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A DUAL GENERALIZATION OF CONVEX FUNCTIONS*
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Abstract. As it is well known, the convexity property of a function may be
described by the quasiconvexity property of all “the dual perturbations” of this
function. If we consider the “dual perturbation” only in a subset M C X* we
obtain a general class of functions called M-convex. In this paper we establish
some special properties and a continuity theorem of this new type of functions.
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1. INTRODUCTIONS

Taking as starting point the Crouzeix characterization of convex function
by quasiconvexity property of all “dual perturbation” (see [7]), in an earlier
paper we introduced a new type of convexity, only the “dual perturbation” in
a given subset M C X*.

In the sequel, X denotes a real linear normed space and X* its topological
dual. The symbol (-,-) will be used for the usual pairing between X and X*,
while ( -,-) will be used for the associated bilinear functional, i.e. (z,z*) =
z¥(x), forall z € X, 2" € X*.

We recall some well known concepts in convex analysis (see [4], [5], [6], [10]).

For a function f: X — RU {400} we denote by

Dom(f) = {z € X| f(x) < 400}

its domain.

When Dom(f) is nonempty we say that f is proper.

A function f: X — RU{+o0} is said to be convez if for every 1, zo € X
and for every A € [0, 1] we have:

fQAz1 4+ (1= Nazg) < Af(21) + (1= A) f(2).

A function f is called quasiconvex if for every xy, z2 € X and for every
A € [0, 1] we have:

Oy + (1= Naz) < max{f(z1), f(22)},
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equivalently
fQAz1 4+ (1= A)z2) < f(22)
whenever z1,x2 € X, A € [0, 1] such that f(z1) < f(x2).
Also, it is well known that a function is quasiconvex if and only if its level
sets
L(f;e) = {z € X] f(2) < o}
are convex for every a € R.
Now, we remind the definition of M-convex functions, introduced in [IJ.
If M is a nonempty subset of X*, we say that the function f : X —
R U {400} is M-conver if for each z* € M the sets

L(f,a,2%) ={x € X| f(z) < a+ (z*,2)}

are convex for every o € R.
If —f is M-convex we say that f is M-concave.
Throughout this paper, for a given nonempty subset M C X* we will
denote by
C(M) the class of all M-convex functions.

From this definition, we observe that if the set M contains the origin then
we obtain a new type of convexity which lies between quasiconvexity and
convexity.

For the beginning, we recall some property of this functions proved in [1].

PROPOSITION 1. (i) If f € C(M) then f —a* € C (M — z*) for every
x* e X*.
(ii) f e C(M) if and only if f — x* is quasiconvez, for every xz* € M.
(iii) ]f My C My then C(MQ) - C(Ml)
(iv) C(M) = C(Mw*), where " is the closure of M with respect to w*-
topology.
(v) If f € C(M) then for each X > 0, \f is AM -convex.
(vi) If f; € C(M;) for everyi € I, then f = su?fi € C(QJMZ)
i€ g
(vii) The domain of a M-convex function f is a convez set.
Similarly to the convex case ([4], [5], [1I0]), the M-convex functions can be
characterized with the aid of its one dimensional restrictions.

THEOREM 2. If f : X — RU {400} and O # M C X*, then f is a M-
convex function if and only if for every x,v € X, the associated function F,
defined by

F(t)=f(z+tv), teR
is M, -convex, where

M, = {{(z*,v) Jx* € M}.

In the following result, proved in [1], we characterize the M-convex func-
tions using only its values on the line segments, establishing a characteristic
inequality of convex type.
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THEOREM 3. Let us consider f : X — RU{+o00} and ) # M C X*. Then
f is M-convex if and only if

(1) fOr+ (1 =Ny < f(y) +A _inf (2% 2-y),

x*eMz‘,y
for every x,y € X, and X € [0,1], where
(2) Myy ={z" € M|(z",z —y) > f(z) — f(y)}.
If f is a M-convex function and

inf (2", —y) = f(z) — f(y), for all z,y € X,
T*EMy y

then f is a convex function.

In fact, by we observe that

inf (z",xz—vy) > f(z)— f(y), forall z,y € X.
CE*EMz,y

On the other hand, if we have

o <
(3) x»«é%,y<$’:” y) <0

whenever f(z) < f(y), then
fFOx+ (1= XNy) < f(y),

i.e. f is quasiconvex.
Moreover, if is fulfilled for all z,y € X, then f is constant.
We recall that the support functional of a set A C X*, o4 is defined by

oa(z) = suel?qx*(x),x € X.
x*

Thus, the inequality can be rewritten as
fQz+ (1 =Ny) < f(y) — Ao, (y — o).

