A DUAL GENERALIZATION OF CONVEX FUNCTIONS*

M. APETRII ${ }^{\dagger}$

Abstract

As it is well known, the convexity property of a function may be described by the quasiconvexity property of all "the dual perturbations" of this function. If we consider the "dual perturbation" only in a subset $M \subset X^{*}$ we obtain a general class of functions called M-convex. In this paper we establish some special properties and a continuity theorem of this new type of functions.

MSC 2000. 52A41, 46B20, 26A51, 90C25.
Keywords. M-convexity, convex function, quasiconvex function, extrem point, local bounded function.

1. INTRODUCTIONS

Taking as starting point the Crouzeix characterization of convex function by quasiconvexity property of all "dual perturbation" (see [7]), in an earlier paper we introduced a new type of convexity, only the "dual perturbation" in a given subset $M \subset X^{*}$.

In the sequel, X denotes a real linear normed space and X^{*} its topological dual. The symbol (\cdot, \cdot) will be used for the usual pairing between X and X^{*}, while $\langle\cdot, \cdot\rangle$ will be used for the associated bilinear functional, i.e. $\left\langle x, x^{*}\right\rangle=$ $x^{*}(x)$, for all $x \in X, x^{*} \in X^{*}$.

We recall some well known concepts in convex analysis (see [4], [5], [6], [10]).
For a function $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ we denote by

$$
\operatorname{Dom}(f)=\{x \in X \mid f(x)<+\infty\}
$$

its domain.
When $\operatorname{Dom}(f)$ is nonempty we say that f is proper.
A function $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is said to be convex if for every $x_{1}, x_{2} \in X$ and for every $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

A function f is called quasiconvex if for every $x_{1}, x_{2} \in X$ and for every $\lambda \in[0,1]$ we have:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\},
$$

[^0]equivalently
$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq f\left(x_{2}\right)
$$
whenever $x_{1}, x_{2} \in X, \lambda \in[0,1]$ such that $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
Also, it is well known that a function is quasiconvex if and only if its level sets
$$
L(f, \alpha)=\{x \in X \mid f(x) \leq \alpha\}
$$
are convex for every $\alpha \in \mathbb{R}$.
Now, we remind the definition of M-convex functions, introduced in [1].
If M is a nonempty subset of X^{*}, we say that the function $f: X \longrightarrow$ $\mathbb{R} \cup\{+\infty\}$ is M-convex if for each $x^{*} \in M$ the sets
$$
L\left(f, \alpha, x^{*}\right)=\left\{x \in X \mid f(x) \leq \alpha+\left\langle x^{*}, x\right\rangle\right\}
$$
are convex for every $\alpha \in \mathbb{R}$.
If $-f$ is M-convex we say that f is M-concave.
Throughout this paper, for a given nonempty subset $M \subset X^{*}$, we will denote by
$$
\mathcal{C}(M) \text { the class of all } M \text {-convex functions. }
$$

From this definition, we observe that if the set M contains the origin then we obtain a new type of convexity which lies between quasiconvexity and convexity.

For the beginning, we recall some property of this functions proved in [1].
Proposition 1. (i) If $f \in \mathcal{C}(M)$ then $f-x^{*} \in C\left(M-x^{*}\right)$ for every $x^{*} \in X^{*}$.
(ii) $f \in \mathcal{C}(M)$ if and only if $f-x^{*}$ is quasiconvex, for every $x^{*} \in M$.
(iii) If $M_{1} \subset M_{2}$ then $\mathcal{C}\left(M_{2}\right) \subseteq \mathcal{C}\left(M_{1}\right)$.
(iv) $\mathcal{C}(M)=C\left(\bar{M}^{w^{*}}\right)$, where $\bar{M}^{w^{*}}$ is the closure of M with respect to w^{*} topology.
(v) If $f \in \mathcal{C}(M)$ then for each $\lambda>0, \lambda f$ is λM-convex.
(vi) If $f_{i} \in \mathcal{C}\left(M_{i}\right)$ for every $i \in I$, then $f=\sup _{i \in I} f_{i} \in C\left(\bigcap_{i \in I} M_{i}\right)$.
(vii) The domain of a M-convex function f is a convex set.

Similarly to the convex case ([4], [5], [10]), the M-convex functions can be characterized with the aid of its one dimensional restrictions.

Theorem 2. If $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ and $\emptyset \neq M \subseteq X^{*}$, then f is a M convex function if and only if for every $x, v \in X$, the associated function F, defined by

$$
F(t)=f(x+t v), t \in \mathbb{R}
$$

is M_{v}-convex, where

$$
M_{v}=\left\{\left\langle x^{*}, v\right\rangle / x^{*} \in M\right\} .
$$

In the following result, proved in [1], we characterize the M-convex functions using only its values on the line segments, establishing a characteristic inequality of convex type.

Theorem 3. Let us consider $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ and $\emptyset \neq M \subseteq X^{*}$. Then f is M-convex if and only if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq f(y)+\lambda \inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle, \tag{1}
\end{equation*}
$$

for every $x, y \in X$, and $\lambda \in[0,1]$, where

$$
\begin{equation*}
M_{x, y}=\left\{x^{*} \in M \mid\left\langle x^{*}, x-y\right\rangle \geq f(x)-f(y)\right\} . \tag{2}
\end{equation*}
$$

If f is a M-convex function and

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=f(x)-f(y), \text { for all } x, y \in X,
$$

then f is a convex function.
In fact, by (2) we observe that

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle \geq f(x)-f(y), \text { for all } x, y \in X
$$

On the other hand, if we have

$$
\begin{equation*}
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle \leq 0 \tag{3}
\end{equation*}
$$

whenever $f(x) \leq f(y)$, then

$$
f(\lambda x+(1-\lambda) y) \leq f(y),
$$

i.e. f is quasiconvex.

