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GENERATION OF NON-UNIFORM LOW-DISCREPANCY
SEQUENCES IN THE MULTIDIMENSIONAL CASE
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Abstract. In this paper, we extend the results we obtained in an earlier paper,
from the one-dimensional case to the s-dimensional case. We propose two in-
version type methods for generating G-distributed low-discrepancy sequences in
[0,1]°, where G is an arbitrary distribution function. Our methods are based on
the approximation of the inverses of the marginal distribution functions using
linear Lagrange interpolation or cubic Hermite interpolation. We also deter-
mine upper bounds for the G-discrepancy of the sequences we generate using the
proposed methods.
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1. INTRODUCTION

We consider an s-dimensional continuous distribution on [0, 1]°, with distri-
bution function G and density function g (g is nonnegative and f[o,l]s g(u)du =
1). We are interested in generating G-distributed low-discrepancy sequences
in [0,1]*. We first recall some useful notions and results.

DEFINITION 1 (discrepancy). Let P = (xg)ken+ be a sequence of points in
[0,1]%. The discrepancy of the first N terms of sequence P is defined as

DN(xlw"axN) = Sup
JClo,1]¢

%AN(*LP) - )\s(‘]) )

where the supremum is calculated over all subintervals J of [0,1]° of the form
S 1lai, bi]; As is the s-dimensional Lebesgue measure; An(J, P) counts the
number of elements of the set (x1,...,xn), falling into the interval J, i.e.

N
AN(J, P) =Y 1y(x).
k=1
1y is the characteristic function of J.
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The sequence P is called uniformly distributed if Dy (x1,...,zn) — 0 when
N — o0.

The uniformly distributed sequence P is said to be a low-discrepancy se-
quence if we have

Dy(x1,...,2n) = O((log N)°/N)  for all N > 2.

The discrepancy can be viewed as a measure for the deviation from the
uniform distribution. Uniformly distributed low-discrepancy sequences are
constructed in [4], [5], [6] and [I0]. An overview on discrepancy and uniformly
distributed low-discrepancy sequences is provided in [I0]. The definition of
discrepancy can be generalized in a straightforward way.

DEFINITION 2 (G-discrepancy). Consider an s-dimensional continuous dis-
tribution on [0,1)%, with distribution function G. Let Ag be the probability
measure induced by G. Let P = (zi)ken+ be a sequence of points in [0, 1]°.
The G-discrepancy of the first N terms of sequence P is defined as

DN,G(xl) s 7:1:N) = Ssup %AN(J) P) - AG(‘]) )
JClo,1]¢

where the supremum is calculated over all subintervals J of [0,1]° of the form
H?:l [(li, bl] .

The sequence P is called G-distributed if Dy g(z1,...,2xn) — 0 when N —
00.
The G-distributed sequence P is said to be a low-discrepancy sequence if we
have

Dyc(z1,...,zn) = O((logN)°/N)  for all N > 2.

G-distributed low-discrepancy sequences are used in Quasi-Monte Carlo
(QMC) integration, to approximate f[(),l]s f(z)dG(z), where f : [0,1]° —
R. The integral f[o,l]s f(z)dG(z) is approximated by =+ SV, f(x), where
(zk)ken+ is a G-distributed low-discrepancy sequence in [0, 1]%. If f is a func-
tion with finite variation in the sense of Hardy and Krause, then an upper
bound for the error of approximation in QMC integration is given by the non-
uniform Koksma-Hlawka inequality (see [I] or [I1]). A detailed discussion on
the variation in the sense of Hardy and Krause is given in [12].

THEOREM 3 (non-uniform Koksma-Hlawka inequality). [I], [1I]. Let f :
[0,1]* — R be a function of bounded variation in the sense of Hardy and
Krause. Consider a distribution on [0, 1]°, with distribution function G. Then,
for any x1,...,xn € [0,1]%, we have

N
M | e [ f@)d6E)

<Vur(f)Dyg(T1,...,2N),
k= [0,1]3

z|-

1
where Vi (f) is the variation of f in the sense of Hardy and Krause.
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In the following, we are concerned with methods for generating G-distributed
low-discrepancy sequences in [0, 1]*. The methods in this paper use the one-
dimensional marginal distributions defined below.