Now, we consider some special cases for the set M. Thus, if M is a convex
set, we have that

F@) = fy), M- < fl@) - fly) <

. * _ _ O'M(.’L'—y>,
@ Lo e =y o), f@) - f) < - oy — 1),

+00, f(@) = fly) > om(z —y).
If we take M = S*(0,r) = {z* € X*/||lz*|| < r}, then
om(y—z)=rly—z|
and becomes
f(z) — fy), —rlly -zl < f(z) - fly) <

o rlly— 2,
inf (2%, z—y)=
A EESN = el f@) - f) < —rlly -l

+o0, f@) = f(y) > rlly -l
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or, equivalently, if f(z) < f(y), then

. s [ @)= f), fy) = fla) <rlly—af,
x*érzl\i,y@’x y>_{ —rllz—yll, fly)—fl@)=rly—zf.

Considering this, it is easy to prove that if f : X — RU{+o0} is a Lipschitz
function with constant L and f is S*(0, L)-convex, then f is convex.

In [I2], H. X. Phu and P. T. An introduce the notion of s-quasiconvex
(s from “stable”) functions, and he show that this functions are stable with

7w

respect to the following properties: “all lower level sets are convex”, “each local
minimum is a global minimum?”, “each stationary point is a global minimizer”.
We specify that a function f : D C X — RU{+o0} is called s-quasiconvex

if there exists o > 0 such that
f(zo) — f(21) f(xa) — f(@1)
|zo — 2| [zx — 21|

for 0| < o, xg,x1 € D, zx = (1 — N)xo + Azy and A € [0, 1].
The authors show that this functions can be characterized as follows

<9

< ¢ implies

(5) a function f is s-quasiconvex if and only if there exists € > 0 such

that f — x* is quasiconvex, for every x* with the property ||z*| < e.

REMARK 4. The relation can be obtained (on the other way) from
Theorem [3] taking M a ball with the center in the origin. In fact, as we see
in the relation , the class of s-quasiconvex functions are the same with the
class of M-convex functions, with 0 € int(M). O

Now we will consider the sets M C X* with the following property
(P) for every x € X\{0}, there exists a sequence
{z) }nen € M such that (x),z) \, 0.
It is easy to prove that if 0 € int(M), then the set M has the property (P).

EXAMPLE 5. Let X = ' and M = {ane, | where oy, € (=1,1) n e N,

{e;}ien+-canonical bases in I'}. It is easily to prove that the set M has the
property (P). The function defined by

¥
oy - {2 0 0
-1 , =0,
is M-convex, but she is not s-quasiconvex. ]
In the following proposition we present a sufficient condition from property
(P).
PROPOSITION 6. Let X be a normed linear spaces such that dim(X) > 2

and M C X* a bounded set, with the property con(M) = X*. Then the set
M has the property (P).
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Proof. We start with x € X\{0}. Since dim(X) > 2 then there exists z*,
y* € X*\{0} such that (z*,z) = 0 and (y*,z) > 0. For every n € N we
consider y = %y* +(1- %):17* Taking into account that con(M)w = X*, we
find A, > 0 and 7% such that (75, z) > 0, (y; — 5, 2) < £ and A5, € M for
every n € N. To prove that the set M has the property (P) we passing to limit
in the following relation

* —% * * >‘TL *
0 < (A, @) = An (Fn = Yy 2) + da (s 2) < (1 + (57 2)),
and we obtain that (A\,7,z) 0, because M is bounded. O

LEMMA 7. Let X be a linear normed space and f : X — R U {+oo}
an Fr(S*(0;7))-convex function, for some r > 0. If dim(X) > 2 then f is
S*(0;7)-convex.

Proof. 1t is easy to prove that S*(0;r), = [—r|v||,r|v||]. Since dim(X) >
2, Fr(S*(0;r)) is a conex set, therefore we obtain that Fr(S*(0;r)), is an
interval, namely

Fr(§°(0;7))y = [ inf (2%, v), sup (z%,0)] = [=r ][, [[v]].
[lz*(|=r l|lz*||=r

Using the characterization given by Theorem |2, we obtain that f is S*(0;7)-
convex. (]

THEOREM 8. Let X be a linear normed space such that dim(X) > 2. Then
f: X — RU{+o0} is s-quasiconvex if and only if there exists v > 0 such
that f is Fr(S*(0;r))-conver.

