REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 36 (2007) no. 1, pp. 25-38 ictp.acad.ro/jnaat

A DUAL GENERALIZATION OF CONVEX FUNCTIONS*

M. $APETRII^{\dagger}$

Abstract. As it is well known, the convexity property of a function may be described by the quasiconvexity property of all "the dual perturbations" of this function. If we consider the "dual perturbation" only in a subset $M \subset X^*$ we obtain a general class of functions called *M*-convex. In this paper we establish some special properties and a continuity theorem of this new type of functions.

MSC 2000. 52A41, 46B20, 26A51, 90C25.

Keywords. M-convexity, convex function, quasiconvex function, extrem point, local bounded function.

1. INTRODUCTIONS

Taking as starting point the Crouzeix characterization of convex function by quasiconvexity property of all "dual perturbation" (see [7]), in an earlier paper we introduced a new type of convexity, only the "dual perturbation" in a given subset $M \subset X^*$.

In the sequel, X denotes a real linear normed space and X^* its topological dual. The symbol (\cdot, \cdot) will be used for the usual pairing between X and X^* , while $\langle \cdot, \cdot \rangle$ will be used for the associated bilinear functional, i.e. $\langle x, x^* \rangle = x^*(x)$, for all $x \in X, x^* \in X^*$.

We recall some well known concepts in convex analysis (see [4], [5], [6], [10]). For a function $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ we denote by

$$Dom(f) = \{ x \in X | f(x) < +\infty \}$$

its domain.

When Dom(f) is nonempty we say that f is proper.

A function $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is said to be *convex* if for every $x_1, x_2 \in X$ and for every $\lambda \in [0, 1]$ we have:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

A function f is called *quasiconvex* if for every $x_1, x_2 \in X$ and for every $\lambda \in [0, 1]$ we have:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \max\{f(x_1), f(x_2)\},\$$

[†]"Al. I. Cuza" University, B-dul Carol I, Nr. 11, 700506, Iaşi, e-mail: mapetrii@uaic.ro. *This work was supported by Grant ID 387 4/28.09.2007.

equivalently

$$f(\lambda x_1 + (1 - \lambda)x_2) \le f(x_2)$$

whenever $x_1, x_2 \in X$, $\lambda \in [0, 1]$ such that $f(x_1) \leq f(x_2)$.

Also, it is well known that a function is quasiconvex if and only if its level sets

$$L(f,\alpha) = \{ x \in X | f(x) \le \alpha \}$$

are convex for every $\alpha \in \mathbb{R}$.

Now, we remind the definition of M-convex functions, introduced in [1].

If M is a nonempty subset of X^* , we say that the function $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is *M*-convex if for each $x^* \in M$ the sets

$$L(f, \alpha, x^*) = \{ x \in X | f(x) \le \alpha + \langle x^*, x \rangle \}$$

are convex for every $\alpha \in \mathbb{R}$.

If -f is *M*-convex we say that f is *M*-concave.

Throughout this paper, for a given nonempty subset $M \subset X^*$, we will denote by

 $\mathcal{C}(M)$ the class of all *M*-convex functions.

From this definition, we observe that if the set M contains the origin then we obtain a new type of convexity which lies between quasiconvexity and convexity.

For the beginning, we recall some property of this functions proved in [1].

- PROPOSITION 1. (i) If $f \in \mathcal{C}(M)$ then $f x^* \in C(M x^*)$ for every $x^* \in X^*$.
- (ii) $f \in \mathcal{C}(M)$ if and only if $f x^*$ is quasiconvex, for every $x^* \in M$.
- (iii) If $M_1 \subset M_2$ then $\mathcal{C}(M_2) \subseteq \mathcal{C}(M_1)$.
- (iv) $C(M) = C(\overline{M}^{w^*})$, where \overline{M}^{w^*} is the closure of M with respect to w^* -topology.
- (v) If $f \in \mathcal{C}(M)$ then for each $\lambda > 0, \lambda f$ is λM -convex.

(vi) If
$$f_i \in \mathcal{C}(M_i)$$
 for every $i \in I$, then $f = \sup_{i \in I} f_i \in C(\bigcap_{i \in I} M_i)$.

