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A DUAL GENERALIZATION OF CONVEX FUNCTIONS∗

M. APETRII†

Abstract. As it is well known, the convexity property of a function may be
described by the quasiconvexity property of all “the dual perturbations” of this
function. If we consider the “dual perturbation” only in a subset M ⊂ X∗ we
obtain a general class of functions called M -convex. In this paper we establish
some special properties and a continuity theorem of this new type of functions.
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1. INTRODUCTIONS

Taking as starting point the Crouzeix characterization of convex function
by quasiconvexity property of all “dual perturbation” (see [7]), in an earlier
paper we introduced a new type of convexity, only the “dual perturbation” in
a given subset M ⊂ X∗.

In the sequel, X denotes a real linear normed space and X∗ its topological
dual. The symbol (·, ·) will be used for the usual pairing between X and X∗,
while 〈 ·, · 〉 will be used for the associated bilinear functional, i.e. 〈x, x∗〉 =
x∗(x), for all x ∈ X, x∗ ∈ X∗.

We recall some well known concepts in convex analysis (see [4], [5], [6], [10]).
For a function f : X −→ R ∪ {+∞} we denote by

Dom(f) = {x ∈ X| f(x) < +∞}
its domain.

When Dom(f) is nonempty we say that f is proper.
A function f : X −→ R∪{+∞} is said to be convex if for every x1, x2 ∈ X

and for every λ ∈ [0, 1] we have:
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

A function f is called quasiconvex if for every x1, x2 ∈ X and for every
λ ∈ [0, 1] we have:

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)},
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equivalently
f(λx1 + (1− λ)x2) ≤ f(x2)

whenever x1, x2 ∈ X, λ ∈ [0, 1] such that f(x1) ≤ f(x2).
Also, it is well known that a function is quasiconvex if and only if its level

sets
L(f, α) = {x ∈ X| f(x) ≤ α}

are convex for every α ∈ R.
Now, we remind the definition of M -convex functions, introduced in [1].
If M is a nonempty subset of X∗, we say that the function f : X −→

R ∪ {+∞} is M -convex if for each x∗ ∈M the sets
L(f, α, x∗) = {x ∈ X| f(x) ≤ α+ 〈x∗, x〉}

are convex for every α ∈ R.
If −f is M -convex we say that f is M -concave.
Throughout this paper, for a given nonempty subset M ⊂ X∗, we will

denote by
C(M) the class of all M -convex functions.

From this definition, we observe that if the set M contains the origin then
we obtain a new type of convexity which lies between quasiconvexity and
convexity.

For the beginning, we recall some property of this functions proved in [1].

Proposition 1. (i) If f ∈ C(M) then f − x∗ ∈ C (M − x∗) for every
x∗ ∈ X∗.

(ii) f ∈ C(M) if and only if f − x∗ is quasiconvex, for every x∗ ∈M.
(iii) If M1 ⊂M2 then C(M2) ⊆ C(M1).
(iv) C(M) = C(Mw∗), where Mw∗ is the closure of M with respect to w∗-

topology.
(v) If f ∈ C(M) then for each λ > 0, λf is λM -convex.
(vi) If fi ∈ C(Mi) for every i ∈ I, then f = sup

i∈I
fi ∈ C( ∩

i∈I
Mi).

(vii) The domain of a M -convex function f is a convex set.

Similarly to the convex case ([4], [5], [10]), the M -convex functions can be
characterized with the aid of its one dimensional restrictions.

Theorem 2. If f : X −→ R ∪ {+∞} and ∅ 6= M ⊆ X∗, then f is a M -
convex function if and only if for every x, v ∈ X, the associated function F ,
defined by

F (t) = f(x+ tv), t ∈ R
is Mv-convex, where

Mv = {〈x∗, v〉 /x∗ ∈M} .

In the following result, proved in [1], we characterize the M -convex func-
tions using only its values on the line segments, establishing a characteristic
inequality of convex type.