Proof. The theorem is a consequence of Lemma [7] and the characterization
of s-quasiconvex functions. O

THEOREM 9. Let M C X* be a set such that 0 € int(M). If f is M-convex
then for every z,y € X, with f(x) < f(y), there exists o € (0,1] such that:

fOz+ (1 —=Ny) <Xaf(z)+ (1 —Aa)f(y) for every A € [0,1].

Proof. Obviously, if z = y, we can take « = 1. If z # y and f(z) < f(y) then
we find 0 # z§ € X* such that (zf,z —z) = f(z) — f(y). Since 0 € int(M)
there exists a € (0,1] such that ax§ € M. Therefore axf € M, , because

(azg,z —y) = alzg,z —y) = f(z) — f(y).
Now, taking into account that f is M-convex , for every A € [0, 1] we get

FRe+ A =Ny) < fly) + A inf (%2 —y) < f(y) + Aazg, 2 —y),

z,Y

and the proof is complete. U

When M C X* is a cone, we denote
M+ ={z € X|(z*,z) =0, for every z* € M}
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and
MY = {z € X| exists z* € M such that (z*,z) > 0} U {0}.
Is easy to prove that M? is a convex cone.
Thus, a function f: A — R U {400} is called increasing related to M if

z—ye M= f(z) > f(y)

THEOREM 10. Let A C X be a convez set and f : A — RU {+o0} be a
M -convex function such that (A — A) N M+ = {0}.
If f is increasing related to M© on the set A, then f is a convex function on

A.

Proof. Let x,y be two points from A and X € [0, 1].
If z —y € C(M® U —MP?), then 2 # y and for every z* € M we have
(z*, 2 —y) =0,ie z—y € (A— A)NM™*. By hypothesis we find that 2 = y,
which is a contradiction. Consequently, we have z —y € M® or y — 2 € M©.
Now, we suppose that z —y € M. Then f(x) > f(y) because f is increasing
related to M© on A. Also, there exists * € M such that (z*, 2 — ) > 0.
Since M is a cone, then

inf (z%,2—y) = f(z)— fy)

T*EMy y
and taking into account that f is a M-convex function we obtain that
O+ A =Ny) < fly) +2 inf (%2 —y) =Af(2) + (1 -2 f(y).
x Z,y

We proceed similarly when y — 2 € M?.
This proved that f is a convex function on the set A. O

Now, let us consider the special case of linear subspaces of X*.

THEOREM 11. Let M be a proper linear subspace of X* and let f : X —
R U {+o0} be a M-convex function. Then:
(i) f—a" € C(M), for every x* € M,
(ii) Af e C(M), for every A > 0;
(ili) fy s convex, wheneverY is a linear subspace such that Y NM* = {0}.

Proof. Since M is a linear subspace then the properties (i) and (ii) follow
immediately by Proposition [I| (properties (i) and (v)).
(iii) Let Y be a linear subspace such that Y N M+ = {0}. Let us take z,y € Y,
and A € [0,1] . If x # y, then x—y ¢ M. Since M is a proper linear subspace
there exists x* € M such that (z*,z —y) = f(z) — f(y), and so
inf (2%, 2 —y) = f(x) - f(y)

T*EMy y

for any z,y €Y, i.e. fly is a convex function. O

COROLLARY 12. Let M be a subset of X* such that spanM = X* and
AM C M for every A > 0. Then every M -convex function is convex.
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Proof. If spanM = X* then M+ = {0}. Following the proof of above
theorem (iii), we observe that if A\M C M for every A > 0, then fy is convex,
whenever Y is a linear subspace. Taking Y = X, we obtain that f is a convex
function. 0

In Proposition [l| (iv), we see that if MY = x* then, every M-convex
function is also a convex function. But this sufficient condition is not necessary.
In an earlier paper we established one more general result concerning the
equality C(My) = C(Ms). It is obvious that if My C My, then every Ma-convex
function is also Mj-convex, but conversely is generally not true.

THEOREM 13 ([1]). Let My C X* be an open nonempty set. If O # My C
My, then C(M;) = C(Ma) if and only if

(6) for every x* € My, and x € X\ {0}, there exists a sequence
(@3 ey © M1 such that (zy —x*,2) \, 0.

Taking now My = X* the property @ can be written in the following form

(7)

Consequently, we obtain a characterization of the special cases when M-
convexity coincides with convexity.