Moreover, if (3) is fulfilled for all $x, y \in X$, then f is constant.
We recall that the support functional of a set $A \subset X^{*}, \sigma_{A}$ is defined by

$$
\sigma_{A}(x)=\sup _{x^{*} \in A} x^{*}(x), x \in X
$$

Thus, the inequality (1) can be rewritten as

$$
f(\lambda x+(1-\lambda) y) \leq f(y)-\lambda \sigma_{M_{x, y}}(y-x) .
$$

Now, we consider some special cases for the set M. Thus, if M is a convex set, we have that
(4) $\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle= \begin{cases}f(x)-f(y), & -\sigma_{M}(y-x) \leq f(x)-f(y) \leq \\ -\sigma_{M}(y-y), \\ +\infty, & f(x)-f(y) \leq-\sigma_{M}(y-x), \\ +\infty(x)-f(y)>\sigma_{M}(x-y) .\end{cases}$

If we take $M=S^{*}(0, r)=\left\{x^{*} \in X^{*} /\left\|x^{*}\right\| \leq r\right\}$, then

$$
\sigma_{M}(y-x)=r\|y-x\|
$$

and (4) becomes

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle= \begin{cases}f(x)-f(y), & -r\|y-x\| \leq f(x)-f(y) \leq \\ -r\|y-x\|, & f(x)-f(y) \leq-r\|y-x\|, \\ +\infty, & f(x)-f(y)>r\|y-x\|,\end{cases}
$$

or, equivalently, if $f(x) \leq f(y)$, then

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=\left\{\begin{array}{cc}
f(x)-f(y), & f(y)-f(x) \leq r\|y-x\|, \\
-r\|x-y\|, & f(y)-f(x) \geq r\|y-x\| .
\end{array}\right.
$$

Considering this, it is easy to prove that if $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is a Lipschitz function with constant L and f is $S^{*}(0, L)$-convex, then f is convex.

In [12, H. X. Phu and P. T. An introduce the notion of s-quasiconvex (s from "stable") functions, and he show that this functions are stable with respect to the following properties: "all lower level sets are convex", "each local minimum is a global minimum", "each stationary point is a global minimizer".

We specify that a function $f: D \subset X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is called s-quasiconvex if there exists $\sigma>0$ such that

$$
\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{\left\|x_{0}-x_{1}\right\|} \leq \delta \text { implies } \frac{f\left(x_{\lambda}\right)-f\left(x_{1}\right)}{\left\|x_{\lambda}-x_{1}\right\|} \leq \delta
$$

for $|\delta|<\sigma, x_{0}, x_{1} \in D, x_{\lambda}=(1-\lambda) x_{0}+\lambda x_{1}$ and $\lambda \in[0,1]$.
The authors show that this functions can be characterized as follows
(5) a function f is s-quasiconvex if and only if there exists $\varepsilon>0$ such that $f-x^{*}$ is quasiconvex, for every x^{*} with the property $\left\|x^{*}\right\|<\varepsilon$.

Remark 4. The relation (5) can be obtained (on the other way) from Theorem 3, taking M a ball with the center in the origin. In fact, as we see in the relation (5), the class of s-quasiconvex functions are the same with the class of M-convex functions, with $0 \in \operatorname{int}(M)$.

Now we will consider the sets $M \subseteq X^{*}$ with the following property

$$
\text { (} P \text {) for every } x \in X \backslash\{0\} \text {, there exists a sequence }
$$

$$
\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subseteq M \text { such that }\left\langle x_{n}^{*}, x\right\rangle \searrow 0 .
$$

It is easy to prove that if $0 \in \operatorname{int}(M)$, then the set M has the property (P).
Example 5. Let $X=l^{1}$ and $M=\left\{\alpha_{n} e_{n} \mid\right.$ where $\alpha_{n} \in\left(-\frac{1}{n}, \frac{1}{n}\right), n \in \mathbb{N}$,
 property (P). The function defined by

$$
f(x)=\left\{\begin{array}{c}
\sup _{x^{*} \in M}\left\langle x^{*}, x\right\rangle, x \neq 0 \\
-1, \quad x=0,
\end{array}\right.
$$

is M-convex, but she is not s-quasiconvex.
In the following proposition we present a sufficient condition from property (P).

Proposition 6. Let X be a normed linear spaces such that $\operatorname{dim}(X) \geq 2$ and $M \subseteq X^{*}$ a bounded set, with the property $\overline{\operatorname{con}(M)^{w^{*}}}=X^{*}$. Then the set M has the property (P).

Proof. We start with $x \in X \backslash\{0\}$. Since $\operatorname{dim}(X) \geq 2$ then there exists x^{*}, $y^{*} \in X^{*} \backslash\{0\}$ such that $\left\langle x^{*}, x\right\rangle=0$ and $\left\langle y^{*}, x\right\rangle>0$. For every $n \in \mathbb{N}$ we consider $y_{n}^{*}=\frac{1}{n} y^{*}+\left(1-\frac{1}{n}\right) x^{*}$. Taking into account that $\overline{\operatorname{con}(M)}{ }^{w^{*}}=X^{*}$, we find $\lambda_{n}>0$ and \bar{y}_{n}^{*} such that $\left\langle\bar{y}_{n}^{*}, x\right\rangle>0,\left\langle y_{n}^{*}-\bar{y}_{n}^{*}, x\right\rangle<\frac{1}{n}$ and $\lambda_{n} \bar{y}_{n}^{*} \in M$ for every $n \in \mathbb{N}$. To prove that the set M has the property (P) we passing to limit in the following relation