DEFINITION 4. Consider an s-dimensional continuous distribution on [0, 1]°,
with density function g. For a point u = (u(l), e ,u(s)) € [0,1]%, the marginal
density functions g;, I =1,...,s, are defined by

(2)

gi (u(l)) =
= /.../g(t(l),...,t(l_l),u(l),t(l+1),...t(s))dt(l)...dt(l_l)dt(H'l)...dt(s),
——
[0’1}571
and the marginal distribution functions Gy, l =1,...,s, are defined by

u®
(3) Gl = [ gy,

In this paper, we consider s-dimensional continuous distributions on [0, 1]*,
with g(u) = [Ti_ g1(u®), Yu = (uM, ..., u®) € [0,1]°. We assume that Gy,
l=1,...,s, are invertible on [0, 1].

THEOREM 5. [11] Let o = (o, ...,an) be a set of points in [0,1]°, with
o = (a,gl),.. ) 1,...,N. Consider an s-dimensional continu-
ous distribution on [0, ] , zth d@stmbutzon function G and density function
g. Let g;, 1 = 1,...,s, be the marginal density functions and assume that
g(u) = [l gl(u(l)), Vu = (uM, ..., u®)) € [0,1]°. Furthermore, let Gy,
[ =1,...,s, be the marginal distribution functions and assume that they are

invertible on [0, 1]. Construct the set of points 5 = (B1, ..., Bn) in [0, 1]5, with
B (ﬁ,ﬁ e BY) k=1 N by B = Gl el), B0 = Gt (af),

- Bk = (aé )), sequentially. Then the G-discrepancy of the constructed
set of pomts s given by

Dnc(Bi,...,6n) = Dn(ou,...,an).

Based on Theorem [5] it follows that in order to generate G-distributed low-
discrepancy sequences in [0, 1]°, we may proceed as follows. First, we consider
a uniformly distributed low-discrepancy sequence (zx)gen+ in [0, 1]° and then,

we construct the sequence (yx)ken+, with yp = (ylgl), e, yks)), where

@ ¢V =c7'=D), P =6'EY), Y =61@Y), ken

The constructed sequence (yg)ren+ is a G-distributed low-discrepancy se-
quence in [0, 1]°.

This modality of generating G-distributed low-discrepancy sequences in
[0,1]° can be applied only if the analytical expressions of functions Gl_l,
l=1,...,s, are known.
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Very often, the inverse functions G[l, l=1,...,s, arenot given analytically.
In this case, one may use approximations of the inverse functions Gl_l, l =
1,...,s. Several ways of approximating these functions are proposed in the
literature.

The method proposed in Hlawka [§] is based on the following result.

THEOREM 6. [8]. Consider an s-dimensional continuous distribution on
[0, 1]%, with distribution function G and density function g(u) = [];; g; (ul)),
Vu = (uV, ... ul®) €[0,1]°. Assume that g;(t) # 0, for almost everyt € [0,1]
and for all j = 1,...,s. Furthermore, assume that g;, j = 1,...,s, are
continuous on [0,1]. Denote by My = sup,ep s 9(uv). Let (z1,...,2Nn) be a
set of points in [0,1]°. Generate the set of points (y1,...,yn), with

P ' z_: 0, (a>] (=),

r=1

—

()

Z\H

forallk=1,...,N and all j = 1,...,s, where [a] denotes the integer part of
a. Then the genemted set of points has a G-discrepancy of

(6) DN,G(yla---ayN) (2—|—68M )DN(.’L‘l,..., N)-
In Theorem [6] the assumption that g;(t) # 0, for almost every t € [0,1],
implies that G; is strictly increasing on [0, 1], for all j = 1,...,s. Based on

this, and on the fact that G;(0) =0, G;(1) =1 and G; is continuous on [0, 1]
(as it is absolutely continuous), it follows that G is invertible on [0, 1], for all
j =1,...,s. The assumption that g;, j = 1,...,s, are continuous on [0, 1]
implies that M, < oo.

