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SEQUENCES IN THE MULTIDIMENSIONAL CASE
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Abstract. In this paper, we extend the results we obtained in an earlier paper,
from the one-dimensional case to the s-dimensional case. We propose two in-
version type methods for generating G-distributed low-discrepancy sequences in
[0, 1]s, where G is an arbitrary distribution function. Our methods are based on
the approximation of the inverses of the marginal distribution functions using
linear Lagrange interpolation or cubic Hermite interpolation. We also deter-
mine upper bounds for the G-discrepancy of the sequences we generate using the
proposed methods.
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1. INTRODUCTION

We consider an s-dimensional continuous distribution on [0, 1]s, with distri-
bution function G and density function g (g is nonnegative and

∫
[0,1]s g(u)du =

1). We are interested in generating G-distributed low-discrepancy sequences
in [0, 1]s. We first recall some useful notions and results.

Definition 1 (discrepancy). Let P = (xk)k∈N∗ be a sequence of points in
[0, 1]s. The discrepancy of the first N terms of sequence P is defined as

DN (x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
NAN (J, P )− λs(J)

∣∣∣∣,
where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s

i=1[ai, bi]; λs is the s-dimensional Lebesgue measure; AN (J, P ) counts the
number of elements of the set (x1, . . . , xN ), falling into the interval J, i.e.

AN (J, P ) =
N∑

k=1
1J(xk).

1J is the characteristic function of J .
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The sequence P is called uniformly distributed if DN (x1, . . . , xN )→ 0 when
N →∞.

The uniformly distributed sequence P is said to be a low-discrepancy se-
quence if we have

DN (x1, . . . , xN ) = O
(
(logN)s/N

)
for all N ≥ 2.

The discrepancy can be viewed as a measure for the deviation from the
uniform distribution. Uniformly distributed low-discrepancy sequences are
constructed in [4], [5], [6] and [10]. An overview on discrepancy and uniformly
distributed low-discrepancy sequences is provided in [10]. The definition of
discrepancy can be generalized in a straightforward way.

Definition 2 (G-discrepancy). Consider an s-dimensional continuous dis-
tribution on [0, 1]s, with distribution function G. Let λG be the probability
measure induced by G. Let P = (xk)k∈N∗ be a sequence of points in [0, 1]s.
The G-discrepancy of the first N terms of sequence P is defined as

DN,G(x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
NAN (J, P )− λG(J)

∣∣∣∣,
where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s

i=1[ai, bi].
The sequence P is called G-distributed if DN,G(x1, . . . , xN )→ 0 when N →

∞.
The G-distributed sequence P is said to be a low-discrepancy sequence if we

have
DN,G(x1, . . . , xN ) = O

(
(logN)s/N

)
for all N ≥ 2.

G-distributed low-discrepancy sequences are used in Quasi-Monte Carlo
(QMC) integration, to approximate

∫
[0,1]s f(x)dG(x), where f : [0, 1]s →

R. The integral
∫

[0,1]s f(x)dG(x) is approximated by 1
N

∑N
k=1 f(xk), where

(xk)k∈N∗ is a G-distributed low-discrepancy sequence in [0, 1]s. If f is a func-
tion with finite variation in the sense of Hardy and Krause, then an upper
bound for the error of approximation in QMC integration is given by the non-
uniform Koksma-Hlawka inequality (see [1] or [11]). A detailed discussion on
the variation in the sense of Hardy and Krause is given in [12].

Theorem 3 (non-uniform Koksma-Hlawka inequality). [1], [11]. Let f :
[0, 1]s → R be a function of bounded variation in the sense of Hardy and
Krause. Consider a distribution on [0, 1]s, with distribution function G. Then,
for any x1, . . . , xN ∈ [0, 1]s, we have

(1)
∣∣∣∣∣ 1

N

N∑
k=1

f(xk)−
∫

[0,1]s
f(x)dG(x)

∣∣∣∣∣ ≤ VHK(f)D∗N,G(x1, . . . , xN ),

where VHK(f) is the variation of f in the sense of Hardy and Krause.
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In the following, we are concerned with methods for generatingG-distributed
low-discrepancy sequences in [0, 1]s. The methods in this paper use the one-
dimensional marginal distributions defined below.

Definition 4. Consider an s-dimensional continuous distribution on [0, 1]s,
with density function g. For a point u =

(
u(1), . . . , u(s)) ∈ [0, 1]s, the marginal

density functions gl, l = 1, . . . , s, are defined by

gl

(
u(l)) =

(2)

=
∫
. . .