It is easily to prove that if M = X*, then the set M has the property ,
but conversely is not always true, as we can see if we consider X = [' and

M = {z" = (z,)pen € I°] Ing € N such that z, # 0,2, =0,Yn #ng}.

for every a € R, and z € X\ {0},
exists a sequence (zj),.y € M such that (z},z) — a.

2. THE EXTREME POINTS OF M- CONVEX FUNCTIONS

In the sequel we shall be concerned with a family of functions that lies
between the family of strictly quasiconvex functions and the family of the
semistrictly quasiconvex functions.

Let us recall that a function f is strictly quasiconvex [4] if

f(z) < f(y) implies that f(Az + (1 — A)y) < f(y),
for every x £y, and 0 < A < 1.

Similarly, the condition for the semistrictly quasiconvexity [4] can be written
as

(8) f(z) < f(y) implies that f(Ax + (1 —N)y) < f(y)
where z,y € X, and 0 < A < 1.

An important property of the convex functions is that every local minimum
is a global one. This property, however, holds for more general families of
functions (for instance, the family of semistrict quasiconvex functions, see
[4]). In this line we consider the sets M C X* which satisfy the property (P).
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Considering a set M with the property (P), we want to see the relation-
ships between the family of M-convex functions and the families of generalized
convex functions above defined.

When M C X* has the property (P), a M-convex function is not necessary
a strictly quasiconvex function as we see if we consider the function f(x) = 1.

The following theorem shows the relationship between M-convexity and
semistrict quasiconvexity.

THEOREM 14. If M C X* has the property (P), then every M -convex func-
tion is a semistrictly quasiconvex function.

Proof. Let us consider f € C(M), z,y € X such that f(z) < f(y), and
0 < A < 1. Since f(z) < f(y), by virtute of property (P) there exists x§ € M
such that

f(@) = fy) < (g, 2 —y) <O
Thus, according to we have
FORe+A=Ay) < fly) +A_inf (%2 —y) < fly) + Az, 2 —y) < f(y).

z,y

Therefore is fulfilled, i.e. f is semistrictly quasiconvex. O

COROLLARY 15. If M C X* has the property (P) and f € C(M), then every
locally extreme point from Dom(f) is a minimum global point. Moreover, the
set of points at which f attains its global minimum is a convex set.

Proof. If f € C(M) then by Theorem it follows that f is semistrictly
quasiconvex, therefore every locally extreme point from Dom(f) is a global
minimum point (see [4]). If x, y are two global minimum points then

inf (z*,z—y) =0
x*é%z’ykc,x y) =0,

and so, by , we obtain that
fz 4+ (1=XNy) < f(y), for every X € [0,1].
This prove that the set of global minimum points is a convex set. g

REMARK 16. When M C X* has the property (P), the function f may
not have the strict local maximum points; moreover, in every locally maxi-
mum point the function f is locally constant. If f is M-convex and attains
its maximum on int(Dom(f)), then f is constant. When M C X* has the
property (P), the main difference between semistrictly quasiconvex functions
and M-convex functions is that for M-convex functions the set of minimum
points is a convex set, property which is not true in the case of semistrictly
quasiconvex functions. For example, the function f, defined on R by f(z) =0
for z # 0 and f(x) = 2 for x = 0, is semistrictly quasiconvex but the set of its
global minimum points is not convex. O
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3. CONTINUITY OF M-CONVEX FUNCTIONS

In this section we will study the continuity property of M-convex functions.
The following result will be needed later on.

LEMMA 17. Let M C X* be an open set. If f: X — RU{+oo} is a M-
convex function and x,y,z € dom f such thaty = Ax+(1—X\)z with A € (0,1)
then

FW=f@) ¢ 1 e e
(9) =l < Tl 2 @52 0)

Proof. Indeed, if 2* € M. ,, since f is M-convex then

L(f; f(y) = (&% y),27) = {u € X/ f(u) < f(y) + (2", u = y)}

is convex and y, z € L(f, f(y) — (z*,y) ,z*).
If we suppose that

inf (z%,2z—vy),

f—f@ o 1
S =

ly—=ll

then

f(@) < fly) = 1= (272 =) = Fu) + (@ m — y).
Since M is an open set, there exist @ > 0 and z§ € X* such that (z§,z —y) =

—1 and z* 4+ axj € M, for every o € (0,@). Now, taking « sufficiently small,
we have

flx) < fly) + (=" + azp, 2 —y),

fy) = Fly) + (=" + axg,y —y)

f(z) < fly)+ (" + axg,z —y) .
Denoted z* + ax(y by =% and taking
e = gmin{f(x) — fly) — (" +aat,z—y), 1(z) < Fo) + (@ +axh 2~ )},
it follows that

(10) x,z € L(f, f(y) — (T",y) — €,T")
and
(11) y & L(f, fly) — @ y) — 7).