The disadvantage of the Hlawka method is that the resulting set of points
is generated on a grid with spacing 1/N. This implies that, when adding some
points, all the other points have to be regenerated.

Hartinger and Kainhofer [7] avoid the grid structure in the Hlawka method.
They propose a transformation and bound the G-discrepancy of the trans-
formed set of points as follows.

THEOREM 7. [7]. Let (z1,...,xN) be a set of points in [0,1]° and P =
(21,...,2N) be a set of points in [0,1]. Let G be a distributz’on function on
[0,1]%, with bounded, continuous density g(u) = [Ii_, gi(u?), Yu = (u @ ...
u®)) € [0,1)°, and g(u)) < M < oo for alll. Furthermore, assume that the
marginal distribution functions G;, 1 = 1,...,s, are invertible on [0,1]. Define
fork=1,..., N andl=1,...,s the values

Z;(f)_ _ )+

max and z = min Zn.
A:{zn€P|Gl(zn)<azk>} B={z,€Pla\" <Gy(z4)}
Setz,gf) =0if A= (Z)andzk =1ifB=0.
Then the G-discrepancy of any transformed set of points (y1,...,yn), with
the property that y,il) € (z,(gl)f,z,(gl”] foralll1 <k < Nandalll <1 <s, s
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bounded by
(7)  Dnacy,.-- yn) < Dn(x1,...,2n) + (1 +2M)°Dy(z1,. .., 2N).

In the method of Hartinger and Kainhofer, any value y,(j) € (z,(f)f, z,(ClH] can

be considered as Gl_l(w,(cl)). They do not analyze the possibility of approxi-
mating Gl_1 using interpolation methods.

2. AN INVERSION TYPE METHOD USING LAGRANGE INTERPOLATION

In the following, we propose an inversion type method for generating G-
distributed low-discrepancy sequences in [0, 1]°. The method is based on the
approximation of the inverse functions G;l, l=1,...,s, using linear Lagrange
interpolation. We also determine upper bounds for the G-discrepancy of the
sequence we generate using the proposed method. The method extends the
results we obtained in an earlier paper [13], from the one-dimensional case to
the s-dimensional case.

The following results are needed to prove the main results of this section.

LEMMA 8. [9]. Let Py = (uy,...,un) and P» = (vi,...,vN) be two sets of
points in [0,1]°. If for all 1 <1 < s and all 1 <k < N the condition

®) u) =] <=

holds for some values €, we get the following bound on the difference of the
discrepancies

S
(9) |Dn(u,...,un) = Dn(v1,...,on)| < JJ(1 4 2¢) — 1.
=1
PROPOSITION 9. [13]. Let (z1,22,...,2Nn) be a set of points in [0, 1], with
200 =0< 21 <29<...<zy <1=:2zn41. The following inequality holds
(10) |zn — zZn+1] < Dn(z1,--.,2N), n=20,...,N.

We have the following main result, in which we bound the G-discrepancy
of the set of points that will be generated.