∫
︸ ︷︷ ︸
[0,1]s−1

g
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s))dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Gl, l = 1, . . . , s, are defined by

(3) Gl

(
u(l)) =

∫ u(l)

0
gl(t)dt.

In this paper, we consider s-dimensional continuous distributions on [0, 1]s,
with g(u) =

∏s
l=1 gl(u(l)), ∀u =

(
u(1), . . . , u(s)) ∈ [0, 1]s. We assume that Gl,

l = 1, . . . , s, are invertible on [0, 1].

Theorem 5. [11]. Let α = (α1, . . . , αN ) be a set of points in [0, 1]s, with
αk =

(
α

(1)
k , . . . , α

(s)
k

)
, k = 1, . . . , N . Consider an s-dimensional continu-

ous distribution on [0, 1]s, with distribution function G and density function
g. Let gl, l = 1, . . . , s, be the marginal density functions and assume that
g(u) =

∏s
l=1 gl(u(l)), ∀u =

(
u(1), . . . , u(s)) ∈ [0, 1]s. Furthermore, let Gl,

l = 1, . . . , s, be the marginal distribution functions and assume that they are
invertible on [0, 1]. Construct the set of points β = (β1, . . . , βN ) in [0, 1]s, with
βk =

(
β

(1)
k , . . . , β

(s)
k

)
, k = 1, . . . , N , by β

(1)
k = G−1

1 (α(1)
k ), β(2)

k = G−1
2 (α(2)

k ),
. . ., β(s)

k = G−1
s (α(s)

k ), sequentially. Then the G-discrepancy of the constructed
set of points is given by

DN,G(β1, . . . , βN ) = DN (α1, . . . , αN ).

Based on Theorem 5, it follows that in order to generate G-distributed low-
discrepancy sequences in [0, 1]s, we may proceed as follows. First, we consider
a uniformly distributed low-discrepancy sequence (xk)k∈N∗ in [0, 1]s and then,
we construct the sequence (yk)k∈N∗ , with yk =

(
y

(1)
k , . . . , y

(s)
k

)
, where

(4) y
(1)
k = G−1

1
(
x

(1)
k

)
, y

(2)
k = G−1

2
(
x

(2)
k

)
, . . . , y

(s)
k = G−1

s

(
x

(s)
k

)
, k ∈ N∗.

The constructed sequence (yk)k∈N∗ is a G-distributed low-discrepancy se-
quence in [0, 1]s.

This modality of generating G-distributed low-discrepancy sequences in
[0, 1]s can be applied only if the analytical expressions of functions G−1

l ,
l = 1, . . . , s, are known.
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Very often, the inverse functionsG−1
l , l = 1, . . . , s, are not given analytically.

In this case, one may use approximations of the inverse functions G−1
l , l =

1, . . . , s. Several ways of approximating these functions are proposed in the
literature.

The method proposed in Hlawka [8] is based on the following result.

Theorem 6. [8]. Consider an s-dimensional continuous distribution on
[0, 1]s, with distribution function G and density function g(u) =

∏s
j=1 gj(u(j)),

∀u =
(
u(1), . . . , u(s)) ∈ [0, 1]s. Assume that gj(t) 6= 0, for almost every t ∈ [0, 1]

and for all j = 1, . . . , s. Furthermore, assume that gj, j = 1, . . . , s, are
continuous on [0, 1]. Denote by Mg = supu∈[0,1]s g(u). Let (x1, . . . , xN ) be a
set of points in [0, 1]s. Generate the set of points (y1, . . . , yN ), with

(5) y
(j)
k = 1

N

N∑
r=1

[
1 + x

(j)
k −Gj

(
x(j)

r

)]
= 1
N

N∑
r=1

1[0,x
(j)
k

]
(
Gj
(
x(j)

r

))
,

for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of
a. Then the generated set of points has a G-discrepancy of
(6) DN,G(y1, . . . , yN ) ≤ (2 + 6sMg)DN (x1, . . . , xN ).

In Theorem 6, the assumption that gj(t) 6= 0, for almost every t ∈ [0, 1],
implies that Gj is strictly increasing on [0, 1], for all j = 1, . . . , s. Based on
this, and on the fact that Gj(0) = 0, Gj(1) = 1 and Gj is continuous on [0, 1]
(as it is absolutely continuous), it follows that Gj is invertible on [0, 1], for all
j = 1, . . . , s. The assumption that gj , j = 1, . . . , s, are continuous on [0, 1]
implies that Mg <∞.