3 A dual generalization of convex functions 27

Theorem 3. Let us consider f : X −→ R∪{+∞} and ∅ 6= M ⊆ X∗. Then
f is M -convex if and only if
(1) f(λx+ (1− λ)y) ≤ f(y) + λ inf

x∗∈Mx,y

〈x∗, x− y〉 ,

for every x, y ∈ X, and λ ∈ [0, 1] , where
(2) Mx,y = {x∗ ∈M | 〈x∗, x− y〉 ≥ f(x)− f(y)} .
If f is a M -convex function and

inf
x∗∈Mx,y

〈x∗, x− y〉 = f(x)− f(y), for all x, y ∈ X,

then f is a convex function.

In fact, by (2) we observe that
inf

x∗∈Mx,y

〈x∗, x− y〉 ≥ f(x)− f(y), for all x, y ∈ X.

On the other hand, if we have
(3) inf

x∗∈Mx,y

〈x∗, x− y〉 ≤ 0

whenever f(x) ≤ f(y), then
f(λx+ (1− λ)y) ≤ f(y),

i.e. f is quasiconvex.
Moreover, if (3) is fulfilled for all x, y ∈ X, then f is constant.
We recall that the support functional of a set A ⊂ X∗, σA is defined by

σA(x) = sup
x∗∈A

x∗(x), x ∈ X.

Thus, the inequality (1) can be rewritten as
f(λx+ (1− λ)y) ≤ f(y)− λσMx,y (y − x).

Now, we consider some special cases for the set M . Thus, if M is a convex
set, we have that

(4) inf
x∗∈Mx,y

〈x∗, x− y〉 =


f(x)− f(y), −σM (y − x) ≤ f(x)− f(y) ≤

σM (x− y),
−σM (y − x), f(x)− f(y) ≤ − σM (y − x),
+∞, f(x)− f(y) > σM (x− y).

If we take M = S∗(0, r) = {x∗ ∈ X∗/ ‖x∗‖ ≤ r}, then
σM (y − x) = r ‖y − x‖

and (4) becomes

inf
x∗∈Mx,y

〈x∗, x− y〉 =


f(x)− f(y), −r ‖y − x‖ ≤ f(x)− f(y) ≤

r ‖y − x‖ ,
−r ‖y − x‖ , f(x)− f(y) ≤ − r ‖y − x‖ ,
+∞, f(x)− f(y) > r ‖y − x‖ ,
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or, equivalently, if f(x) ≤ f(y), then

inf
x∗∈Mx,y

〈x∗, x− y〉 =
{
f(x)− f(y), f(y)− f(x) ≤ r ‖y − x‖ ,
−r ‖x− y‖ , f(y)− f(x) ≥ r ‖y − x‖ .

Considering this, it is easy to prove that if f : X −→ R∪{+∞} is a Lipschitz
function with constant L and f is S∗(0, L)-convex, then f is convex.

In [12], H. X. Phu and P. T. An introduce the notion of s-quasiconvex
(s from “stable”) functions, and he show that this functions are stable with
respect to the following properties: “all lower level sets are convex”, “each local
minimum is a global minimum”, “each stationary point is a global minimizer”.

We specify that a function f : D ⊂ X −→ R∪{+∞} is called s-quasiconvex
if there exists σ > 0 such that

f(x0)− f(x1)
‖x0 − x1‖

≤ δ implies f(xλ)− f(x1)
‖xλ − x1‖

≤ δ

for |δ| < σ, x0, x1 ∈ D, xλ = (1− λ)x0 + λx1 and λ ∈ [0, 1].
The authors show that this functions can be characterized as follows

a function f is s-quasiconvex if and only if there exists ε > 0 such(5)
that f − x∗ is quasiconvex, for every x∗ with the property ‖x∗‖ < ε.

Remark 4. The relation (5) can be obtained (on the other way) from
Theorem 3, taking M a ball with the center in the origin. In fact, as we see
in the relation (5), the class of s-quasiconvex functions are the same with the
class of M -convex functions, with 0 ∈ int(M). �

Now we will consider the sets M ⊆ X∗ with the following property
(P ) for every x ∈ X\{0}, there exists a sequence

{x∗n}n∈N ⊆M such that 〈x∗n, x〉 ↘ 0.

