le (1 - \alpha_n)^2 ||x_n - u_n||^2 + 2\alpha_n k ||x_n - u_n||^2 + \sigma_n.$$

The condition $\lim_{n\to\infty} \alpha_n = 0$ implies the existence of a positive integer n_0 such that, for all $n \geq n_0$,

$$(13) \alpha_n \le (1-k).$$

Substituting (13) into (12), we obtain

$$(14) \quad 1 - 2(1-k)\alpha_n + \alpha_n^2 < 1 - 2(1-k)\alpha_n + (1-k)\alpha_n = 1 - (1-k)\alpha_n.$$

Finally,

Set $a_n:=\|x_n-u_n\|^2$, $\lambda_n:=(1-k)\alpha_n\in(0,1)$, and use Lemma 3, to obtain $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\|x_n-u_n\|^2=0$; i.e.

$$\lim_{n \to \infty} \|x_n - u_n\| = 0.$$

The inequality $0 \le ||x^* - u_n|| \le ||x_n - x^*|| + ||x_n - u_n||$ and (16) imply that $\lim_{n \to \infty} u_n = x^*$.

Theorem 7. Let X be a smooth Banach space with a uniformly convex dual and B a nonempty, closed, convex, bounded subset of X. Let $T: B \to B$ be a continuous and strongly pseudocontractive operator such that

(17)
$$\lambda (1-k) \in (0,1/2).$$

Suppose condition (8) is satisfied. If the Mann iteration (1) converges to the fixed point of T, then the Krasnoselskij iteration (2) converges to the fixed point of T.

Proof. Since the Mann iteration converges and T is continuous, we have

$$\lim_{n \to \infty} ||u_n - Tu_n|| = 0.$$

For a given $\varepsilon > 0$, since B is bounded, there exists a $\delta > 0$ as in Lemma 4 so that (6) is satisfied. Use (1), (2) and (4) to obtain,

$$||x_{n+1} - u_{n+1}||^{2}$$

$$= ||x_{n} - u_{n} - \lambda x_{n} + \lambda u_{n} - \lambda u_{n} + \alpha_{n} u_{n} + \lambda T x_{n} - \lambda T u_{n} + \lambda T u_{n} - \alpha_{n} T u_{n}||^{2}$$

$$= ||(1 - \lambda) (x_{n} - u_{n}) + \lambda (T x_{n} - T u_{n} - u_{n} + T u_{n} + \frac{\alpha_{n}}{\lambda} (u_{n} - T u_{n}))||^{2}$$

$$\leq (1 - 2\lambda) ||x_{n} - u_{n}||^{2} + 2\varepsilon\lambda +$$

$$+ 2 \langle \lambda (T x_{n} - T u_{n} - u_{n} + T u_{n} + \frac{\alpha_{n}}{\lambda} (u_{n} - T u_{n})), J(x_{n} - u_{n}) \rangle$$

$$= (1 - 2\lambda) ||x_{n} - u_{n}||^{2} + 2\varepsilon\lambda +$$

$$+ 2\lambda \langle (T x_{n} - T u_{n}), J(x_{n} - u_{n}) \rangle$$

$$+ (1 - 2\lambda) ||x_{n} - u_{n}||^{2} + 2\varepsilon\lambda +$$

$$+ 2\lambda \langle (T x_{n} - T u_{n}), J(x_{n} - u_{n}) \rangle$$

$$+ 2(\alpha_{n} - \lambda) \langle (u_{n} - T u_{n}), J(x_{n} - u_{n}) \rangle$$

$$\leq (1 - 2\lambda) ||x_{n} - u_{n}||^{2} + 2\lambda k ||x_{n} - u_{n}||^{2} + 2\varepsilon\lambda +$$

$$+ 2 ||\alpha_{n} - \lambda| ||u_{n} - T u_{n}|| ||x_{n} - u_{n}||$$

$$= (1 - 2\lambda (1 - k)) ||x_{n} - u_{n}||^{2} + 2\varepsilon\lambda + 2M ||\alpha_{n} - \lambda| ||u_{n} - T u_{n}||,$$

for some positive and finite M which is the supremum of the bounded sequence $\{\|x_n-u_n\|\}$. Denote $a_n=\|x_n-u_n\|^2$, $\lambda_n=2\lambda\left(1-k\right)$, $(\lambda_n\in(0,1)$, by condition 17), and $\sigma_n=2M\left|\alpha_n-\lambda\right|\left\|u_n-Tu_n\right\|$ and use Lemma 5 to obtain

$$0 \le \limsup \|x_n - u_n\|^2 \le \frac{2\varepsilon}{1 - k}.$$

Since $\varepsilon > 0$ is arbitrary, one have $\limsup \|x_n - u_n\|^2 = 0$. Hence $\limsup \|x_n - u_n\| = 0$. The inequality $0 \le \|x^* - x_n\| \le \|u_n - x^*\| + \|x_n - u_n\|$ implies that $\lim_{n \to \infty} x_n = x^*$.