The disadvantage of the Hlawka method is that the resulting set of points
is generated on a grid with spacing 1/N . This implies that, when adding some
points, all the other points have to be regenerated.

Hartinger and Kainhofer [7] avoid the grid structure in the Hlawka method.
They propose a transformation and bound the G-discrepancy of the trans-
formed set of points as follows.

Theorem 7. [7]. Let (x1, . . . , xN ) be a set of points in [0, 1]s and P =
(z1, . . . , zN ) be a set of points in [0, 1]. Let G be a distribution function on
[0, 1]s, with bounded, continuous density g(u) =

∏s
l=1 gl(u(l)), ∀u =

(
u(1), . . . ,

u(s)) ∈ [0, 1]s, and gl(u(l)) ≤ M < ∞ for all l. Furthermore, assume that the
marginal distribution functions Gl, l = 1, . . . , s, are invertible on [0, 1]. Define
for k = 1, . . . , N and l = 1, . . . , s the values

z
(l)−
k = max

A={zn∈P |Gl(zn)≤x
(l)
k
}
zn and z

(l)+
k = min

B={zn∈P |x(l)
k
≤Gl(zn)}

zn.

Set z(l)−
k = 0 if A = ∅ and z(l)+

k = 1 if B = ∅.
Then the G-discrepancy of any transformed set of points (y1, . . . , yN ), with

the property that y(l)
k ∈

(
z

(l)−
k , z

(l)+
k

]
for all 1 ≤ k ≤ N and all 1 ≤ l ≤ s, is



5 Generation of non-uniform low-discrepancy sequences 211

bounded by
(7) DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN ) + (1 + 2M)sDN (z1, . . . , zN ).

In the method of Hartinger and Kainhofer, any value y(l)
k ∈

(
z

(l)−
k , z

(l)+
k

]
can

be considered as G−1
l

(
x

(l)
k

)
. They do not analyze the possibility of approxi-

mating G−1
l using interpolation methods.

2. AN INVERSION TYPE METHOD USING LAGRANGE INTERPOLATION

In the following, we propose an inversion type method for generating G-
distributed low-discrepancy sequences in [0, 1]s. The method is based on the
approximation of the inverse functions G−1

l , l = 1, . . . , s, using linear Lagrange
interpolation. We also determine upper bounds for the G-discrepancy of the
sequence we generate using the proposed method. The method extends the
results we obtained in an earlier paper [13], from the one-dimensional case to
the s-dimensional case.

The following results are needed to prove the main results of this section.

Lemma 8. [9]. Let P1 = (u1, . . . , uN ) and P2 = (v1, . . . , vN ) be two sets of
points in [0, 1]s. If for all 1 ≤ l ≤ s and all 1 ≤ k ≤ N the condition

(8)
∣∣∣u(l)

k − v
(l)
k

∣∣∣ ≤ εl

holds for some values εl, we get the following bound on the difference of the
discrepancies

(9) |DN (u1, . . . , uN )−DN (v1, . . . , vN )| ≤
s∏

l=1
(1 + 2εl)− 1.

Proposition 9. [13]. Let (z1, z2, . . . , zN ) be a set of points in [0, 1], with
z0 := 0 ≤ z1 < z2 < . . . < zN ≤ 1 =: zN+1. The following inequality holds
(10) |zn − zn+1| ≤ DN (z1, . . . , zN ), n = 0, . . . , N.

We have the following main result, in which we bound the G-discrepancy
of the set of points that will be generated.

Theorem 10. Let (x1, . . . , xN ) be a set of points in [0, 1]s and (z1, z2, . . . , zN )
be a set of points in [0, 1], with 0 ≤ z1 < z2 < . . . < zN ≤ 1. We define z0 = 0
and zN+1 = 1. Consider an s-dimensional continuous distribution on [0, 1]s,
with density function g and distribution function G. Let gl, l = 1, . . . , s, be
the marginal density functions and assume that g(u) =

∏s
l=1 gl(u(l)), ∀u =(

u(1), . . . , u(s)) ∈ [0, 1]s. Furthermore, assume that supt∈[0,1] gl(t) ≤ M < ∞,
∀l = 1, . . . , s, and gl(t) 6= 0, ∀t ∈ [0, 1],∀l = 1, . . . , s. Let Gl, l = 1, . . . , s,
be the marginal distribution functions. For k = 1, . . . , N and l = 1, . . . , s,
determine the interval