From and we obtain that the set L(f, f(y) — (T%,y) — €,T*) is not
convex, which is not true.
Therefore

flz) > fy) - Hz:;” (x*,z —y) for every a* € M,

which proved @D ]

Now we will define a special type of radial convexity.
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DEFINITION 18. We say that the function f : X — R U {400} is radial
upper convez if for every x € X, there exists €, > 0 such that for everyv € X,
with ||v]| = 1, the function F(t) = f(x + tv) is (—o0, —e4) U (€4, +00)-convez.

EXAMPLE 19. The function f: X — R defined by
2
|7, ||z £1
ﬂ@:{ e

;o el > 1
is radial upper convex but is not convex. Is obvious that this function is not
convex. To prove that she is radial upper convex, we show that for every
x,v € X, with [[v|| = 1, the function F': R — R, defined by

F(t) = f(z +tv) —at,
is quasiconvex for every o € (—o0, —1) U (1,400). Since F' is continuous, is
sufficiently to prove that OF is an quasimonotone operator for every a €
(—o00,—1) U (1,4+00). Taking into account that |(v, J(x + tv)| < 1 for every ¢
with the property ||« + tv|| < 1, we obtain that OF is quasimonotone (see [2],
[5]).-
We denote by J the duality mapping between X and X*, defined by:

J@) = {z" € X* | w.2") = || = |o*?}, z € X.

N | 0| =

It is well known (see [5]) that this mapping is the subdifferential of the function

LI7, de. J(2) = 0( ||l=]?), = € X. O
In the sequel, we say that the set M C X* has property (P*) if satisfy
(P*) for every x € X\{0} exist {z) }nen € M such that (z),,x) — 0.

THEOREM 20. Let M be a set with property (P*) and let f : X — RU{+o0}

be a M -convex function. Then f is radial continuous on ri(dom f).

Proof. Without loose our generality, considering Theorem [2] we can suppose
that f is defined on R, otherwise we take F'(t) = f(x + tv) for x,v € X. Thus,
we must to prove that f is continuous. If 2y € ri(dom f) and we suppose that
f is not lower semicontinuous in zg, then there exist ¢ > 0 and a net {x, }nen
with x,, — x¢ such that

(12) —e> f(xn) — f(xo), for every n € N.

We can suppose that x,, > ¢, for every n € N (analogue when z,, < z).

Since xg € ri(dom f), there exists u; < xo such that u; € dom f. Taking
into account that f is M-convex and the property (P*) is fulfilled, then there
exists * € M such that

€
(13) f(ur) <f(560)—§+<115*7ul—560>-
But, by , exists ug > xg such that

(14) fluz) < fao) = 5 + (" uz = w0).
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Considering and we obtain that L(f, f(xo) — §,2") is not convex
i.e. f is not M-convex. Therefore f must be lower semicontinuous in x.
Now, if we suppose, by a contradiction, that f is not upper semicontinuous in
xo € ri(domf), then there exist a net {zy, }nen C dom(f) and € > 0 such that
T, — 2o and

f(zn) — f(zo) > €, for every n € N.

Following the same steps as in previous case we obtain that there exist vy, vy €
dom(f) and z* € M such that

(15) f(1) > f(o) + 5 + (@ 01— w0).

and

(16) J(w2) > J(x0) + 5 + (" v — o).

But, by and we find that L(f, f(zo) + §,2*) is not convex. This
ended the proof. O

REMARK 21. In the above theorem the condition that f to be M-convex can
be replaced by the following property: for every x € X and v € X there exist
M, C Rsuch that F(t) = f(z+tv), t € R, is My,-convex and (P*) is fulfilled.
Particularly, this property holds for radial upper convex functions. ]

THEOREM 22. Let f: X — RU {+o0} be a radial upper convex function.
If f is bounded from above in a neighborhood of one point xo € int(dom f),
then it is locally bounded, that is, for every x € int(dom f) there exists a
neighborhood on which f is bounded.