It is easy to prove that if 0 ∈ int(M), then the set M has the property (P ).

Example 5. Let X = l1 and M = {αnen | where αn ∈ (− 1
n ,

1
n), n ∈ N,

{ei}i∈N∗-canonical bases in l1}. It is easily to prove that the set M has the
property (P ). The function defined by

f(x) =
{ sup
x∗∈M

〈x∗, x〉 , x 6= 0

−1 , x = 0,
is M -convex, but she is not s-quasiconvex. �

In the following proposition we present a sufficient condition from property
(P ).

Proposition 6. Let X be a normed linear spaces such that dim(X) ≥ 2
and M ⊆ X∗ a bounded set, with the property con(M)w

∗
= X∗. Then the set

M has the property (P ).
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Proof. We start with x ∈ X\{0}. Since dim(X) ≥ 2 then there exists x∗,
y∗ ∈ X∗\{0} such that 〈x∗, x〉 = 0 and 〈y∗, x〉 > 0. For every n ∈ N we
consider y∗n = 1

ny
∗ + (1− 1

n)x∗. Taking into account that con(M)w
∗

= X∗, we
find λn > 0 and y∗n such that 〈y∗n, x〉 > 0, 〈y∗n − y∗n, x〉 < 1

n and λny
∗
n ∈ M for

every n ∈ N. To prove that the set M has the property (P ) we passing to limit
in the following relation

0 < 〈λny∗n, x〉 = λn 〈y∗n − y∗n, x〉+ λn 〈y∗n, x〉 <
λn
n

(1 + 〈y∗, x〉),

and we obtain that 〈λny∗n, x〉 ↘ 0, because M is bounded. �

Lemma 7. Let X be a linear normed space and f : X −→ R ∪ {+∞}
an Fr(S∗(0; r))-convex function, for some r > 0. If dim(X) ≥ 2 then f is
S∗(0; r)-convex.

Proof. It is easy to prove that S∗(0; r)v = [−r ‖v‖ , r ‖v‖]. Since dim(X) ≥
2, F r(S∗(0; r)) is a conex set, therefore we obtain that Fr(S∗(0; r))v is an
interval, namely

Fr(S∗(0; r))v = [ inf
‖x∗‖=r

〈x∗, v〉 , sup
‖x∗‖=r

〈x∗, v〉] = [−r ‖v‖ , r ‖v‖].

Using the characterization given by Theorem 2, we obtain that f is S∗(0; r)-
convex. �

Theorem 8. Let X be a linear normed space such that dim(X) ≥ 2. Then
f : X −→ R ∪ {+∞} is s-quasiconvex if and only if there exists r > 0 such
that f is Fr(S∗(0; r))-convex.

Proof. The theorem is a consequence of Lemma 7 and the characterization
of s-quasiconvex functions. �

Theorem 9. Let M ⊆ X∗ be a set such that 0 ∈ int(M). If f is M -convex
then for every x, y ∈ X, with f(x) ≤ f(y), there exists α ∈ (0, 1] such that:

f(λx+ (1− λ)y) ≤ λαf(x) + (1− λα)f(y) for every λ ∈ [0, 1].

Proof. Obviously, if x = y, we can take α = 1. If x 6= y and f(x) ≤ f(y) then
we find 0 6= x∗0 ∈ X∗ such that 〈x∗0, x− x〉 = f(x) − f(y). Since 0 ∈ int(M)
there exists α ∈ (0, 1] such that αx∗0 ∈M. Therefore αx∗0 ∈Mx,y because

〈αx∗0, x− y〉 = α 〈x∗0, x− y〉 ≥ f(x)− f(y).
Now, taking into account that f is M -convex , for every λ ∈ [0, 1] we get

f(λx+ (1− λ)y) ≤ f(y) + λ inf
x∗∈Mx,y

〈x∗, x− y〉 ≤ f(y) + λ 〈αx∗0, x− y〉 ,

and the proof is complete. �

When M ⊂ X∗ is a cone, we denote
M⊥ = {x ∈ X| 〈x∗, x〉 = 0, for every x∗ ∈M}
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and
M♦ = {x ∈ X| exists x∗ ∈M such that 〈x∗, x〉 > 0} ∪ {0}.