(vii) The domain of a M-convex function f is a convex set.

Similarly to the convex case ([4], [5], [10]), the M-convex functions can be characterized with the aid of its one dimensional restrictions.

THEOREM 2. If $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ and $\emptyset \neq M \subseteq X^*$, then f is a M-convex function if and only if for every $x, v \in X$, the associated function F, defined by

$$F(t) = f(x + tv), \ t \in \mathbb{R}$$

is M_v -convex, where

$$M_v = \left\{ \left\langle x^*, v \right\rangle / x^* \in M \right\}.$$

In the following result, proved in [1], we characterize the *M*-convex functions using only its values on the line segments, establishing a characteristic inequality of convex type. THEOREM 3. Let us consider $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ and $\emptyset \neq M \subseteq X^*$. Then f is M-convex if and only if

(1)
$$f(\lambda x + (1-\lambda)y) \le f(y) + \lambda \inf_{x^* \in M_{x,y}} \langle x^*, x-y \rangle,$$

for every $x, y \in X$, and $\lambda \in [0, 1]$, where

(2)
$$M_{x,y} = \{x^* \in M | \langle x^*, x - y \rangle \ge f(x) - f(y)\}$$

If f is a M-convex function and

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = f(x) - f(y), \text{ for all } x, y \in X,$$

then f is a convex function.

In fact, by (2) we observe that

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle \ge f(x) - f(y), \text{ for all } x, y \in X$$

On the other hand, if we have

(3)
$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle \le 0$$

whenever $f(x) \leq f(y)$, then

$$f(\lambda x + (1 - \lambda)y) \le f(y),$$

i.e. f is quasiconvex.

Moreover, if (3) is fulfilled for all $x, y \in X$, then f is constant.

We recall that the support functional of a set $A \subset X^*$, σ_A is defined by

$$\sigma_A(x) = \sup_{x^* \in A} x^*(x), x \in X$$

Thus, the inequality (1) can be rewritten as

$$f(\lambda x + (1 - \lambda)y) \le f(y) - \lambda \sigma_{M_{x,y}}(y - x).$$

Now, we consider some special cases for the set M. Thus, if M is a convex set, we have that

(4)
$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = \begin{cases} f(x) - f(y), & -\sigma_M(y - x) \le f(x) - f(y) \le \\ \sigma_M(x - y), & \\ -\sigma_M(y - x), & f(x) - f(y) \le -\sigma_M(y - x), \\ +\infty, & f(x) - f(y) > \sigma_M(x - y). \end{cases}$$

If we take $M = S^*(0, r) = \{x^* \in X^* / ||x^*|| \le r\}$, then

$$\sigma_M(y-x) = r \|y-x\|$$

and (4) becomes

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = \begin{cases} f(x) - f(y), & -r \|y - x\| \le f(x) - f(y) \le \\ r \|y - x\|, & r \|y - x\|, \\ -r \|y - x\|, & f(x) - f(y) \le -r \|y - x\|, \\ +\infty, & f(x) - f(y) > r \|y - x\|, \end{cases}$$

or, equivalently, if $f(x) \leq f(y)$, then

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = \begin{cases} f(x) - f(y), & f(y) - f(x) \le r \|y - x\|, \\ -r \|x - y\|, & f(y) - f(x) \ge r \|y - x\|. \end{cases}$$

Considering this, it is easy to prove that if $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is a Lipschitz function with constant L and f is $S^*(0, L)$ -convex, then f is convex.

In [12], H. X. Phu and P. T. An introduce the notion of s-quasiconvex (s from "stable") functions, and he show that this functions are stable with respect to the following properties: "all lower level sets are convex", "each local minimum is a global minimum", "each stationary point is a global minimizer".

We specify that a function $f: D \subset X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is called *s*-quasiconvex if there exists $\sigma > 0$ such that

$$\frac{f(x_0) - f(x_1)}{\|x_0 - x_1\|} \le \delta \text{ implies } \frac{f(x_\lambda) - f(x_1)}{\|x_\lambda - x_1\|} \le \delta$$

for $|\delta| < \sigma$, $x_0, x_1 \in D$, $x_\lambda = (1 - \lambda)x_0 + \lambda x_1$ and $\lambda \in [0, 1]$.