$$
0<\left\langle\lambda_{n} \bar{y}_{n}^{*}, x\right\rangle=\lambda_{n}\left\langle\bar{y}_{n}^{*}-y_{n}^{*}, x\right\rangle+\lambda_{n}\left\langle y_{n}^{*}, x\right\rangle<\frac{\lambda_{n}}{n}\left(1+\left\langle y^{*}, x\right\rangle\right),
$$

and we obtain that $\left\langle\lambda_{n} \bar{y}_{n}^{*}, x\right\rangle \searrow 0$, because M is bounded.
Lemma 7. Let X be a linear normed space and $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ an $\operatorname{Fr}\left(S^{*}(0 ; r)\right)$-convex function, for some $r>0$. If $\operatorname{dim}(X) \geq 2$ then f is $S^{*}(0 ; r)$-convex.

Proof. It is easy to prove that $S^{*}(0 ; r)_{v}=[-r\|v\|, r\|v\|]$. Since $\operatorname{dim}(X) \geq$ 2, $\operatorname{Fr}\left(S^{*}(0 ; r)\right)$ is a conex set, therefore we obtain that $\operatorname{Fr}\left(S^{*}(0 ; r)\right)_{v}$ is an interval, namely

$$
\operatorname{Fr}\left(S^{*}(0 ; r)\right)_{v}=\left[\inf _{\left\|x^{*}\right\|=r}\left\langle x^{*}, v\right\rangle, \sup _{\left\|x^{*}\right\|=r}\left\langle x^{*}, v\right\rangle\right]=[-r\|v\|, r\|v\|] .
$$

Using the characterization given by Theorem 2 we obtain that f is $S^{*}(0 ; r)$ convex.

Theorem 8. Let X be a linear normed space such that $\operatorname{dim}(X) \geq 2$. Then $f: X \longrightarrow \mathbb{R} \cup\{+\infty\}$ is s-quasiconvex if and only if there exists $r>0$ such that f is $\operatorname{Fr}\left(S^{*}(0 ; r)\right)$-convex.

Proof. The theorem is a consequence of Lemma 7 and the characterization of s-quasiconvex functions.

Theorem 9. Let $M \subseteq X^{*}$ be a set such that $0 \in \operatorname{int}(M)$. If f is M-convex then for every $x, y \in X$, with $f(x) \leq f(y)$, there exists $\alpha \in(0,1]$ such that:

$$
f(\lambda x+(1-\lambda) y) \leq \lambda \alpha f(x)+(1-\lambda \alpha) f(y) \text { for every } \lambda \in[0,1] .
$$

Proof. Obviously, if $x=y$, we can take $\alpha=1$. If $x \neq y$ and $f(x) \leq f(y)$ then we find $0 \neq x_{0}^{*} \in X^{*}$ such that $\left\langle x_{0}^{*}, x-\bar{x}\right\rangle=f(x)-f(y)$. Since $0 \in \operatorname{int}(M)$ there exists $\alpha \in(0,1]$ such that $\alpha x_{0}^{*} \in M$. Therefore $\alpha x_{0}^{*} \in M_{x, y}$ because

$$
\left\langle\alpha x_{0}^{*}, x-y\right\rangle=\alpha\left\langle x_{0}^{*}, x-y\right\rangle \geq f(x)-f(y) .
$$

Now, taking into account that f is M-convex, for every $\lambda \in[0,1]$ we get

$$
f(\lambda x+(1-\lambda) y) \leq f(y)+\lambda \inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle \leq f(y)+\lambda\left\langle\alpha x_{0}^{*}, x-y\right\rangle,
$$

and the proof is complete.
When $M \subset X^{*}$ is a cone, we denote

$$
M^{\perp}=\left\{x \in X \mid\left\langle x^{*}, x\right\rangle=0, \text { for every } x^{*} \in M\right\}
$$

and

$$
M^{\diamond}=\left\{x \in X \mid \text { exists } x^{*} \in M \text { such that }\left\langle x^{*}, x\right\rangle>0\right\} \cup\{0\} .
$$

Is easy to prove that M^{\diamond} is a convex cone.
Thus, a function $f: A \rightarrow \mathbb{R} \cup\{+\infty\}$ is called increasing related to M^{\diamond} if

$$
x-y \in M^{\diamond} \Longrightarrow f(x) \geq f(y)
$$

Theorem 10. Let $A \subset X$ be a convex set and $f: A \rightarrow \mathbb{R} \cup\{+\infty\}$ be a M-convex function such that $(A-A) \cap M^{\perp}=\{0\}$.
If f is increasing related to M^{\diamond} on the set A, then f is a convex function on A.

Proof. Let x, y be two points from A and $\lambda \in[0,1]$.
If $x-y \in \mathcal{C}\left(M^{\diamond} \cup-M^{\diamond}\right)$, then $x \neq y$ and for every $x^{*} \in M$ we have $\left\langle x^{*}, x-y\right\rangle=0$, i.e. $x-y \in(A-A) \cap M^{\perp}$. By hypothesis we find that $x=y$, which is a contradiction. Consequently, we have $x-y \in M^{\diamond}$ or $y-x \in M^{\diamond}$. Now, we suppose that $x-y \in M^{\diamond}$. Then $f(x) \geq f(y)$ because f is increasing related to M^{\diamond} on A. Also, there exists $x^{*} \in M$ such that $\left\langle x^{*}, x-y\right\rangle>0$.