(
z

(l)−
k , z

(l)+
k

]
of the form (zn, zn+1], n ∈ {0, 1, . . . , N},

such that
Gl

(
z

(l)−
k

)
< x

(l)
k ≤ Gl

(
z

(l)+
k

)
.
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Generate the set of points (y1, . . . , yN ) in [0, 1]s, given by

(11) y
(l)
k =

x
(l)
k −Gl

(
z

(l)+
k

)
Gl

(
z

(l)−
k

)
−Gl

(
z

(l)+
k

)z(l)−
k +

x
(l)
k −Gl

(
z

(l)−
k

)
Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

)z(l)+
k ,

for all k = 1, . . . , N and all l = 1, . . . , s.
If Gl ∈ C2[0, 1] and

∥∥ g′l
g3

l

∥∥
∞ ≤ L for all 1 ≤ l ≤ s, then the G-discrepancy of

the constructed set of points (y1, y2, . . . , yN ) is bounded by

(12) DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN )+
(
(1+M3L)s−1

)
DN (z1, . . . , zN ).

Proof. The proof proceeds in the following two steps.
Step 1. For each l = 1, . . . , s, we consider the one-dimensional projections(

x
(l)
1 , . . . , x

(l)
N

)
.

The assumption that gl(t) 6= 0, ∀t ∈ [0, 1], implies that Gl is strictly increas-
ing on [0, 1]. From the expression (3) of the marginal distribution function Gl,
it follows that Gl(0) = 0, Gl(1) = 1 and Gl is continuous on [0, 1] (as it is
absolutely continuous). Based on these considerations, it follows that Gl is
invertible on [0, 1].

In order to approximate G−1
l

(
x

(l)
k

)
, k = 1, . . . , N , we determine the interval(

z
(l)−
k , z

(l)+
k

]
, as described in the statement of the theorem. As Gl

(
z

(l)−
k

)
<

x
(l)
k ≤ Gl

(
z

(l)+
k

)
, it follows that G−1

l

(
x

(l)
k

)
∈
(
z

(l)−
k , z

(l)+
k

]
. We will approxi-

mate G−1
l

(
x

(l)
k

)
with a value y(l)

k ∈
(
z

(l)−
k , z

(l)+
k

]
, which is calculated using a

linear Lagrange interpolation of G−1
l with nodes Gl

(
z

(l)−
k

)
and Gl

(
z

(l)+
k

)
. The

interpolation formula is

G−1
l = L1G

−1
l +R1G

−1
l ,

where L1G
−1
l is the Lagrange interpolation polynomial of degree 1 and R1G

−1
l

is the remainder. The values of G−1
l at the nodes are G−1

l

(
Gl

(
z

(l)−
k

))
= z

(l)−
k

and G−1
l

(
Gl

(
z

(l)+
k

))
= z

(l)+
k . Using the expression of the Lagrange interpola-

tion polynomial, we obtain

(L1G
−1
l )
(
x

(l)
k

)
=

x
(l)
k −Gl

(
z

(l)+
k

)
Gl

(
z

(l)−
k

)
−Gl

(
z

(l)+
k

)z(l)−
k +

x
(l)
k −Gl

(
z

(l)−
k

)
Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

)z(l)+
k = y

(l)
k .

As a consequence, we approximate G−1
l

(
x

(l)
k

)
with y(l)

k . The approximation
error (see [14]) is bounded by

(13)
∣∣G−1

l

(
x

(l)
k

)
− y(l)

k

∣∣ =
∣∣R1

(
G−1

l

)(
x

(l)
k

)∣∣ ≤ ∣∣u(x(l)
k

)∣∣
2!

∥∥(G−1
l )′′

∥∥
∞,

where ∣∣u(x(l)
k

)∣∣ =
∣∣(x(l)

k −Gl

(
z

(l)−
k

))(
x

(l)
k −Gl

(
z

(l)+
k

))∣∣,
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and

(14) (G−1
l )′′ = − g′l(G

−1
l )

(gl(G−1
l ))3 , ||(G−1

l )′′||∞ =
∥∥∥∥ g′lg3

l

∥∥∥∥
∞
.