3. FURTHER RESULTS

The Ishikawa iteration is given by, see [4]:

(18)
$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n,$$
$$y_n = (1 - \beta_n)x_n + \beta_n T x_n,$$

where the sequences $\{\alpha_n\} \subset (0,1), \{\beta_n\} \subset [0,1)$ satisfy $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty$. The following result is from [9].

Theorem 8. [9] Let X be a real Banach space with a uniformly convex dual and B a nonempty, closed, convex, bounded subset of X. Let $T: B \to B$

be a continuous and strongly pseudocontractive operator. Then the following assertions are equivalent:

- (1) the Mann iteration (1) converges to the fixed point of T;
- (2) the Ishikawa iteration (18) converges to the fixed point of T.

Theorem 6 and 8 lead to the following corollary.

COROLLARY 9. Let X be a real smooth Banach space with a uniformly convex dual and B a nonempty, closed, convex, bounded subset of X. Let $T: B \to B$ be a continuous and strongly pseudocontractive operator. Suppose $||x_n - Tx_n|| = o(\alpha_n)$, as $n \to \infty$, is satisfied, respectively conditions (8) and (17) are satisfied. Then (1) \Rightarrow (2), respectively (2) \Rightarrow (1), where:

- (1) the Krasnoselskij iteration (2) converges to the fixed point of T,
- (2) then the Ishikawa iteration (18) converges to the fixed point of T.

REMARK 2. In above results, if B is considered unbounded then $\{x_n\}$ bounded, if suppose that T(B) is bounded.

If X is a real smooth Banach space and conditions (8) and (17) are satisfied, then the following remarks are true.

Remark 3.

- (1) The operator T is a strongly pseudocontractive map if and only if (I T) is a strongly accretive map.
- (2) Let $T, S: X \to X$, and $f \in X$ be given. A fixed point for the map $Tx = f + (I S)x, \forall x \in X$ is a solution for Sx = f.
- (3) Consider Krasnoselskij, Mann and Ishikawa iterations with Tx = f + (I S)x to obtain a similar result to Corollary 9 for such T.

Remark 4.

- (1) Let $f \in X$ be given. If (f T) is a strongly accretive map, then T is a strongly pseudocontractive map.
- (2) Let $T, S: X \to X$, and $f \in X$ be given. A fixed point for the map $Tx = f Sx, \forall x \in X$ is a solution for x + Sx = f.
- (3) Consider Krasnoselskij, Mann and Ishikawa iterations with Tx = f Sx to obtain a similar result to Corollary 9 for such T.

REFERENCES

- [1] Berinde, V., Berinde, M., The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpatian J. Math., 21, pp. 13–20, 2005.
- [2] Chang, S.S., Cho, Y.J., Lee, B.S., Jung, J.S., Kang, S. M., Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl., 224, pp. 149–165, 1998.
- [3] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, 1985.
- [4] ISHIKAWA, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, pp. 147–150, 1974.
- [5] Krasnoselskij, M.A., Two remarks on the method of succesive approximations, Uspehi Mat. Nauk., 10, pp. 123–127, 1955.

- [6] Mann, W.E., Mean value in iteration, Proc. Amer. Math. Soc., 4, pp. 506–510, 1953.
- [7] PARK, J.A., Mann-iteration process for the fixed point of strictly pseudocontractive mapping in some Banach spaces, J. Korean Math. Soc., 31, pp. 333–337, 1994.
- [8] Rhoades, B.E., Şoltuz, Ştefan M., On the equivalence of Mann and Ishikawa iteration methods, Int. J. Math. Math. Sci., 2003, pp. 451–459, 2003.
- [9] RHOADES, B.E., ŞOLTUZ, ŞTEFAN M., The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Int. J. Math. Math. Sci., 2003, pp. 2645–2652, 2003.
- [10] Weng, X., Fixed point iteration for local strictly pseudocontractive mapping, Proc. Amer. Math. Soc., 113, pp. 727–731, 1991.

Received by the editors: March 14, 2006.