Is easy to prove that M♦ is a convex cone.
Thus, a function f : A→ R ∪ {+∞} is called increasing related to M♦ if

x− y ∈M♦ =⇒ f(x) ≥ f(y)

Theorem 10. Let A ⊂ X be a convex set and f : A → R ∪ {+∞} be a
M -convex function such that (A−A) ∩M⊥ = {0}.
If f is increasing related to M♦ on the set A, then f is a convex function on
A.

Proof. Let x, y be two points from A and λ ∈ [0, 1].
If x − y ∈ C(M♦ ∪ −M♦), then x 6= y and for every x∗ ∈ M we have
〈x∗, x− y〉 = 0, i.e. x− y ∈ (A−A)∩M⊥. By hypothesis we find that x = y,
which is a contradiction. Consequently, we have x− y ∈M♦ or y − x ∈M♦.
Now, we suppose that x− y ∈M♦. Then f(x) ≥ f(y) because f is increasing
related to M♦ on A. Also, there exists x∗ ∈M such that 〈x∗, x− y〉 > 0.

Since M is a cone, then
inf

x∗∈Mx,y

〈x∗, x− y〉 = f(x)− f(y)

and taking into account that f is a M -convex function we obtain that
f(λx+ (1− λ)y) ≤ f(y) + λ inf

x∗∈Mx,y

〈x∗, x− y〉 = λf(x) + (1− λ)f(y).

We proceed similarly when y − x ∈M♦.
This proved that f is a convex function on the set A. �

Now, let us consider the special case of linear subspaces of X∗.

Theorem 11. Let M be a proper linear subspace of X∗ and let f : X −→
R ∪ {+∞} be a M -convex function. Then:

(i) f − x∗ ∈ C(M), for every x∗ ∈M ;
(ii) λf ∈ C(M), for every λ ≥ 0;
(iii) f|Y is convex, whenever Y is a linear subspace such that Y ∩M⊥ = {0}.

Proof. Since M is a linear subspace then the properties (i) and (ii) follow
immediately by Proposition 1 (properties (i) and (v)).
(iii) Let Y be a linear subspace such that Y ∩M⊥ = {0}. Let us take x, y ∈ Y,
and λ ∈ [0, 1] . If x 6= y, then x−y /∈M⊥. Since M is a proper linear subspace
there exists x∗ ∈M such that 〈x∗, x− y〉 = f(x)− f(y), and so

inf
x∗∈Mx,y

〈x∗, x− y〉 = f(x)− f(y)

for any x, y ∈ Y, i.e. f|Y is a convex function. �

Corollary 12. Let M be a subset of X∗ such that spanM = X∗ and
λM ⊆M for every λ ≥ 0. Then every M -convex function is convex.



7 A dual generalization of convex functions 31

Proof. If spanM = X∗ then M⊥ = {0}. Following the proof of above
theorem (iii), we observe that if λM ⊆M for every λ ≥ 0, then f|Y is convex,
whenever Y is a linear subspace. Taking Y = X, we obtain that f is a convex
function. �

In Proposition 1 (iv), we see that if Mw∗ = X∗ then, every M -convex
function is also a convex function. But this sufficient condition is not necessary.
In an earlier paper we established one more general result concerning the
equality C(M1) = C(M2). It is obvious that if M1 ⊂M2, then every M2-convex
function is also M1-convex, but conversely is generally not true.

Theorem 13 ([1]). Let M2 ⊂ X∗ be an open nonempty set. If ∅ 6= M1 ⊂
M2, then C(M1) = C(M2) if and only if

(6) for every x∗ ∈M2, and x ∈ X\ {0} , there exists a sequence
(x∗n)n∈N ⊆M1 such that 〈x∗n − x∗, x〉 ↘ 0.