As Gl(z
(l)−
k ) < x

(l)
k ≤ Gl(z

(l)+
k ), we obtain

(15)∣∣x(l)
k −Gl

(
z

(l)−
k

)∣∣ ≤ ∣∣Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

)∣∣ =
∣∣∣∣∣
∫ z

(l)+
k

z
(l)−
k

gl(t)dt
∣∣∣∣∣ ≤M ∣∣z(l)+

k −z(l)−
k

∣∣.
Since

(
z

(l)−
k , z

(l)+
k

]
is an interval of type (zn, zn+1], we apply Proposition 9

and we get ∣∣z(l)+
k − z(l)−

k

∣∣ = |zn+1 − zn| ≤ DN (z1, . . . , zN ).
Relation (15) becomes∣∣x(l)

k −Gl

(
z

(l)−
k

)∣∣ ≤MDN (z1, . . . , zN ).
Similarly, we get ∣∣x(l)

k −Gl

(
z

(l)+
k

)∣∣ ≤MDN (z1, . . . , zN ).
It follows that

(16)
∣∣u(x(l)

k

)∣∣ =
∣∣(x(l)

k −Gl

(
z

(l)−
k

))(
x

(l)
k −Gl

(
z

(l)+
k

))∣∣ ≤M2D2
N (z1, . . . , zN ).

Using (16) and (14), relation (13) becomes

(17)
∣∣G−1

l

(
x

(l)
k

)
− y(l)

k

∣∣ ≤ M2D2
N (z1, . . . , zN )

2

∥∥∥∥∥ g′lg3
l

∥∥∥∥∥
∞

≤ M2D2
N (z1, . . . , zN )

2 L.

On the other hand, we have

∣∣Gl

(
y

(l)
k

)
− x(l)

k

∣∣ =
∣∣Gl

(
y

(l)
k

)
−Gl

(
G−1

l

(
x

(l)
k

))∣∣ =
∣∣∣∣∣
∫ y

(l)
k

G−1
l

(
x

(l)
k

) gl(t)dt
∣∣∣∣∣(18)

≤M
∣∣G−1

l

(
x

(l)
k

)
− y(l)

k

∣∣.
Substituting (17) into (18) and using (DN )2 ≤ DN , as DN ≤ 1, we obtain

(19)
∣∣Gl

(
y

(l)
k

)
− x(l)

k

∣∣ ≤ M3D2
N (z1, . . . , zN )

2 L ≤ M3DN (z1, . . . , zN )
2 L.

Step 2. We know that condition (19) is verified for all l = 1, . . . , s and all
k = 1, . . . , N . We apply Lemma 8, with εl = M3LDN (z1,...,zN )

2 = ε, P1 =
(v1, . . . , vN ), with vk =

(
Gl

(
y

(l)
k

))
l=1...,s

, k = 1, . . . , N and P2 = (x1, . . . , xN ),
with xk =

(
x

(l)
k

)
l=1...,s

, k = 1, . . . , N . We obtain

(20) |DN (P1)−DN (P2)| ≤
s∏

l=1
(1 + 2εl)− 1 = (1 + 2ε)s − 1.
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Next, we apply Theorem 5 and we get DN (P1) = DN,G(y1, . . . , yN ). For-
mula (20) becomes

DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN ) + (1 + 2ε)s − 1.

We expand the binomial term and we use (DN )i ≤ DN , as DN ≤ 1. We get

DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN ) +
(
1 +M3LDN (z1, . . . , zN )

)s − 1

≤ DN (x1, . . . , xN ) +
s∑

k=1
Ck

s

(
M3LDN (z1, . . . , zN )

)k
≤ DN (x1, . . . , xN ) +DN (z1, . . . , zN )

s∑
k=1

Ck
s

(
M3L

)k
= DN (x1, . . . , xN ) +

(
(1 +M3L)s − 1

)
DN (z1, . . . , zN ).

�

Based on Theorem 10, it follows that for generating G-distributed low-
discrepancy sequences in [0, 1]s, we may proceed as follows. First, we consider
a uniformly-distributed low-discrepancy sequence (xk)k∈N∗ in [0, 1]s. Then,
we construct the sequence (yk)k∈N∗ , given by (11). The sequence (yk)k∈N∗ is a
G-distributed low-discrepancy sequence in [0, 1]s, as we prove in the following
result.