The authors show that this functions can be characterized as follows

(5) a function f is *s*-quasiconvex if and only if there exists $\varepsilon > 0$ such that $f - x^*$ is quasiconvex, for every x^* with the property $||x^*|| < \varepsilon$.

REMARK 4. The relation (5) can be obtained (on the other way) from Theorem 3, taking M a ball with the center in the origin. In fact, as we see in the relation (5), the class of s-quasiconvex functions are the same with the class of M-convex functions, with $0 \in int(M)$.

Now we will consider the sets $M\subseteq X^*$ with the following property

(P) for every $x \in X \setminus \{0\}$, there exists a sequence

 $\{x_n^*\}_{n\in\mathbb{N}}\subseteq M$ such that $\langle x_n^*, x\rangle \searrow 0$.

It is easy to prove that if $0 \in int(M)$, then the set M has the property (P).

EXAMPLE 5. Let $X = l^1$ and $M = \{\alpha_n e_n \mid \text{where } \alpha_n \in (-\frac{1}{n}, \frac{1}{n}), n \in \mathbb{N}, \{e_i\}_{i \in \mathbb{N}^*}$ -canonical bases in l^1 }. It is easily to prove that the set M has the property (P). The function defined by

$$f(x) = \begin{cases} \sup_{x^* \in M} \langle x^*, x \rangle, \ x \neq 0 \\ -1 \quad , \quad x = 0, \end{cases}$$

is M-convex, but she is not s-quasiconvex.

In the following proposition we present a sufficient condition from property (P).

PROPOSITION 6. Let X be a normed linear spaces such that $\dim(X) \ge 2$ and $M \subseteq X^*$ a bounded set, with the property $\overline{\operatorname{con}(M)}^{w^*} = X^*$. Then the set M has the property (P).

Proof. We start with $x \in X \setminus \{0\}$. Since $\dim(X) \ge 2$ then there exists x^* , $y^* \in X^* \setminus \{0\}$ such that $\langle x^*, x \rangle = 0$ and $\langle y^*, x \rangle > 0$. For every $n \in \mathbb{N}$ we consider $y_n^* = \frac{1}{n}y^* + (1 - \frac{1}{n})x^*$. Taking into account that $\overline{\operatorname{con}(M)}^{w^*} = X^*$, we find $\lambda_n > 0$ and \overline{y}_n^* such that $\langle \overline{y}_n^*, x \rangle > 0$, $\langle y_n^* - \overline{y}_n^*, x \rangle < \frac{1}{n}$ and $\lambda_n \overline{y}_n^* \in M$ for every $n \in \mathbb{N}$. To prove that the set M has the property (P) we passing to limit in the following relation

$$0 < \langle \lambda_n \overline{y}_n^*, x \rangle = \lambda_n \langle \overline{y}_n^* - y_n^*, x \rangle + \lambda_n \langle y_n^*, x \rangle < \frac{\lambda_n}{n} (1 + \langle y^*, x \rangle),$$

and we obtain that $\langle \lambda_n \overline{y}_n^*, x \rangle \searrow 0$, because M is bounded.

LEMMA 7. Let X be a linear normed space and $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ an $Fr(S^*(0;r))$ -convex function, for some r > 0. If $\dim(X) \ge 2$ then f is $S^*(0;r)$ -convex.

Proof. It is easy to prove that $S^*(0;r)_v = [-r ||v||, r ||v||]$. Since dim $(X) \ge 2$, $Fr(S^*(0;r))$ is a conex set, therefore we obtain that $Fr(S^*(0;r))_v$ is an interval, namely

$$Fr(S^*(0;r))_v = [\inf_{\|x^*\|=r} \langle x^*, v \rangle, \sup_{\|x^*\|=r} \langle x^*, v \rangle] = [-r \|v\|, r \|v\|].$$

Using the characterization given by Theorem 2, we obtain that f is $S^*(0;r)$ -convex.

THEOREM 8. Let X be a linear normed space such that $\dim(X) \ge 2$. Then $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is s-quasiconvex if and only if there exists r > 0 such that f is $Fr(S^*(0;r))$ -convex.