Taking now M2 = X∗ the property (6) can be written in the following form

(7) for every α ∈ R, and x ∈ X\ {0} ,
exists a sequence (x∗n)n∈N ⊆M such that 〈x∗n, x〉 −→ α.

Consequently, we obtain a characterization of the special cases when M -
convexity coincides with convexity.

It is easily to prove that if Mw∗ = X∗, then the set M has the property (7),
but conversely is not always true, as we can see if we consider X = l1 and

M =
{
x∗ = (xn)n∈N ∈ l

∞| ∃n0 ∈ N such that xn0 6= 0, xn = 0,∀n 6= n0
}
.

2. THE EXTREME POINTS OF M - CONVEX FUNCTIONS

In the sequel we shall be concerned with a family of functions that lies
between the family of strictly quasiconvex functions and the family of the
semistrictly quasiconvex functions.

Let us recall that a function f is strictly quasiconvex [4] if

f(x) ≤ f(y) implies that f(λx+ (1− λ)y) < f(y),
for every x 6= y, and 0 < λ < 1.

Similarly, the condition for the semistrictly quasiconvexity [4] can be written
as

(8) f(x) < f(y) implies that f(λx+ (1− λ)y) < f(y)
where x, y ∈ X, and 0 < λ < 1.

An important property of the convex functions is that every local minimum
is a global one. This property, however, holds for more general families of
functions (for instance, the family of semistrict quasiconvex functions, see
[4]). In this line we consider the sets M ⊆ X∗ which satisfy the property (P ).
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Considering a set M with the property (P ), we want to see the relation-
ships between the family of M -convex functions and the families of generalized
convex functions above defined.

When M ⊂ X∗ has the property (P ), a M -convex function is not necessary
a strictly quasiconvex function as we see if we consider the function f(x) = 1.

The following theorem shows the relationship between M -convexity and
semistrict quasiconvexity.

Theorem 14. If M ⊂ X∗ has the property (P ), then every M -convex func-
tion is a semistrictly quasiconvex function.

Proof. Let us consider f ∈ C(M), x, y ∈ X such that f(x) < f(y), and
0 < λ < 1. Since f(x) < f(y), by virtute of property (P ) there exists x∗0 ∈M
such that

f(x)− f(y) < 〈x∗0, x− y〉 < 0.
Thus, according to (1) we have

f(λx+ (1− λ)y) ≤ f(y) + λ inf
x∗∈Mx,y

〈x∗, x− y〉 ≤ f(y) + λ 〈x∗0, x− y〉 < f(y).

Therefore (8) is fulfilled, i.e. f is semistrictly quasiconvex. �

Corollary 15. If M ⊂ X∗ has the property (P ) and f ∈ C(M), then every
locally extreme point from Dom(f) is a minimum global point. Moreover, the
set of points at which f attains its global minimum is a convex set.

Proof. If f ∈ C(M) then by Theorem 14 it follows that f is semistrictly
quasiconvex, therefore every locally extreme point from Dom(f) is a global
minimum point (see [4]). If x, y are two global minimum points then

inf
x∗∈Mx,y

〈x∗, x− y〉 = 0,

and so, by (1), we obtain that

f(λx+ (1− λ)y) ≤ f(y), for every λ ∈ [0, 1].

This prove that the set of global minimum points is a convex set. �

Remark 16. When M ⊂ X∗ has the property (P ), the function f may
not have the strict local maximum points; moreover, in every locally maxi-
mum point the function f is locally constant. If f is M -convex and attains
its maximum on int(Dom(f)), then f is constant. When M ⊂ X∗ has the
property (P ), the main difference between semistrictly quasiconvex functions
and M -convex functions is that for M -convex functions the set of minimum
points is a convex set, property which is not true in the case of semistrictly
quasiconvex functions. For example, the function f , defined on R by f(x) = 0
for x 6= 0 and f(x) = 2 for x = 0, is semistrictly quasiconvex but the set of its
global minimum points is not convex. �
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3. CONTINUITY OF M -CONVEX FUNCTIONS

In this section we will study the continuity property of M -convex functions.
The following result will be needed later on.