Theorem 11. Let (xk)k∈N∗ be a uniformly distributed low-discrepancy se-
quence in [0, 1]s and (zk)k∈N∗ be an increasing uniformly distributed low-discre-
pancy sequence in [0, 1]. Consider a distribution on [0, 1]s, with distribution
function G and density function g, that verify the conditions in Theorem 10.
Construct the sequence (yk)k∈N∗, with yk =

(
y

(1)
k , . . . , y

(s)
k

)
, k ∈ N∗, where

y
(l)
k is given by (11), for all k ∈ N∗ and all l = 1, . . . , s. Then (yk)k∈N∗ is a
G-distributed low-discrepancy sequence in [0, 1]s.

Proof. As (xk)k∈N∗ and (zk)k∈N∗ are uniformly distributed sequences in
[0, 1]s and [0, 1], respectively, we have limN→∞DN (x1, . . . , xN ) = 0 and
limN→∞DN (z1, . . . , zN ) = 0. Using formula (12), we get

lim
N→∞

DN,G(y1, . . . , yN ) ≤(21)

≤ lim
N→∞

DN (x1, . . . , xN ) +
(
(1 +M3L)s − 1

)
lim

N→∞
DN (z1, . . . , zN ) = 0.

This implies limN→∞DN,G(y1, . . . , yN ) = 0. According to Definition 2, (zk)k∈N∗
is a G-distributed sequence in [0, 1]s.

Furthermore, as (xk)k∈N∗ and (zk)k∈N∗ are low-discrepancy sequences in
[0, 1]s and [0, 1], respectively, we have

DN (x1, . . . , xN ) = O
(
(logN)s/N

)
, DN (z1, . . . , zN ) = O

(
(logN)/N

)
,

for all N ≥ 2.
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Using (12), we get DN,G(y1, . . . , yN ) = O
(
(logN)s/N

)
for all N ≥ 2. Ac-

cording to Definition 2, (yk)k∈N∗ is a low-discrepancy sequence in [0, 1]s. �

In our method, by adding a new point, the elements already generated
remain unchanged, which represents an advantage. We notice that the ana-
lytical expressions of functions Gl, gl, g

′
l , l = 1, . . . , s, have to be known. These

functions have to verify the conditions in Theorem 10. The generation of a
G-distributed low-discrepancy sequence in [0, 1]s is described in Algorithm 12.

Algorithm 12. An inversion type method based on the approximation of
functions G−1

l , l = 1, . . . , s, using linear Lagrange interpolation

Input data:
- the integer N ;
- the set of points (x1, . . . , xN ), consisting of the first N terms of a

uniformly distributed low-discrepancy sequence (xk)k∈N∗ in [0, 1]s;
- the set of points (z1, z2, . . . , zN ), consisting of the first N terms of a

uniformly distributed low-discrepancy sequence in [0, 1];
- the marginal distribution functions Gl, l = 1, . . . , s;

Step 1. Sort increasingly the elements of the set of points (z1, . . . , zN ).
Step 2.

for l = 1, . . . , s do
for k = 1, . . . , N do

Compute the values z(l)−
k şi z(l)+

k , as described in Theorem 10;
Compute the value y(l)

k , given by formula (11).
end for

end for
Output data: the set of points (y1, . . . , yN ), with yk =

(
y

(1)
k , . . . , y

(s)
k

)
, k =

1, . . . , N , consisting of the first N terms of a G-distributed low-discrepancy
sequence in [0, 1]s.

3. AN INVERSION TYPE METHOD USING HERMITE INTERPOLATION

Next, we propose an inversion type method that is based on the approxi-
mation of the inverse functions G−1

l , l = 1, . . . , s, using cubic Hermite inter-
polation. The method can be used to generate G-distributed low-discrepancy
sequences in [0, 1]s. We obtain the following main result.

Theorem 13. Consider the same hypotheses as in Theorem 10. For k =
1, . . . , N and l = 1, . . . , s, determine the interval

(
z

(l)−
k , z

(l)+
k

]
of the form

(zn, zn+1], n ∈ {0, 1, . . . , N}, such that

Gl

(
z

(l)−
k

)
< x

(l)
k ≤ Gl

(
z

(l)+
k

)
.