Proof. The theorem is a consequence of Lemma 7 and the characterization of s-quasiconvex functions. \Box

THEOREM 9. Let $M \subseteq X^*$ be a set such that $0 \in int(M)$. If f is M-convex then for every $x, y \in X$, with $f(x) \leq f(y)$, there exists $\alpha \in (0, 1]$ such that:

$$f(\lambda x + (1 - \lambda)y) \le \lambda \alpha f(x) + (1 - \lambda \alpha)f(y) \text{ for every } \lambda \in [0, 1].$$

Proof. Obviously, if x = y, we can take $\alpha = 1$. If $x \neq y$ and $f(x) \leq f(y)$ then we find $0 \neq x_0^* \in X^*$ such that $\langle x_0^*, x - \bar{x} \rangle = f(x) - f(y)$. Since $0 \in int(M)$ there exists $\alpha \in (0, 1]$ such that $\alpha x_0^* \in M$. Therefore $\alpha x_0^* \in M_{x,y}$ because

$$\langle \alpha x_0^*, x - y \rangle = \alpha \langle x_0^*, x - y \rangle \ge f(x) - f(y).$$

Now, taking into account that f is M-convex, for every $\lambda \in [0,1]$ we get

$$f(\lambda x + (1 - \lambda)y) \le f(y) + \lambda \inf_{x^* \in M_{x,y}} \left\langle x^*, x - y \right\rangle \le f(y) + \lambda \left\langle \alpha x_0^*, x - y \right\rangle,$$

and the proof is complete.

When $M \subset X^*$ is a cone, we denote

$$M^{\perp} = \{ x \in X | \langle x^*, x \rangle = 0, \text{ for every } x^* \in M \}$$

and

$$M^{\Diamond} = \{x \in X | \text{ exists } x^* \in M \text{ such that } \langle x^*, x \rangle > 0\} \cup \{0\}$$

Is easy to prove that M^{\Diamond} is a convex cone.

Thus, a function $f: A \to \mathbb{R} \cup \{+\infty\}$ is called increasing related to M^{\Diamond} if

$$x - y \in M^{\Diamond} \Longrightarrow f(x) \ge f(y)$$

THEOREM 10. Let $A \subset X$ be a convex set and $f : A \to \mathbb{R} \cup \{+\infty\}$ be a *M*-convex function such that $(A - A) \cap M^{\perp} = \{0\}$. If *f* is increasing related to M^{\Diamond} on the set *A*, then *f* is a convex function on

A.

Proof. Let x, y be two points from A and $\lambda \in [0, 1]$. If $x - y \in \mathcal{C}(M^{\Diamond} \cup -M^{\Diamond})$, then $x \neq y$ and for every $x^* \in M$ we have $\langle x^*, x - y \rangle = 0$, i.e. $x - y \in (A - A) \cap M^{\perp}$. By hypothesis we find that x = y, which is a contradiction. Consequently, we have $x - y \in M^{\Diamond}$ or $y - x \in M^{\Diamond}$. Now, we suppose that $x - y \in M^{\Diamond}$. Then $f(x) \geq f(y)$ because f is increasing related to M^{\Diamond} on A. Also, there exists $x^* \in M$ such that $\langle x^*, x - y \rangle > 0$.

Since M is a cone, then

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = f(x) - f(y)$$

and taking into account that f is a M-convex function we obtain that

$$f(\lambda x + (1 - \lambda)y) \le f(y) + \lambda \inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = \lambda f(x) + (1 - \lambda)f(y).$$

We proceed similarly when $y - x \in M^{\Diamond}$.

This proved that f is a convex function on the set A.

Now, let us consider the special case of linear subspaces of
$$X^*$$
.

THEOREM 11. Let M be a proper linear subspace of X^* and let $f: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a M-convex function. Then:

- (i) $f x^* \in \mathcal{C}(M)$, for every $x^* \in M$;
- (ii) $\lambda f \in \mathcal{C}(M)$, for every $\lambda \geq 0$;
- (iii) $f_{|Y}$ is convex, whenever Y is a linear subspace such that $Y \cap M^{\perp} = \{0\}$.