THEOREM 10. Let (x1,...,zN) be a set of points in [0,1]° and (21, 22, ..., 2N)
be a set of points in [0,1], with 0 < z; < 23 < ... < zy < 1. We define zo =0
and zy4+1 = 1. Consider an s-dimensional continuous distribution on [0,1]%,
with density function g and distribution function G. Let g;, | = 1,...,s, be
the marginal density functions and assume that g(u) = [[i—; gi(u®), Yu =
(M, ... ul®)) € [0,1]%. Furthermore, assume that supeo) gi(t) < M < oo,
Vi=1,...,s, and g)(t) # 0, YVt € [0,1],¥l = 1,...,s. Let G, | = 1,...,s,

be the marginal distribution functions. For k = 1,...,N andl = 1,...,s,
determine the interval (zg)f,zlg)ﬂ of the form (zp, zn41], n € {0,1,..., N},
such that

G5 <) < Gilz").
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Generate the set of points (y1,...,yn) in [0,1]°, given by

l l l l)—
o__w-GED) o -G e
(11) Yy = 0= Ok T )+ (D)
Gi(z, ) —Gilz,") Gi(z, ") — Gz, )
forallk=1,. Nandalllzl,...,s
IfG, e C’2 0,1] and H || < L for all1 <1 < s, then the G-discrepancy of
the constructed set of pomts (y1,92,-..,yn) s bounded by

(12) DN,G(y17'-'7yN> < DN(xla7xN)+((1+M3L>S_1)DN(z177ZN)

Proof. The proof proceeds in the following two steps.
Step 1. For each [ =1,...,s, we consider the one-dimensional projections

! !
@ 2Dy

The assumption that g;(t) # 0, V¢ € [0, 1], implies that Gj is strictly increas-
ing on [0, 1]. From the expression (3| of the marginal distribution function Gj,
it follows that G;(0) = 0, G;(1) = 1 and G is continuous on [0,1] (as it is
absolutely continuous). Based on these considerations, it follows that G is
invertible on [0, 1].

I

In order to approximate Gl_1 (a:,(f)), k=1,...,N, we determine the interval

(z,(cl)_,z,(clH], as described in the statement of the theorem. As G, (z,(gl)_) <
x,(gl) < Gl(z,(cl)Jr), it follows that G; ' (x (l)) (z,g)_,z,gl)+]. We will approxi-

1( @ @ (Zl(c) : Igl)-ﬁ-}

mate G| (7}, ) with a value Y , which is calculated using a

linear Lagrange interpolation of G; ' with nodes G; (z,gl)_) and G| (z,(jH). The
interpolation formula is
G;'= LG+ RiGy Y,

where LlGl_1 is the Lagrange interpolation polynomial of degree 1 and RlGl_1
is the remainder. The values of Gl_1 at the nodes are Gl_l(Gl (z,(cl)_)) = z,gl)_
and G, 1 (G (z,gl)+)) = z,g)Jr. Using the expression of the Lagrange interpola-
tion polynomial, we obtain

l )+ l 0H—

2l — (") NOE 2 — () OSSN0

1)— l k l )—\ "k — Jk -

G =G T G -G
{

As a consequence, we approximate Gfl (m,(f)) with yk). The approximation
error (see [I4]) is bounded by

(LG (@) =

u(z®
13 (676 - o) = 1m(e ) ) < Oy

o0’

where

u@)] = (=) - Gi(=)7)) (@) - Gi(= ),
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and
_ g(G ) _ 9
(14) G = G Nl = |55
: (qu(G )3 : 9 lloo
As Gl(z](j) ) < a;,(!) < Gl(z,(cl)Jr), we obtain
(15)
O+
! I)— )+ -
‘xlg)_Gl(zlg) )’§|Gl(z,(€ {_‘/m t)dt <M\zk —Z]i) |.

(0)— (l)+}
k

Since (2’ ,z
and we get

is an interval of type (zn, zn+1], we apply Proposition|§|

|z,(€l) - zk | = |zn41 — 2] < Dn(z1, ..., 2N).

Relation becomes

]x,(j) — GZ(Z](CZ)_)‘ < MDN(Zl, ey ZN).
Similarly, we get

|$l(€ Gl( )| <MDN(21,... N)-
It follows that

(16) Ju(ay))| = |(ap’ - Gz<z£f>‘>>< V= Gl < MDY (s z).