Lemma 17. Let M ⊆ X∗ be an open set. If f : X → R ∪ {+∞} is a M -
convex function and x, y, z ∈ dom f such that y = λx+(1−λ)z with λ ∈ (0, 1)
then

(9) f(y)−f(x)
‖y−x‖ ≤ 1

‖z−y‖ inf
x∗∈Mz,y

〈x∗, z − y〉

Proof. Indeed, if x∗ ∈Mz,y, since f is M -convex then

L(f, f(y)− 〈x∗, y〉 , x∗) = {u ∈ X/f(u) ≤ f(y) + 〈x∗, u− y〉}

is convex and y, z ∈ L(f, f(y)− 〈x∗, y〉 , x∗).
If we suppose that

f(y)−f(x)
‖y−x‖ > 1

‖z−y‖ inf
x∗∈Mz,y

〈x∗, z − y〉 ,

then
f(x) < f(y)− ‖y−x‖‖z−y‖ 〈x

∗, z − y〉 = f(y) + 〈x∗, x− y〉 .
Since M is an open set, there exist α > 0 and x∗0 ∈ X∗ such that 〈x∗0, x− y〉 =
−1 and x∗ + αx∗0 ∈ M, for every α ∈ (0, α). Now, taking α sufficiently small,
we have

f(x) < f(y) + 〈x∗ + αx∗0, x− y〉 ,
f(y) = f(y) + 〈x∗ + αx∗0, y − y〉 ,
f(z) < f(y) + 〈x∗ + αx∗0, z − y〉 .

Denoted x∗ + αx∗0 by x∗ and taking

ε = 1
2 min{f(x)− f(y)− 〈x∗ + αx∗0, x− y〉 , f(z) < f(y) + 〈x∗ + αx∗0, z − y〉},

it follows that

(10) x, z ∈ L(f, f(y)− 〈x∗, y〉 − ε, x∗)

and

(11) y /∈ L(f, f(y)− 〈x∗, y〉 − ε, x∗).

From (10) and (11) we obtain that the set L(f, f(y) − 〈x∗, y〉 − ε, x∗) is not
convex, which is not true.

Therefore

f(x) ≥ f(y)− ‖y−x‖‖z−y‖ 〈x
∗, z − y〉 for every x∗ ∈Mz,y

which proved (9). �

Now we will define a special type of radial convexity.
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Definition 18. We say that the function f : X → R ∪ {+∞} is radial
upper convex if for every x ∈ X, there exists εx > 0 such that for every v ∈ X,
with ‖v‖ = 1, the function F (t) = f(x+ tv) is (−∞,−εx) ∪ (εx,+∞)-convex.

Example 19. The function f : X −→ R defined by

f(x) =
{

1
2 ‖x‖

2 , ‖x‖ ≤ 1
1
2 , ‖x‖ > 1.

is radial upper convex but is not convex. Is obvious that this function is not
convex. To prove that she is radial upper convex, we show that for every
x, v ∈ X, with ‖v‖ = 1, the function F : R −→ R, defined by

F (t) = f(x+ tv)− αt ,
is quasiconvex for every α ∈ (−∞,−1) ∪ (1,+∞). Since F is continuous, is
sufficiently to prove that ∂F is an quasimonotone operator for every α ∈
(−∞,−1) ∪ (1,+∞). Taking into account that |〈v, J(x+ tv〉| ≤ 1 for every t
with the property ‖x+ tv‖ ≤ 1, we obtain that ∂F is quasimonotone (see [2],
[5]).

We denote by J the duality mapping between X and X∗, defined by:

J(x) =
{
x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, x ∈ X.

It is well known (see [5]) that this mapping is the subdifferential of the function
1
2 ‖·‖

2 , i.e. J(x) = ∂(1
2 ‖x‖

2), x ∈ X. �

In the sequel, we say that the set M ⊆ X∗ has property (P ∗) if satisfy
(P ∗) for every x ∈ X\{0} exist {x∗n}n∈N ⊆M such that 〈x∗n, x〉 → ∞.