Generate the set of points (y1, . . . , yN ) in [0, 1]s, given by

(22) y
(l)
k = h00

(
x

(l)
k

)
z

(l)−
k +h10

(
x

(l)
k

)
z

(l)+
k +h01

(
x

(l)
k

) 1
gl

(
z

(l)−
k

)+h11(x(l)
k ) 1

gl(z
(l)+
k

)
,
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where

h00
(
x

(l)
k

)
=

(
x

(l)
k
−Gl

(
z

(l)+
k

))2(
Gl

(
z

(l)−
k

)
−Gl

(
z

(l)+
k

))2

(
1− 2 x

(l)
k
−Gl

(
z

(l)−
k

)
Gl

(
z

(l)−
k

)
−Gl

(
z

(l)+
k

)),
h10
(
x

(l)
k

)
=

(
x

(l)
k
−Gl

(
z

(l)−
k

))2(
Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

))2

(
1− 2 x

(l)
k
−Gl

(
z

(l)+
k

)
Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

)),
h01
(
x

(l)
k

)
=

(
x

(l)
k
−Gl

(
z

(l)−
k

))(
x

(l)
k
−Gl

(
z

(l)+
k

))2(
Gl

(
z

(l)−
k

)
−Gl

(
z

(l)+
k

))2 ,

h11
(
x

(l)
k

)
=

(
x

(l)
k
−Gl

(
z

(l)+
k

))(
x

(l)
k
−Gl

(
z

(l)−
k

))2(
Gl

(
z

(l)+
k

)
−Gl

(
z

(l)−
k

))2 ,

for all k = 1, . . . , N and all l = 1, . . . , s.
If Gl ∈ C4[0, 1] and∥∥∥g′′′l g

2
l − 10g′′l g′lgl + 15g′3l

g7
l

∥∥∥
∞
≤ L

for all 1 ≤ l ≤ s, then the G-discrepancy of the constructed set of points
(y1, . . . , yN ) is bounded by

(23) DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN )+
((

1+ M5L
12
)s−1

)
DN (z1, . . . , zN ).

Proof. We follow the same steps as in Theorem 10. We give only the differ-
ences.
Step 1. We consider the one-dimensional projections

(
x

(l)
1 , . . . , x

(l)
N

)
, for each

l = 1, . . . , s. We will approximate G−1
l

(
x

(l)
k

)
, k = 1, . . . , N , with a value

y
(l)
k ∈

(
z

(l)−
k , z

(l)+
k

]
, which is calculated using a cubic Hermite interpolation

of G−1
l with double nodes Gl

(
z

(l)−
k

)
and Gl

(
z

(l)+
k

)
. The values of G−1

l and
(G−1

l )′ at the nodes are G−1
l

(
Gl

(
z

(l)−
k

))
= z

(l)−
k , G−1

l

(
Gl

(
z

(l)+
k

))
= z

(l)+
k ,(

G−1
l )′

(
Gl

(
z

(l)−
k

))
= 1

gl

(
z

(l)−
k

) and
(
G−1

l )′
(
Gl

(
z

(l)+
k

))
= 1

gl

(
z

(l)+
k

) . The Hermite

interpolation formula is
G−1

l = H3G
−1
l +R3G

−1
l ,

where H3G
−1
l is the Hermite interpolation polynomial of degree 3 and R3G

−1
l

is the remainder. Using the expression of the Hermite polynomial with double
nodes (see [2]), it can be proved, after some calculus, that(

H3G
−1
l

)(
x

(l)
k

)
= y

(l)
k .

As a consequence, we approximate G−1
l

(
x

(l)
k

)
with y

(l)
k . The bound for the

approximation error (see [2]) is

(24)
∣∣R3

(
G−1

l )
(
x

(l)
k

)∣∣ =
∣∣G−1

l

(
x

(l)
k

)
− y(l)

k

∣∣ ≤ ∣∣u(x(l)
k

)∣∣
4!

∥∥(G−1
l

)(4)∥∥
∞,
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where∣∣u(x(l)
k

)∣∣ =
∣∣(x(l)

k −Gl

(
z

(l)−
k

))2(
x

(l)
k −Gl(z

(l)+
k

))2∣∣ ≤M4D4
N (z1, . . . , zN ),

and ∥∥(G−1
l )(4)∥∥

∞ =
∥∥∥∥g′′′l g

2
l − 10g′′l g′lgl + 15g′3l

g7
l

∥∥∥∥
∞
≤ L.

Relation (24) becomes∣∣G−1
l

(
x

(l)
k

)
− y(l)

k

∣∣ ≤ M4D4
N (z1, . . . , zN )

4! L.