Since M is a cone, then

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=f(x)-f(y)
$$

and taking into account that f is a M-convex function we obtain that

$$
f(\lambda x+(1-\lambda) y) \leq f(y)+\lambda \inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=\lambda f(x)+(1-\lambda) f(y) .
$$

We proceed similarly when $y-x \in M^{\diamond}$.
This proved that f is a convex function on the set A.
Now, let us consider the special case of linear subspaces of X^{*}.
Theorem 11. Let M be a proper linear subspace of X^{*} and let $f: X \longrightarrow$ $\mathbb{R} \cup\{+\infty\}$ be a M-convex function. Then:
(i) $f-x^{*} \in \mathcal{C}(M)$, for every $x^{*} \in M$;
(ii) $\lambda f \in \mathcal{C}(M)$, for every $\lambda \geq 0$;
(iii) $f_{\mid Y}$ is convex, whenever Y is a linear subspace such that $Y \cap M^{\perp}=\{0\}$.

Proof. Since M is a linear subspace then the properties (i) and (ii) follow immediately by Proposition 1 (properties (i) and (v)).
(iii) Let Y be a linear subspace such that $Y \cap M^{\perp}=\{0\}$. Let us take $x, y \in Y$, and $\lambda \in[0,1]$. If $x \neq y$, then $x-y \notin M^{\perp}$. Since M is a proper linear subspace there exists $x^{*} \in M$ such that $\left\langle x^{*}, x-y\right\rangle=f(x)-f(y)$, and so

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=f(x)-f(y)
$$

for any $x, y \in Y$, i.e. $f_{\mid Y}$ is a convex function.
Corollary 12. Let M be a subset of X^{*} such that $\overline{\operatorname{span} M}=X^{*}$ and $\lambda M \subseteq M$ for every $\lambda \geq 0$. Then every M-convex function is convex.

Proof. If $\overline{\operatorname{span} M}=X^{*}$ then $M^{\perp}=\{0\}$. Following the proof of above theorem (iii), we observe that if $\lambda M \subseteq M$ for every $\lambda \geq 0$, then $f_{\mid Y}$ is convex, whenever Y is a linear subspace. Taking $Y=X$, we obtain that f is a convex function.

In Proposition 1 (iv), we see that if $\bar{M}^{w^{*}}=X^{*}$ then, every M-convex function is also a convex function. But this sufficient condition is not necessary. In an earlier paper we established one more general result concerning the equality $\mathcal{C}\left(M_{1}\right)=\mathcal{C}\left(M_{2}\right)$. It is obvious that if $M_{1} \subset M_{2}$, then every M_{2}-convex function is also M_{1}-convex, but conversely is generally not true.

Theorem 13 ([1]). Let $M_{2} \subset X^{*}$ be an open nonempty set. If $\emptyset \neq M_{1} \subset$ M_{2}, then $\mathcal{C}\left(M_{1}\right)=\mathcal{C}\left(M_{2}\right)$ if and only if

$$
\begin{align*}
& \text { for every } x^{*} \in M_{2} \text {, and } x \in X \backslash\{0\} \text {, there exists a sequence } \\
& \quad\left(x_{n}^{*}\right)_{n \in \mathbb{N}} \subseteq M_{1} \text { such that }\left\langle x_{n}^{*}-x^{*}, x\right\rangle \searrow 0 \text {. } \tag{6}
\end{align*}
$$

Taking now $M_{2}=X^{*}$ the property (6) can be written in the following form
for every $\alpha \in \mathbb{R}$, and $x \in X \backslash\{0\}$, exists a sequence $\left(x_{n}^{*}\right)_{n \in \mathbb{N}} \subseteq M$ such that $\left\langle x_{n}^{*}, x\right\rangle \longrightarrow \alpha$.

Consequently, we obtain a characterization of the special cases when M convexity coincides with convexity.

It is easily to prove that if $\bar{M}^{w^{*}}=X^{*}$, then the set M has the property 77 , but conversely is not always true, as we can see if we consider $X=l^{1}$ and

$$
M=\left\{x^{*}=\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{\infty} \mid \exists n_{0} \in \mathbb{N} \text { such that } x_{n_{0}} \neq 0, x_{n}=0, \forall n \neq n_{0}\right\} .
$$

2. THE EXTREME POINTS OF M - CONVEX FUNCTIONS

In the sequel we shall be concerned with a family of functions that lies between the family of strictly quasiconvex functions and the family of the semistrictly quasiconvex functions.

Let us recall that a function f is strictly quasiconvex [4] if

$$
\begin{aligned}
& f(x) \leq f(y) \text { implies that } f(\lambda x+(1-\lambda) y)<f(y), \\
& \text { for every } x \neq y \text {, and } 0<\lambda<1 .
\end{aligned}
$$

Similarly, the condition for the semistrictly quasiconvexity [4] can be written as

$$
\begin{align*}
& f(x)<f(y) \text { implies that } f(\lambda x+(1-\lambda) y)<f(y) \\
& \text { where } x, y \in X \text {, and } 0<\lambda<1 \text {. } \tag{8}
\end{align*}
$$

An important property of the convex functions is that every local minimum is a global one. This property, however, holds for more general families of functions (for instance, the family of semistrict quasiconvex functions, see [4). In this line we consider the sets $M \subseteq X^{*}$ which satisfy the property (P).

Considering a set M with the property (P), we want to see the relationships between the family of M-convex functions and the families of generalized convex functions above defined.

When $M \subset X^{*}$ has the property (P), a M-convex function is not necessary a strictly quasiconvex function as we see if we consider the function $f(x)=1$.

The following theorem shows the relationship between M-convexity and semistrict quasiconvexity.

Theorem 14. If $M \subset X^{*}$ has the property (P), then every M-convex function is a semistrictly quasiconvex function.