Theorem 20. Let M be a set with property (P ∗) and let f : X → R∪{+∞}
be a M -convex function. Then f is radial continuous on ri(dom f).

Proof. Without loose our generality, considering Theorem 2, we can suppose
that f is defined on R, otherwise we take F (t) = f(x+ tv) for x, v ∈ X. Thus,
we must to prove that f is continuous. If x0 ∈ ri(dom f) and we suppose that
f is not lower semicontinuous in x0, then there exist ε > 0 and a net {xn}n∈N
with xn → x0 such that
(12) − ε > f(xn)− f(x0), for every n ∈ N.
We can suppose that xn > x0, for every n ∈ N (analogue when xn < x0).

Since x0 ∈ ri(dom f), there exists u1 < x0 such that u1 ∈ dom f. Taking
into account that f is M -convex and the property (P ∗) is fulfilled, then there
exists x∗ ∈M such that
(13) f(u1) < f(x0)− ε

2 + 〈x∗, u1 − x0〉 .

But, by (12), exists u2 > x0 such that

(14) f(u2) < f(x0)− ε

2 + 〈x∗, u2 − x0〉 .
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Considering (13) and (14) we obtain that L(f, f(x0) − ε
2 , x
∗) is not convex

i.e. f is not M -convex. Therefore f must be lower semicontinuous in x0.
Now, if we suppose, by a contradiction, that f is not upper semicontinuous in
x0 ∈ ri(domf), then there exist a net {xn}n∈N ⊂ dom(f) and ε > 0 such that
xn → x0 and

f(xn)− f(x0) > ε, for every n ∈ N.

Following the same steps as in previous case we obtain that there exist v1, v2 ∈
dom(f) and x∗ ∈M such that

(15) f(v1) > f(x0) + ε

2 + 〈x∗, v1 − x0〉 .

and

(16) f(v2) > f(x0) + ε

2 + 〈x∗, v2 − x0〉 .

But, by (15) and (16) we find that L(f, f(x0) + ε
2 , x
∗) is not convex. This

ended the proof. �

Remark 21. In the above theorem the condition that f to be M -convex can
be replaced by the following property: for every x ∈ X and v ∈ X there exist
Mxv ⊂ R such that F (t) = f(x+tv), t ∈ R, is Mxv-convex and (P ∗) is fulfilled.
Particularly, this property holds for radial upper convex functions. �

Theorem 22. Let f : X → R ∪ {+∞} be a radial upper convex function.
If f is bounded from above in a neighborhood of one point x0 ∈ int(dom f),
then it is locally bounded, that is, for every x ∈ int(dom f) there exists a
neighborhood on which f is bounded.

Proof. We first show that if f is bounded from above in a neighborhood of
x0, it is also bounded from below in the same neighborhood. Since f is radial
upper convex, we can find rx0 > 0 such that for every v ∈ X with ‖v‖ = 1,
the function F (t) = f(x0 + tv) is (−∞,−rx0) ∪ (rx0 ,+∞)-convex. Let ε > 0,
K > 0 such that f(x) ≤ K for every x ∈ S(x0; ε) ⊆ domf.

For every z ∈ S(x0; ε), there exists λ ≥ 0 and y ∈ X such that ‖y‖ = 1 and
z = x0 + λy.

Taking x0 = 1
2(x0 + λy) + 1

2(x0− λy), since the function F is (−∞,−rx0)∪
(rx0 ,+∞)-convex, we obtain

F (0) ≤ F (λ) + 1
2inf {−2λt | |t| > rx0 , F (λ)− F (−λ) ≤ −2λt}

≤ F (λ) + λinf {|t| | F (λ)− F (−λ) ≤ −2λt} ≤ F (λ) + max{2K, rx0},

therefore f(z) ≥ f(x0) − max{2k, rx0} ≥ −K − max{2k, rx0}, which prove
that f is bounded from below on S(x0, ε).