As in Theorem 10 and using (DN )4 ≤ DN , since DN ≤ 1, we obtain

(25)
∣∣Gl

(
y

(l)
k

)
− x(l)

k

∣∣ ≤ M5L

24 D4
N (z1, . . . , zN ) ≤ M5L

24 DN (z1, . . . , zN ).

Step 2. We know that condition (25) is verified for all l = 1, . . . , s and all
k = 1, . . . , N . We apply Lemma 8, with εl = M5LDN (z1,...,zN )

24 = ε, P1 =
(v1, . . . , vN ), with vk =

(
Gl

(
y

(l)
k

))
l=1...,s

, k = 1, . . . , N and P2 = (x1, . . . , xN ),
with xk =

(
x

(l)
k

)
l=1...,s

, k = 1, . . . , N . We obtain

(26) |DN (P1)−DN (P2)| ≤
s∏

l=1
(1 + 2εl)− 1 = (1 + 2ε)s − 1.

From Theorem 5, we get DN (P1) = DN,G(y1, . . . , yN ). Relation (26) be-
comes

DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN ) + (1 + 2ε)s − 1.
We expand the binomial term and we use (DN )i ≤ DN , as DN ≤ 1. We

obtain
DN,G(y1, . . . , yN ) ≤ DN (x1, . . . , xN ) +

((
1 + M5L

12
)s − 1

)
DN (z1, . . . , zN ).

�

Based on Theorem 13, it follows that in order to generate G-distributed low-
discrepancy sequences in [0, 1]s, we may proceed as follows. First, we consider
a uniformly-distributed low-discrepancy sequence (xk)k∈N∗ in [0, 1]s. Then,
we construct the sequence (yk)k∈N∗ , given by (22). The sequence (yk)k∈N∗ is
a G-distributed low-discrepancy sequence in [0, 1]s, as we show in the result
bellow.

Theorem 14. Let (xk)k∈N∗ be a uniformly distributed low-discrepancy se-
quence in [0, 1]s and (zk)k∈N∗ be an increasing uniformly distributed low-discre-
pancy sequence in [0, 1]. Consider a continuous distribution on [0, 1]s, with dis-
tribution function G and density function g, that verify the conditions in The-
orem 13. Construct the sequence (yk)k∈N∗, with yk =

(
y

(1)
k , . . . , y

(s)
k

)
, k ∈ N∗,

where y(l)
k is given by (22), for all k ∈ N∗ and all l = 1, . . . , s. Then (yk)k∈N∗

is a G-distributed low-discrepancy sequence in [0, 1]s.
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Proof. The proof is similar to the one given in Theorem 11. �

In our method, the analytical expressions of functions Gl, gl, g
′
l , g

′′
l , g′′′l ,

l = 1, . . . , s, have to be known. These functions must verify the conditions in
Theorem 13. The generation of a G-distributed low-discrepancy sequence in
[0, 1]s is described in Algorithm 15.

Algorithm 15. An inversion type method based on the approximation of
functions G−1

l , l = 1, . . . , s, using cubic Hermite interpolation

We use the same Input data as in Algorithm 12.
Step 1. Sort increasingly the elements of the set of points (z1, . . . , zN ).
Step 2.

for l = 1, . . . , s do
for k = 1, . . . , N do

Compute the values z(l)−
k şi z(l)+

k , as described in Theorem 13;
Compute the value y(l)

k , given by formula (22).
end for

end for
Output data: the set of points (y1, . . . , yN ), with yk =

(
y

(1)
k , . . . , y

(s)
k

)
, k =

1, . . . , N , consisting of the first N terms of a G-distributed low-discrepancy
sequence in [0, 1]s.

We conclude that the proposed inversion type methods using linear La-
grange interpolation or cubic Hermite interpolation generate G-distributed
low-discrepancy sequences in [0, 1]s. The proposed methods are recommended
when the inverses of the marginal distribution functions cannot be given ex-
plicitly in analytical form.
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un), Bull. Soc. Math. France, 109 (1981), 143–182.
[5] Faure, H., Discrépances de suites associées à un système de numération (en dimension

s), Acta Arith., 41 (1982), 337–351.
[6] Halton, J.H., On the efficiency of certain quasi-random sequences of points in evalu-

ating multidimensional integrals, Numer. Math., 2 (1960), 84–90.
[7] Hartinger, J. and Kainhofer, R., Non-Uniform Low-Discrepancy Sequence Gener-

ation and Integration of Singular Integrands, Proceedings of Monte Carlo and Quasi-
Monte Carlo Methods 2004, H. Niederreiter, eds., Springer-Verlag, Berlin, 2006, 163–
180.

[8] Hlawka, E., Gleichverteilung und Simulation, Österreich. Akad. Wiss. Math.-Natur.
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