Proof. Let us consider $f \in \mathcal{C}(M), x, y \in X$ such that $f(x)<f(y)$, and $0<\lambda<1$. Since $f(x)<f(y)$, by virtute of property (P) there exists $x_{0}^{*} \in M$ such that

$$
f(x)-f(y)<\left\langle x_{0}^{*}, x-y\right\rangle<0 .
$$

Thus, according to (1) we have
$f(\lambda x+(1-\lambda) y) \leq f(y)+\lambda \inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle \leq f(y)+\lambda\left\langle x_{0}^{*}, x-y\right\rangle<f(y)$.
Therefore (8) is fulfilled, i.e. f is semistrictly quasiconvex.
Corollary 15. If $M \subset X^{*}$ has the property (P) and $f \in \mathcal{C}(M)$, then every locally extreme point from $\operatorname{Dom}(f)$ is a minimum global point. Moreover, the set of points at which f attains its global minimum is a convex set.

Proof. If $f \in \mathcal{C}(M)$ then by Theorem 14 it follows that f is semistrictly quasiconvex, therefore every locally extreme point from $\operatorname{Dom}(f)$ is a global minimum point (see [4). If x, y are two global minimum points then

$$
\inf _{x^{*} \in M_{x, y}}\left\langle x^{*}, x-y\right\rangle=0,
$$

and so, by (1), we obtain that

$$
f(\lambda x+(1-\lambda) y) \leq f(y), \text { for every } \lambda \in[0,1] .
$$

This prove that the set of global minimum points is a convex set.
Remark 16. When $M \subset X^{*}$ has the property (P), the function f may not have the strict local maximum points; moreover, in every locally maximum point the function f is locally constant. If f is M-convex and attains its maximum on $\operatorname{int}(\operatorname{Dom}(f))$, then f is constant. When $M \subset X^{*}$ has the property (P), the main difference between semistrictly quasiconvex functions and M-convex functions is that for M-convex functions the set of minimum points is a convex set, property which is not true in the case of semistrictly quasiconvex functions. For example, the function f, defined on \mathbb{R} by $f(x)=0$ for $x \neq 0$ and $f(x)=2$ for $x=0$, is semistrictly quasiconvex but the set of its global minimum points is not convex.

3. CONTINUITY OF M-CONVEX FUNCTIONS

In this section we will study the continuity property of M-convex functions. The following result will be needed later on.

Lemma 17. Let $M \subseteq X^{*}$ be an open set. If $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is a M convex function and $x, y, z \in \operatorname{dom} f$ such that $y=\lambda x+(1-\lambda) z$ with $\lambda \in(0,1)$ then

$$
\begin{equation*}
\frac{f(y)-f(x)}{\|y-x\|} \leq \frac{1}{\|z-y\|^{*}} \inf _{x^{*} \in M_{z, y}}\left\langle x^{*}, z-y\right\rangle \tag{9}
\end{equation*}
$$

Proof. Indeed, if $x^{*} \in M_{z, y}$, since f is M-convex then

$$
L\left(f, f(y)-\left\langle x^{*}, y\right\rangle, x^{*}\right)=\left\{u \in X / f(u) \leq f(y)+\left\langle x^{*}, u-y\right\rangle\right\}
$$

is convex and $y, z \in L\left(f, f(y)-\left\langle x^{*}, y\right\rangle, x^{*}\right)$.
If we suppose that

$$
\frac{f(y)-f(x)}{\|y-x\|}>\frac{1}{\|z-y\|_{x^{*} \in M_{z, y}}} \inf \left\langle x^{*}, z-y\right\rangle
$$

then

$$
f(x)<f(y)-\frac{\|y-x\|}{\|z-y\|}\left\langle x^{*}, z-y\right\rangle=f(y)+\left\langle x^{*}, x-y\right\rangle
$$

Since M is an open set, there exist $\bar{\alpha}>0$ and $x_{0}^{*} \in X^{*}$ such that $\left\langle x_{0}^{*}, x-y\right\rangle=$ -1 and $x^{*}+\alpha x_{0}^{*} \in M$, for every $\alpha \in(0, \bar{\alpha})$. Now, taking α sufficiently small, we have

$$
\begin{aligned}
& f(x)<f(y)+\left\langle x^{*}+\alpha x_{0}^{*}, x-y\right\rangle \\
& f(y)=f(y)+\left\langle x^{*}+\alpha x_{0}^{*}, y-y\right\rangle \\
& f(z)<f(y)+\left\langle x^{*}+\alpha x_{0}^{*}, z-y\right\rangle
\end{aligned}
$$

Denoted $x^{*}+\alpha x_{0}^{*}$ by \bar{x}^{*} and taking
$\epsilon=\frac{1}{2} \min \left\{f(x)-f(y)-\left\langle x^{*}+\alpha x_{0}^{*}, x-y\right\rangle, f(z)<f(y)+\left\langle x^{*}+\alpha x_{0}^{*}, z-y\right\rangle\right\}$, it follows that

$$
\begin{equation*}
x, z \in L\left(f, f(y)-\left\langle\bar{x}^{*}, y\right\rangle-\epsilon, \bar{x}^{*}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
y \notin L\left(f, f(y)-\left\langle\bar{x}^{*}, y\right\rangle-\epsilon, \bar{x}^{*}\right) \tag{11}
\end{equation*}
$$

From (10) and (11) we obtain that the set $L\left(f, f(y)-\left\langle\bar{x}^{*}, y\right\rangle-\epsilon, \bar{x}^{*}\right)$ is not convex, which is not true.