Let x ∈ int(dom f) and x 6= x0. Then x = x0 + λy, where again y ∈ X,
‖y‖ = 1 and µ is a positive number.
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Since x ∈ int(dom f), there exists α > µ such that v = x0 + αy ∈ int(domf).
Taking λ = µ

α , the set
V = {u ∈ dom f | u = (1− λ)z + λv, z ∈ S(x0; ε)}

is a neighborhood of x (V = S(x, γ), where γ = (1 − λ)ε). Therefore we find
rz > 0 such that for every u ∈ V, the function defined by F (λ) = f(z+λ(v−z)),
λ ∈ R, is (−∞,−rz) ∪ (rz,+∞)-convex, thus

F (λ) ≤ F (0) + λinf {t| |t| > rz, F (1)− F (0) ≤ t} .

Since f is bounded on S(x0; ε), then
F (1)− F (0) ≤ 2K,

and
inf {t| |t| > rz, F (1)− F (0) ≤ t} ≤ max{2K, rz},

which proved that
f(u) ≤ K + max{2K, rzr},

for every u ∈ V, i.e. f is also bounded from above on V , as claimed. �

Now, we establish an extension of well known continuity theorem of convex
functions (see [5], [6]).

Theorem 23. Let f : X → R∪{+∞} be a radial upper convex function. If
f is bounded from above in a neighborhood of one point x0 ∈ int(dom f), then
f is continuous on int(dom f).

Proof. By Theorem 22, for each x0 ∈ int(dom f) we can find a neighborhood
S(x0, 2ε) on which f is bounded, i.e. there exist Kx0 > 0 such that

|f(x)| ≤ Kx0 for every x ∈ S(x0, 2ε).

For the begining we prove that for every x ∈ int(dom f) we find a constant
Kx0 > 0 such that
(17) inf

|t|>rx0
t‖x−x0‖≥f(x)−f(x0)

t ≥ −Kx0

and
(18) inf

|t|>rx0
t‖x−x0‖≥f(x0)−f(x)

t ≥ −Kx0

for every x ∈ S(x0; ε). If we suppose, to the contrary, that (17) not holds,
there exists x ∈ S(x0, ε) such that

inf
|t|>rx0

t‖x−x0‖≥f(x)−f(x0)

t < −2Kx0

ε
.

Now, we take y ∈ S(x0; 2ε) such that x0 = λx+ (1− λ)y and ‖y − x0‖ = ε.
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Since the function F (t) = f(x0+t x−x0
‖x−x0‖) is (−∞,−rx0)∪(rx0 ,+∞)-convex,

from Lemma 17, we obtain that
f(x0)−f(y)

ε ≤ 1
‖x−x0‖ inf

|t|>rx0
t‖x−x0‖≥f(x)−f(x0)

t ‖x− x0‖ < −
2Kx0

ε
.

Therefore f(x0)− f(y) < −2Kx0 and hence f(y) > Kx0 , which is not possible
because y ∈ S(x0; 2ε). Consequently, the inequality (17) is always true.

Analogue we proof relation (18), using in this case the function F (t) =
f(x+ t x0−x

‖x−x0‖), which is also a (−∞,−rx0) ∪ (rx0 ,+∞)-convex function.
Now, if we suppose that f is not continuous in x0, then we find ε > 0 and

a sequence {xn}n∈N ⊆ S(x0; ε) such that xn → x0,

(19) f(xn)− f(x0) > ε

or
(20) f(xn)− f(x0) < −ε.

From (19) and (20) we find n0 ∈ N such that for every n ≥ n0,
f(xn)− f(x0) = inf

|t|>rx0
t‖x−x0‖≥f(xn)−f(x0)

t ‖xn − x0‖

and
f(x0)− f(xn) = inf

|t|>rx0
t‖x−x0‖≥f(x0)−f(xn)

t ‖xn − x0‖ .

From above relations we obtain that
|f(xn)− f(x0)| ≤ Kx0 ‖xn − x0‖ , for every n ≥ n0,

which is not possible because is a contradiction with (19) or (20). �

Remark 24. It is obvious that in the special case M = X∗ we obtain the
usual continuity theorem of convex functions. �
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