Using and , relation (13]) becomes

M2D]2V(z1, .. .,ZN)
2

a9
g7

2712
(17) |G;1($l(cl)) _ylgl)’ < M DN(zl,...,zN)L'

o0

On the other hand, we have

(18)  |Giw)) — 2| = [Gi(w))) - Gi(GT ()| =

< MG (@) )|
Substituting into and using (Dy)? < Dy, as Dy < 1, we obtain

l l M3D2(Zlv"'azN) MSDN(zla"'>ZN)
19)  |Gi)) -] < —25 2

Step 2. We know that condition (19)) is verified for all [ = 1,...,s and all
3

k=1,...,N. We apply Lemma with ¢, = w =g P =

(v1,...,vN), with vy, = (G (yl(cl)))lzl...,s’ k=1,...,N and P, = (x1,...,2N),

with z, = (a:,(cl))lzlm . k=1,...,N. We obtain

L.

L<

(20)  |Dn(P) - Dn(Po)| < [[(1+22) — 1 = (1425 — 1.
=1
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Next, we apply Theorem [5| and we get Dn(P1) = Dng(yi,...,yn). For-
mula becomes

Dna(yi,--- yn) < Dn(xy,...,2n) + (14 26)° — 1.
We expand the binomial term and we use (Dy)* < Dy, as Dy < 1. We get
DN,G(?JI; - ,yN) < DN(:cl, .. .,.%'N) + (1 + M3LDN(21, - ,zN))S —1

s
k
< DN(I‘l, RN ,:BN) + Z CE(MSLDN(Zl, - .,ZN))
k=1

s
k
DN(I‘l, - ,JJN) + DN(zl, C ,ZN) Z Cf(MgL)
k=1

IN

= DN(xl, - ,:EN) + ((1 + MSL)S — 1)DN(2’1, - ,ZN).
]

Based on Theorem it follows that for generating G-distributed low-
discrepancy sequences in [0, 1]°, we may proceed as follows. First, we consider
a uniformly-distributed low-discrepancy sequence (xg)gen+ in [0,1]°. Then,
we construct the sequence (yx)ken+, given by . The sequence (yi)ren+ is a
G-distributed low-discrepancy sequence in [0, 1]*, as we prove in the following
result.

THEOREM 11. Let (x)ren+ be a uniformly distributed low-discrepancy se-
quence in [0, 1)° and (zx)ren= be an increasing uniformly distributed low-discre-
pancy sequence in [0,1]. Consider a distribution on [0,1]°, with distribution
function G and density function g, that verify the conditions in Theorem [10]
Construct the sequence (yg)gen+, with y = (y,(fl),...,y,(f)), k € N*, where
yg) s given by , for allk € N* and alll = 1,...,s. Then (yg)ren+ 1S a
G-distributed low-discrepancy sequence in [0, 1]°.

Proof. As (zi)ken+ and (2x)ken+ are uniformly distributed sequences in
[0,1)® and [0,1], respectively, we have limy_,oc Dn(21,...,2n) = 0 and
limy_o0 Dn(21,...,2n) = 0. Using formula (12), we get

(21) lim Dng(y1,..-,yn) <
N—o0
< lim Dy(21,...,2n5) + (1 + M3L)* — 1) lim Dy(z1,...,2y5) = 0.
N—oo N—o0

This implies imy 00 DN .G (Y1, --.,yn) = 0. According to Deﬁnition (2k) ken
is a G-distributed sequence in [0, 1]°.
Furthermore, as (zx)gen+ and (zp)ren+ are low-discrepancy sequences in
[0,1]° and [0, 1], respectively, we have
Dy(z1,...,2n) = O((log N)°/N), Dn(z1,...,2n) = O((logN)/N),

for all N > 2.
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Using , we get Dy a(y1,...,yn) = O((log N)*/N) for all N > 2. Ac-
cording to Definition [2 (yx)ren+ is a low-discrepancy sequence in [0,1]°. O