Therefore

$$
f(x) \geq f(y)-\frac{\|y-x\|}{\|z-y\|}\left\langle x^{*}, z-y\right\rangle \text { for every } x^{*} \in M_{z, y}
$$

which proved (9).
Now we will define a special type of radial convexity.

Definition 18. We say that the function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is radial upper convex if for every $x \in X$, there exists $\varepsilon_{x}>0$ such that for every $v \in X$, with $\|v\|=1$, the function $F(t)=f(x+t v)$ is $\left(-\infty,-\varepsilon_{x}\right) \cup\left(\varepsilon_{x},+\infty\right)$-convex.

Example 19. The function $f: X \longrightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\frac{1}{2}\|x\|^{2}, & \|x\| \leq 1 \\ \frac{1}{2}, & \|x\|>1 .\end{cases}
$$

is radial upper convex but is not convex. Is obvious that this function is not convex. To prove that she is radial upper convex, we show that for every $x, v \in X$, with $\|v\|=1$, the function $F: \mathbb{R} \longrightarrow \mathbb{R}$, defined by

$$
F(t)=f(x+t v)-\alpha t,
$$

is quasiconvex for every $\alpha \in(-\infty,-1) \cup(1,+\infty)$. Since F is continuous, is sufficiently to prove that ∂F is an quasimonotone operator for every $\alpha \in$ $(-\infty,-1) \cup(1,+\infty)$. Taking into account that $\mid\langle v, J(x+t v\rangle| \leq 1$ for every t with the property $\|x+t v\| \leq 1$, we obtain that ∂F is quasimonotone (see [2], [5]).

We denote by J the duality mapping between X and X^{*}, defined by:

$$
J(x)=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\}, x \in X .
$$

It is well known (see [5]) that this mapping is the subdifferential of the function $\frac{1}{2}\|\cdot\|^{2}$, i.e. $J(x)=\partial\left(\frac{1}{2}\|x\|^{2}\right), x \in X$.

In the sequel, we say that the set $M \subseteq X^{*}$ has property $\left(P^{*}\right)$ if satisfy
$\left(P^{*}\right)$ for every $x \in X \backslash\{0\}$ exist $\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subseteq M$ such that $\left\langle x_{n}^{*}, x\right\rangle \rightarrow \infty$.
Theorem 20. Let M be a set with property $\left(P^{*}\right)$ and let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a M-convex function. Then f is radial continuous on ri($\operatorname{dom} f)$.

Proof. Without loose our generality, considering Theorem 2 we can suppose that f is defined on \mathbb{R}, otherwise we take $F(t)=f(x+t v)$ for $x, v \in X$. Thus, we must to prove that f is continuous. If $x_{0} \in \operatorname{ri}(\operatorname{dom} f)$ and we suppose that f is not lower semicontinuous in x_{0}, then there exist $\epsilon>0$ and a net $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n} \rightarrow x_{0}$ such that

$$
\begin{equation*}
-\epsilon>f\left(x_{n}\right)-f\left(x_{0}\right), \text { for every } n \in \mathbb{N} \text {. } \tag{12}
\end{equation*}
$$

We can suppose that $x_{n}>x_{0}$, for every $n \in \mathbb{N}$ (analogue when $x_{n}<x_{0}$).
Since $x_{0} \in \operatorname{ri}(\operatorname{dom} f)$, there exists $u_{1}<x_{0}$ such that $u_{1} \in \operatorname{dom} f$. Taking into account that f is M-convex and the property $\left(P^{*}\right)$ is fulfilled, then there exists $x^{*} \in M$ such that

$$
\begin{equation*}
f\left(u_{1}\right)<f\left(x_{0}\right)-\frac{\epsilon}{2}+\left\langle x^{*}, u_{1}-x_{0}\right\rangle . \tag{13}
\end{equation*}
$$

But, by (122), exists $u_{2}>x_{0}$ such that

$$
\begin{equation*}
f\left(u_{2}\right)<f\left(x_{0}\right)-\frac{\epsilon}{2}+\left\langle x^{*}, u_{2}-x_{0}\right\rangle . \tag{14}
\end{equation*}
$$

Considering (13) and (14) we obtain that $L\left(f, f\left(x_{0}\right)-\frac{\epsilon}{2}, x^{*}\right)$ is not convex i.e. f is not M-convex. Therefore f must be lower semicontinuous in x_{0}. Now, if we suppose, by a contradiction, that f is not upper semicontinuous in $x_{0} \in \operatorname{ri}(\operatorname{dom} f)$, then there exist a net $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \operatorname{dom}(f)$ and $\epsilon>0$ such that $x_{n} \rightarrow x_{0}$ and

$$
f\left(x_{n}\right)-f\left(x_{0}\right)>\epsilon, \text { for every } n \in \mathbb{N} .
$$

Following the same steps as in previous case we obtain that there exist $v_{1}, v_{2} \in$ $\operatorname{dom}(f)$ and $x^{*} \in M$ such that

$$
\begin{equation*}
f\left(v_{1}\right)>f\left(x_{0}\right)+\frac{\epsilon}{2}+\left\langle x^{*}, v_{1}-x_{0}\right\rangle . \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(v_{2}\right)>f\left(x_{0}\right)+\frac{\epsilon}{2}+\left\langle x^{*}, v_{2}-x_{0}\right\rangle . \tag{16}
\end{equation*}
$$

But, by (15) and (16) we find that $L\left(f, f\left(x_{0}\right)+\frac{\epsilon}{2}, x^{*}\right)$ is not convex. This ended the proof.