Proof. Since M is a linear subspace then the properties (i) and (ii) follow immediately by Proposition 1 (properties (i) and (v)).

(iii) Let Y be a linear subspace such that $Y \cap M^{\perp} = \{0\}$. Let us take $x, y \in Y$, and $\lambda \in [0, 1]$. If $x \neq y$, then $x - y \notin M^{\perp}$. Since M is a proper linear subspace there exists $x^* \in M$ such that $\langle x^*, x - y \rangle = f(x) - f(y)$, and so

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = f(x) - f(y)$$

for any $x, y \in Y$, i.e. $f_{|Y}$ is a convex function.

COROLLARY 12. Let M be a subset of X^* such that $\overline{\operatorname{span} M} = X^*$ and $\lambda M \subseteq M$ for every $\lambda \geq 0$. Then every M-convex function is convex.

 \square

Proof. If $\overline{\text{span}M} = X^*$ then $M^{\perp} = \{0\}$. Following the proof of above theorem (iii), we observe that if $\lambda M \subseteq M$ for every $\lambda \geq 0$, then $f_{|Y}$ is convex, whenever Y is a linear subspace. Taking Y = X, we obtain that f is a convex function.

In Proposition 1 (iv), we see that if $\overline{M}^{w^*} = X^*$ then, every *M*-convex function is also a convex function. But this sufficient condition is not necessary. In an earlier paper we established one more general result concerning the equality $\mathcal{C}(M_1) = \mathcal{C}(M_2)$. It is obvious that if $M_1 \subset M_2$, then every M_2 -convex function is also M_1 -convex, but conversely is generally not true.

THEOREM 13 ([1]). Let $M_2 \subset X^*$ be an open nonempty set. If $\emptyset \neq M_1 \subset M_2$, then $\mathcal{C}(M_1) = \mathcal{C}(M_2)$ if and only if

(6) for every
$$x^* \in M_2$$
, and $x \in X \setminus \{0\}$, there exists a sequence $(x_n^*)_{n \in \mathbb{N}} \subseteq M_1$ such that $\langle x_n^* - x^*, x \rangle \searrow 0$.

Taking now $M_2 = X^*$ the property (6) can be written in the following form

(7) for every
$$\alpha \in \mathbb{R}$$
, and $x \in X \setminus \{0\}$,
exists a sequence $(x_n^*)_{n \in \mathbb{N}} \subseteq M$ such that $\langle x_n^*, x \rangle \longrightarrow \alpha$.

Consequently, we obtain a characterization of the special cases when M-convexity coincides with convexity.

It is easily to prove that if $\overline{M}^{w^*} = X^*$, then the set M has the property (7), but conversely is not always true, as we can see if we consider $X = l^1$ and

$$M = \left\{ x^* = (x_n)_{n \in \mathbb{N}} \in l^{\infty} | \exists n_0 \in \mathbb{N} \text{ such that } x_{n_0} \neq 0, x_n = 0, \forall n \neq n_0 \right\}.$$

2. The extreme points of M- convex functions

In the sequel we shall be concerned with a family of functions that lies between the family of strictly quasiconvex functions and the family of the semistrictly quasiconvex functions.

Let us recall that a function f is strictly quasiconvex [4] if

$$f(x) \le f(y)$$
 implies that $f(\lambda x + (1 - \lambda)y) < f(y)$,
for every $x \ne y$, and $0 < \lambda < 1$.

Similarly, the condition for the semistrictly quasiconvexity [4] can be written as

(8)
$$f(x) < f(y) \text{ implies that } f(\lambda x + (1 - \lambda)y) < f(y)$$

where $x, y \in X$, and $0 < \lambda < 1$.

An important property of the convex functions is that every local minimum is a global one. This property, however, holds for more general families of functions (for instance, the family of semistrict quasiconvex functions, see [4]). In this line we consider the sets $M \subseteq X^*$ which satisfy the property (P).

3.5		
N/L	Ane	trm
TAT .	TIPC	ULII

Considering a set M with the property (P), we want to see the relationships between the family of M-convex functions and the families of generalized convex functions above defined.