Proof. We first show that if f is bounded from above in a neighborhood of
Zo, it is also bounded from below in the same neighborhood. Since f is radial
upper convex, we can find 75, > 0 such that for every v € X with |jv]| = 1,
the function F'(t) = f(zo + tv) is (—00, —T4,) U (rg,, +00)-convex. Let £ > 0,
K > 0 such that f(z) < K for every x € S(zp;¢) C domf.

For every z € S(xo;¢), there exists A > 0 and y € X such that ||y|| =1 and
z=x0+ AyY.

Taking zo = 3 (20 + Ay) + 3(z0 — Ay), since the function F' is (—o0, —14,) U
(rzo, +00)-convex, we obtain

1
F(0) < F(\) + iinf{—Z)\t | |t] > 12y, F(A) — F(=X) < —2Xt}
< F(A) + AMnf {|t] | F(A) — F(=X) < =2Xt} < F(A) + max{2K, g, },
therefore f(z) > f(zo) — max{2k,ry,} > —K — max{2k,rs,}, which prove
that f is bounded from below on S(xg, €).

Let x € int(dom f) and = # z¢. Then = = z¢ + Ay, where again y € X,
lly]| = 1 and u is a positive number.
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Since z € int(dom f), there exists a > p such that v = xy + ay € int(domf).
Taking A = £, the set

V={uedom f|u=(1-Nz+ v, z € S(zp;¢)}

is a neighborhood of z (V = S(z,7), where v = (1 — A)¢). Therefore we find
r, > 0 such that for every u € V, the function defined by F'(\) = f(z+A(v—2)),
A e R, is (—oo, —r;) U (rs, +00)-convex, thus

F(X) < F(0) 4+ Minf {t| |[t| > r,, F(1) — F(0) <t}.

Since f is bounded on S(z;¢), then
F(1) - F(0) < 2K,

and

inf {t| |[t| > ., F(1) — F(0) <t} < max{2K,7,},
which proved that

flu) < K +max{2K,r,r},

for every u € V, i.e. f is also bounded from above on V, as claimed. U

Now, we establish an extension of well known continuity theorem of convex
functions (see [5], [6]).

THEOREM 23. Let f : X — RU{+o0} be a radial upper convex function. If
f is bounded from above in a neighborhood of one point x¢ € int(dom f), then
f is continuous on int(dom f).

Proof. By Theorem for each zy € int(dom f) we can find a neighborhood
S(xo,2€) on which f is bounded, i.e. there exist K, > 0 such that

|f(x)| < Ky, for every z € S(xo, 2¢).

For the begining we prove that for every = € int(dom f) we find a constant
K, > 0 such that

(17) inf t>—Ky,
[t[>7z
tllz—=zol|> f(z)—f(z0)
and
(18) inf t> Ky,

[t]>7z

tlz—zol|=f(z0)—f(x)

for every x € S(xzg;e). If we suppose, to the contrary, that not holds,
there exists © € S(zo, €) such that

inf t< —2]{7%.
[t]>7a €
tlz—zol|>f(z)—f(z0)

Now, we take y € S(xg;2¢) such that xop = Az + (1 — \)y and ||y — x| = .
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Since the function F'(t) = f(xo+t—2y To—ac] L0 ) is (—00, =gy )U(T2,, +00)-convex,
from Lemma [T7], we obtain that

f(z ) fy) « 1

S ool

2K,

inf tlx— x| < —
[t|>7z
tlle—zo||> f(z)—f(zo)
Therefore f(zg) — f(y) < —2K,, and hence f(y) > K;,, which is not possible
because y € S(xg;2¢). Consequently, the inequality is always true.
Analogue we proof relation (18), using in this case the function F(t) =
flx+ tH H) which is also a (—00, —74,) U (r4,, +00)-convex function.
Now, if we suppose that f is not continuous in xg, then we find € > 0 and
a sequence {Z, }neny C S(xo;€) such that z, — xo,

(19) F(on) = flwo) > £

or

(20) f(xn) — fzo) < —e.

From and we find ng € N such that for every n > ng,
f(xn) - f(xO) = |t\1;1rf t ||xn - xOH
tl|lz—zo||>f(zn)—f(z0)

and

f(zo) = fzn) = inf tlzn — ol -
[t|>ra

t|z—zol|>f(z0)—f(zn)
From above relations we obtain that

|F(@n) = F(@0)| < Ko 2 — 0]l for every n > no,

which is not possible because is a contradiction with or . O
REMARK 24. It is obvious that in the special case M = X* we obtain the
usual continuity theorem of convex functions. ([l
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