Remark 21. In the above theorem the condition that f to be M-convex can be replaced by the following property: for every $x \in X$ and $v \in X$ there exist $M_{x v} \subset \mathbb{R}$ such that $F(t)=f(x+t v), t \in \mathbb{R}$, is $M_{x v}$-convex and (P^{*}) is fulfilled. Particularly, this property holds for radial upper convex functions.

Theorem 22. Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a radial upper convex function. If f is bounded from above in a neighborhood of one point $x_{0} \in \operatorname{int}(\operatorname{dom} f)$, then it is locally bounded, that is, for every $x \in \operatorname{int}(\operatorname{dom} f)$ there exists a neighborhood on which f is bounded.

Proof. We first show that if f is bounded from above in a neighborhood of x_{0}, it is also bounded from below in the same neighborhood. Since f is radial upper convex, we can find $r_{x_{0}}>0$ such that for every $v \in X$ with $\|v\|=1$, the function $F(t)=f\left(x_{0}+t v\right)$ is $\left(-\infty,-r_{x_{0}}\right) \cup\left(r_{x_{0}},+\infty\right)$-convex. Let $\varepsilon>0$, $K>0$ such that $f(x) \leq K$ for every $x \in S\left(x_{0} ; \varepsilon\right) \subseteq \operatorname{dom} f$.

For every $z \in S\left(x_{0} ; \varepsilon\right)$, there exists $\lambda \geq 0$ and $y \in X$ such that $\|y\|=1$ and $z=x_{0}+\lambda y$.

Taking $x_{0}=\frac{1}{2}\left(x_{0}+\lambda y\right)+\frac{1}{2}\left(x_{0}-\lambda y\right)$, since the function F is $\left(-\infty,-r_{x_{0}}\right) \cup$ $\left(r_{x_{0}},+\infty\right)$-convex, we obtain

$$
\begin{gathered}
F(0) \leq F(\lambda)+\frac{1}{2} \inf \left\{-2 \lambda t| | t \mid>r_{x_{0}}, F(\lambda)-F(-\lambda) \leq-2 \lambda t\right\} \\
\leq F(\lambda)+\lambda \inf \{|t| \quad \mid F(\lambda)-F(-\lambda) \leq-2 \lambda t\} \leq F(\lambda)+\max \left\{2 K, r_{x_{0}}\right\},
\end{gathered}
$$

therefore $f(z) \geq f\left(x_{0}\right)-\max \left\{2 k, r_{x_{0}}\right\} \geq-K-\max \left\{2 k, r_{x_{0}}\right\}$, which prove that f is bounded from below on $S\left(x_{0}, \epsilon\right)$.

Let $x \in \operatorname{int}(\operatorname{dom} f)$ and $x \neq x_{0}$. Then $x=x_{0}+\lambda y$, where again $y \in X$, $\|y\|=1$ and μ is a positive number.

Since $x \in \operatorname{int}(\operatorname{dom} f)$, there exists $\alpha>\mu$ such that $v=x_{0}+\alpha y \in \operatorname{int}(\operatorname{dom} f)$.
Taking $\lambda=\frac{\mu}{\alpha}$, the set

$$
V=\left\{u \in \operatorname{dom} f \mid u=(1-\lambda) z+\lambda v, z \in S\left(x_{0} ; \varepsilon\right)\right\}
$$

is a neighborhood of $x(V=S(x, \gamma)$, where $\gamma=(1-\lambda) \varepsilon)$. Therefore we find $r_{z}>0$ such that for every $u \in V$, the function defined by $F(\lambda)=f(z+\lambda(v-z))$, $\lambda \in \mathbb{R}$, is $\left(-\infty,-r_{z}\right) \cup\left(r_{z},+\infty\right)$-convex, thus

$$
F(\lambda) \leq F(0)+\lambda \inf \left\{t| | t \mid>r_{z}, F(1)-F(0) \leq t\right\}
$$

Since f is bounded on $S\left(x_{0} ; \varepsilon\right)$, then

$$
F(1)-F(0) \leq 2 K
$$

and

$$
\inf \left\{t\left||t|>r_{z}, F(1)-F(0) \leq t\right\} \leq \max \left\{2 K, r_{z}\right\}\right.
$$

which proved that

$$
f(u) \leq K+\max \left\{2 K, r_{z} r\right\}
$$

for every $u \in V$, i.e. f is also bounded from above on V, as claimed.
Now, we establish an extension of well known continuity theorem of convex functions (see [5], 6]).

THEOREM 23. Let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a radial upper convex function. If f is bounded from above in a neighborhood of one point $x_{0} \in \operatorname{int}(\operatorname{dom} f)$, then f is continuous on $\operatorname{int}(\operatorname{dom} f)$.

Proof. By Theorem 22, for each $x_{0} \in \operatorname{int}(\operatorname{dom} f)$ we can find a neighborhood $S\left(x_{0}, 2 \epsilon\right)$ on which f is bounded, i.e. there exist $K_{x_{0}}>0$ such that

$$
|f(x)| \leq K_{x_{0}} \text { for every } x \in S\left(x_{0}, 2 \epsilon\right)
$$

For the begining we prove that for every $x \in \operatorname{int}(\operatorname{dom} f)$ we find a constant $\bar{K}_{x_{0}}>0$ such that

$$
\begin{equation*}
\inf _{\substack{|t|>r_{x_{0}} \\ t\left\|x-x_{0}\right\| \geq f(x)-f\left(x_{0}\right)}} t \geq-\bar{K}_{x_{0}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{\substack{|t|>r_{x_{0}} \\ t\left\|x-x_{0}\right\| \geq f\left(x_{0}\right)-f(x)}} t \geq-\bar{K}_{x_{0}} \tag{18}
\end{equation*}
$$

for every $x \in S\left(x_{0} ; \varepsilon\right)$. If we suppose, to the contrary, that (17) not holds, there exists $x \in S\left(x_{0}, \epsilon\right)$ such that

$$
\inf _{\substack{|t|>r_{x_{0}} \\ x_{0} \| \\ \geq f(x)-f\left(x_{0}\right)}} t<-\frac{2 K_{x_{0}}}{\varepsilon}
$$

Now, we take $y \in S\left(x_{0} ; 2 \varepsilon\right)$ such that $x_{0}=\lambda x+(1-\lambda) y$ and $\left\|y-x_{0}\right\|=\varepsilon$.