When $M \subset X^*$ has the property (P), a M-convex function is not necessary a strictly quasiconvex function as we see if we consider the function f(x) = 1.

The following theorem shows the relationship between M-convexity and semistrict quasiconvexity.

THEOREM 14. If $M \subset X^*$ has the property (P), then every M-convex function is a semistricitly quasiconvex function.

Proof. Let us consider $f \in \mathcal{C}(M)$, $x, y \in X$ such that f(x) < f(y), and $0 < \lambda < 1$. Since f(x) < f(y), by virtute of property (P) there exists $x_0^* \in M$ such that

$$f(x) - f(y) < \langle x_0^*, x - y \rangle < 0.$$

Thus, according to (1) we have

$$f(\lambda x + (1 - \lambda)y) \le f(y) + \lambda \inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle \le f(y) + \lambda \langle x_0^*, x - y \rangle < f(y).$$

Therefore (8) is fulfilled, i.e. f is semistricitly quasiconvex.

COROLLARY 15. If $M \subset X^*$ has the property (P) and $f \in \mathcal{C}(M)$, then every locally extreme point from Dom(f) is a minimum global point. Moreover, the set of points at which f attains its global minimum is a convex set.

Proof. If $f \in \mathcal{C}(M)$ then by Theorem 14 it follows that f is semistrictly quasiconvex, therefore every locally extreme point from Dom(f) is a global minimum point (see [4]). If x, y are two global minimum points then

$$\inf_{x^* \in M_{x,y}} \langle x^*, x - y \rangle = 0,$$

and so, by (1), we obtain that

$$f(\lambda x + (1 - \lambda)y) \le f(y)$$
, for every $\lambda \in [0, 1]$.

This prove that the set of global minimum points is a convex set.

REMARK 16. When $M \subset X^*$ has the property (P), the function f may not have the strict local maximum points; moreover, in every locally maximum point the function f is locally constant. If f is M-convex and attains its maximum on $\operatorname{int}(\operatorname{Dom}(f))$, then f is constant. When $M \subset X^*$ has the property (P), the main difference between semistrictly quasiconvex functions and M-convex functions is that for M-convex functions the set of minimum points is a convex set, property which is not true in the case of semistrictly quasiconvex functions. For example, the function f, defined on \mathbb{R} by f(x) = 0for $x \neq 0$ and f(x) = 2 for x = 0, is semistrictly quasiconvex but the set of its global minimum points is not convex. In this section we will study the continuity property of M-convex functions. The following result will be needed later on.

LEMMA 17. Let $M \subseteq X^*$ be an open set. If $f : X \to \mathbb{R} \cup \{+\infty\}$ is a *M*-convex function and $x, y, z \in \text{dom } f$ such that $y = \lambda x + (1 - \lambda)z$ with $\lambda \in (0, 1)$ then

(9)
$$\frac{f(y) - f(x)}{\|y - x\|} \le \frac{1}{\|z - y\|} \inf_{x^* \in M_{z,y}} \langle x^*, z - y \rangle$$

Proof. Indeed, if $x^* \in M_{z,y}$, since f is M-convex then

$$L(f, f(y) - \langle x^*, y \rangle, x^*) = \{ u \in X / f(u) \le f(y) + \langle x^*, u - y \rangle \}$$

is convex and $y, z \in L(f, f(y) - \langle x^*, y \rangle, x^*)$.

If we suppose that

$$\frac{f(y) - f(x)}{\|y - x\|} > \frac{1}{\|z - y\|} \inf_{x^* \in M_{z,y}} \langle x^*, z - y \rangle ,$$

then

$$f(x) < f(y) - \frac{\|y-x\|}{\|z-y\|} \langle x^*, z-y \rangle = f(y) + \langle x^*, x-y \rangle.$$