In our method, by adding a new point, the elements already generated
remain unchanged, which represents an advantage. We notice that the ana-
lytical expressions of functions Gy, g, gg, l=1,...,s, have to be known. These
functions have to verify the conditions in Theorem The generation of a
G-distributed low-discrepancy sequence in [0, 1]® is described in Algorithm

ALGORITHM 12. An inversion type method based on the approximation of
functions Gfl, l=1,...,s, using linear Lagrange interpolation

Input data:
- the integer V;
- the set of points (z1,...,xy), consisting of the first N terms of a
uniformly distributed low-discrepancy sequence (zy)gen+ in [0, 1]%;
- the set of points (z1, 22,...,2n), consisting of the first NV terms of a
uniformly distributed low-discrepancy sequence in [0, 1];
- the marginal distribution functions G;, [ =1,...,s;

Step 1. Sort increasingly the elements of the set of points (z1,...,2n).
Step 2.
for/=1,...,sdo
for k=1,...,N do
Compute the values 0= si 2 as described in Theorem
k k>
Compute the value y,gl), given by formula .
end for
end for
Output data: the set of points (y1,...,yn), with yx = (y,gl),...,y,is)), k=
1,..., N, consisting of the first N terms of a G-distributed low-discrepancy
sequence in [0, 1]°.

3. AN INVERSION TYPE METHOD USING HERMITE INTERPOLATION

Next, we propose an inversion type method that is based on the approxi-
mation of the inverse functions Gfl, l=1,...,s, using cubic Hermite inter-
polation. The method can be used to generate G-distributed low-discrepancy
sequences in [0, 1]°. We obtain the following main result.

THEOREM 13. Consider the same hypotheses as in Theorem For k =
1,....,N and | = 1,...,s, determine the interval (zlgl)*,z,(j)ﬂ of the form
(zn, 2n+1], n € {0,1,..., N}, such that

0)— l l
Gi(:f7) <o) < G0,
Generate the set of points (y1,...,yn) in [0,1]°, given by

(22) 1 = hoo(ai?) 2" o (@) +hon () oy i ()
1\ z

[}
X q(z0%)’
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where
0 (- (%) oG (")
h = 1-2 !
o0 () (@ (0 )-GO G (2 ,i” )-Gi(+7)
2
0 (o (7)) o) =Gi(")
h = 1-2 !
00D S e @\ e G
_ 2
RN 71 9 ) [ =T C )

hu(z)) =

forallk=1,...,N and alll=1,...,s.
IfG, e 04[0 1] and

) 1€
(@E)-al=)"

)

)

’ 9"g? — 109/ g,91 + 159> H
7
9; 00

<L

for all 1 <1 < s, then the G-discrepancy of the constructed set of points
(y1,--.,yn) is bounded by

(23) DN@'(yl,. . .,yN) < DN(I‘l, e ,:UN)+ <(1+M17;L)8—1)DN(2’1, e ,ZN).

Proof. We follow the same steps as in Theorem We give only the differ-
ences.

Step 1. We consider the one-dimensional projections (.%gl), . xgv)) for each
I =1,...,s. We will approximate Gfl(xl(cl)), k =1,...,N, with a value
y,g) (zl(f) ,(C) |, which is calculated using a cubic Hermite interpolation

of G;! with double nodes G;(z\"7) and G;(2\"). The values of G;! and
l k !

(GyY) at the nodes are Gy (Gy(2"7)) = z(l) : G;l(al(z,gl”)) = T,

(G (Gul5)7)) = — L and (G7Y' (G <£ ) = oty The Hermite

a(=7)

interpolation formula is
Gyl = H3Gy ' + RsG Y,

where H;»,Gl_1 is the Hermite interpolation polynomial of degree 3 and R3Gl_1
is the remainder. Using the expression of the Hermite polynomial with double
nodes (see [2]), it can be proved, after some calculus, that

(H3G7 ) (2)) = ).