Since the function $F(t)=f\left(x_{0}+t \frac{x-x_{0}}{\left\|x-x_{0}\right\|}\right)$ is $\left(-\infty,-r_{x_{0}}\right) \cup\left(r_{x_{0}},+\infty\right)$-convex, from Lemma 17, we obtain that

$$
\frac{f\left(x_{0}\right)-f(y)}{\varepsilon} \leq \frac{1}{\left\|x-x_{0}\right\|} \inf _{\substack{|t|>r_{x_{0}} \\ t\left\|x-x_{0}\right\| \geq f(x)-f\left(x_{0}\right)}} t\left\|x-x_{0}\right\|<-\frac{2 K_{x_{0}}}{\varepsilon} .
$$

Therefore $f\left(x_{0}\right)-f(y)<-2 K_{x_{0}}$ and hence $f(y)>K_{x_{0}}$, which is not possible because $y \in S\left(x_{0} ; 2 \varepsilon\right)$. Consequently, the inequality (17) is always true.

Analogue we proof relation (18), using in this case the function $F(t)=$ $f\left(x+t \frac{x_{0}-x}{\left\|x-x_{0}\right\|}\right)$, which is also a $\left(-\infty,-r_{x_{0}}\right) \cup\left(r_{x_{0}},+\infty\right)$-convex function.

Now, if we suppose that f is not continuous in x_{0}, then we find $\epsilon>0$ and a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq S\left(x_{0} ; \varepsilon\right)$ such that $x_{n} \rightarrow x_{0}$,

$$
\begin{equation*}
f\left(x_{n}\right)-f\left(x_{0}\right)>\varepsilon \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
f\left(x_{n}\right)-f\left(x_{0}\right)<-\varepsilon . \tag{20}
\end{equation*}
$$

From (19) and (20) we find $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$,

$$
f\left(x_{n}\right)-f\left(x_{0}\right)=\inf _{\substack{|t|>r_{x_{0}} \\ t\left\|x-x_{0}\right\| \geq f\left(x_{n}\right)-f\left(x_{0}\right)}} t\left\|x_{n}-x_{0}\right\|
$$

and

$$
f\left(x_{0}\right)-f\left(x_{n}\right)=\inf _{\substack{|t|>x_{0} \\ t\left\|x-x_{0}\right\| \geq f\left(x_{0}\right)-f\left(x_{n}\right)}} t\left\|x_{n}-x_{0}\right\| .
$$

From above relations we obtain that

$$
\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq \bar{K}_{x_{0}}\left\|x_{n}-x_{0}\right\|, \text { for every } n \geq n_{0}
$$

which is not possible because is a contradiction with (19) or (20).
Remark 24. It is obvious that in the special case $M=X^{*}$ we obtain the usual continuity theorem of convex functions.

Acknowledgement. I would like to express my deep gratitude to Professor Teodor Precupanu, for his support, for the invaluable suggestions, and attention to my work.

REFERENCES

[1] Apetrii, M., A new type of convexity defined by dual perturbations, An. Univ. De Vest Timişoara, seria Matematică Informatică, 45, pp. 11-20, 2007.
[2] Aussel, D., Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach, J. Optim. Theory Appl, 97, pp. 29-45, 1998.
[3] Aussel, D., Corvellec, J. N. and Lassonde, M., Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1, pp. 195-201, 1994.
[4] Avriel, M., Diewert, W. E., Schaible, S. and Zang, I., Generalized Concavity, Plenum Press, New York and London, 1988.
[5] Barbu, V. and Precupanu, T., Convexity and Optimization in Banach Spaces, D. Reidel Publish. Co., Dordrecht, 1986.
[6] Bourbaki, N., Espaces Vectoriels Topologiques, Act. Sci. et. Ind., Hermann, Paris, 1966.
[7] Crouzeix, J. P., Contribution à l'étude des functions quasi-convexes, Thèse de Docteur en Sciences, Univ. Clermont-Ferrand II, 1977.
[8] Crouzeix, J. P. and Ferland, J. A., Criteria for quasiconvexity and pseudoconvexity of quadratic functions: relationships and comparisons, Math. Programming, 23, pp. 193-205, 1982.
[9] Mangasarian, O. L., Pseudo-convex functions, J. Soc. Indust. Appl. Math. Control, 3, pp. 281-290, 1965.
[10] Martos, B., Nonlinear Programming Theory and Methods, Akadémiai Kiadó, Budapest, 1975.
[11] Penot, J. P. and Quang, H. P., Generalized convexity of functions and generalized monotonicity of set-valued maps, J. Optim. Theory Appl., 92, pp. 343-356, 1997.
[12] Phu, H. X. and An P. T., Stable generalization of convex function, Optimization, 38, pp. 309-318, 1996.

Received by the editors: July 31, 2007.

[^0]: \dagger "Al. I. Cuza" University, B-dul Carol I, Nr. 11, 700506, Iaşi, e-mail: mapetrii@uaic.ro.
 *This work was supported by Grant ID 387 4/28.09.2007.