As a consequence, we approximate G (mé)) with y,gl). The bound for the
approximation error (see [2]) is

®
_ ! - l l Ulﬂ) —1,\(4
2 (RG] = (67 @) -0 < My oy
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where
l [ 1—\\ 2 [ [ 2
(@) = (@) — Gi(z)7) (@) — Gz )P < MDY (=1, 2w),s

and

"2 "1 13
(G, = | AR <,
g 00
Relation becomes
M*D3
’Gfl(l‘i(cl)) B IE)Z)| < ~ (21, ,ZN)L‘

4)
As in Theorem |10 and using (DN)4 < Dy, since Dy < 1, we obtain

M>5L M°L
25) law)) - =) < 5 T Dv(an).

Step 2. We know that condition (25| is verified for all [ = 1,...,s and all
k=1,...,N. We apply Lerlnma with ¢ = W =¢c P =
(v1,...,0N), with vy = (Gl(yl(f)))lzl...,s’ k=1,...,N and P, = (x1,...,2zN),
with zp = (x,(cl)) ,k=1,...,N. We obtain

D?:V(Zla .. .,ZN) S

I=1...,s
(26)  |Dn(P) — Da(Po)| < [[(1+221) — 1= (1425 — 1.
=1

From Theorem [5, we get Dn(P1) = Dn,c(y1,-..,yn). Relation be-
comes
DN7c;(y1, ... ,yN) < DN(.%'l, ... ,.TUN) + (1 -+ 26)8 — 1.
We expand the binomial term and we use (Dy) < Dy, as Dy < 1. We
obtain

DN7g(y1, - ,yN) < DN(.Z‘l, A ,Z‘N) + ((l + M1752L)5 — 1)DN(21, .. .,ZN).
O

Based on Theorem [I3] it follows that in order to generate G-distributed low-
discrepancy sequences in [0, 1]°, we may proceed as follows. First, we consider
a uniformly-distributed low-discrepancy sequence (zg)gen+ in [0,1]°. Then,
we construct the sequence (yx)ren+, given by . The sequence (yx)ren+ is
a G-distributed low-discrepancy sequence in [0,1]%, as we show in the result
bellow.

THEOREM 14. Let (x)ren+ be a uniformly distributed low-discrepancy se-
quence in [0, 1]° and (zx)ren+ be an increasing uniformly distributed low-discre-
pancy sequence in [0, 1]. Consider a continuous distribution on [0, 1]°, with dis-
tribution function G and density function g, that verify the conditions in The-

orem . Construct the sequence (yi)ren+, with yx = (ylgl), e yl(:)), k € N*,

where ykl) is given by , for allk e N* and alll =1,...,s. Then (yx)ken~
is a G-distributed low-discrepancy sequence in [0,1]°.
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Proof. The proof is similar to the one given in Theorem O

"

In our method, the analytical expressions of functions Gy, g, g;, gl”, g s
[=1,...,s, have to be known. These functions must verify the conditions in
Theorem The generation of a G-distributed low-discrepancy sequence in
[0,1]® is described in Algorithm

ALGORITHM 15. An inversion type method based on the approximation of
functions Gl_l, l=1,...,s, using cubic Hermite interpolation

We use the same Input data as in Algorithm [T2]
Step 1. Sort increasingly the elements of the set of points (z1,...,2zn).
Step 2.
forl=1,...,sdo
for k=1,...,N do
Compute the values z,(gl)_ si z,(cl)Jr, as described in Theorem

Compute the value y,gl), given by formula .

end for
end for
Output data: the set of points (yi,...,yn), with y, = (y,(cl),...,y,(cs)), k=

1,..., N, consisting of the first N terms of a G-distributed low-discrepancy
sequence in [0, 1]°.

We conclude that the proposed inversion type methods using linear La-
grange interpolation or cubic Hermite interpolation generate G-distributed
low-discrepancy sequences in [0, 1]°. The proposed methods are recommended
when the inverses of the marginal distribution functions cannot be given ex-
plicitly in analytical form.
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