Since M is an open set, there exist $\overline{\alpha} > 0$ and $x_0^* \in X^*$ such that $\langle x_0^*, x - y \rangle = -1$ and $x^* + \alpha x_0^* \in M$, for every $\alpha \in (0, \overline{\alpha})$. Now, taking α sufficiently small, we have

$$f(x) < f(y) + \langle x^* + \alpha x_0^*, x - y \rangle,$$

$$f(y) = f(y) + \langle x^* + \alpha x_0^*, y - y \rangle,$$

$$f(z) < f(y) + \langle x^* + \alpha x_0^*, z - y \rangle.$$

Denoted $x^* + \alpha x_0^*$ by \overline{x}^* and taking

$$\epsilon = \frac{1}{2} \min\{f(x) - f(y) - \langle x^* + \alpha x_0^*, x - y \rangle, f(z) < f(y) + \langle x^* + \alpha x_0^*, z - y \rangle\},$$
 it follows that

(10)
$$x, z \in L(f, f(y) - \langle \overline{x}^*, y \rangle - \epsilon, \overline{x}^*)$$

and

(11)
$$y \notin L(f, f(y) - \langle \overline{x}^*, y \rangle - \epsilon, \overline{x}^*).$$

From (10) and (11) we obtain that the set $L(f, f(y) - \langle \overline{x}^*, y \rangle - \epsilon, \overline{x}^*)$ is not convex, which is not true.

Therefore

$$f(x) \ge f(y) - \frac{\|y-x\|}{\|z-y\|} \langle x^*, z-y \rangle$$
 for every $x^* \in M_{z,y}$

which proved (9).

Now we will define a special type of radial convexity.

M. Apetrii

DEFINITION 18. We say that the function $f : X \to \mathbb{R} \cup \{+\infty\}$ is radial upper convex if for every $x \in X$, there exists $\varepsilon_x > 0$ such that for every $v \in X$, with ||v|| = 1, the function F(t) = f(x + tv) is $(-\infty, -\varepsilon_x) \cup (\varepsilon_x, +\infty)$ -convex.

EXAMPLE 19. The function $f: X \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{1}{2} \|x\|^2, \|x\| \le 1\\ \frac{1}{2}, \|x\| > 1. \end{cases}$$

is radial upper convex but is not convex. Is obvious that this function is not convex. To prove that she is radial upper convex, we show that for every $x, v \in X$, with ||v|| = 1, the function $F : \mathbb{R} \longrightarrow \mathbb{R}$, defined by

$$F(t) = f(x + tv) - \alpha t ,$$

is quasiconvex for every $\alpha \in (-\infty, -1) \cup (1, +\infty)$. Since F is continuous, is sufficiently to prove that ∂F is an quasimonotone operator for every $\alpha \in (-\infty, -1) \cup (1, +\infty)$. Taking into account that $|\langle v, J(x+tv) | \leq 1$ for every twith the property $||x + tv|| \leq 1$, we obtain that ∂F is quasimonotone (see [2], [5]).

We denote by J the duality mapping between X and X^* , defined by:

$$J(x) = \left\{ x^* \in X^* \mid \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \right\}, \ x \in X.$$

It is well known (see [5]) that this mapping is the subdifferential of the function $\frac{1}{2} \|\cdot\|^2$, i.e. $J(x) = \partial(\frac{1}{2} \|x\|^2), x \in X$.

In the sequel, we say that the set $M \subseteq X^*$ has property (P^*) if satisfy

 (P^*) for every $x \in X \setminus \{0\}$ exist $\{x_n^*\}_{n \in \mathbb{N}} \subseteq M$ such that $\langle x_n^*, x \rangle \to \infty$.

THEOREM 20. Let M be a set with property (P^*) and let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a M-convex function. Then f is radial continuous on ri(dom f).

Proof. Without loose our generality, considering Theorem 2, we can suppose that f is defined on \mathbb{R} , otherwise we take F(t) = f(x+tv) for $x, v \in X$. Thus, we must to prove that f is continuous. If $x_0 \in ri(\text{dom } f)$ and we suppose that f is not lower semicontinuous in x_0 , then there exist $\epsilon > 0$ and a net $\{x_n\}_{n \in \mathbb{N}}$ with $x_n \to x_0$ such that

(12)
$$-\epsilon > f(x_n) - f(x_0)$$
, for every $n \in \mathbb{N}$.

We can suppose that $x_n > x_0$, for every $n \in \mathbb{N}$ (analogue when $x_n < x_0$).

Since $x_0 \in ri(\text{dom } f)$, there exists $u_1 < x_0$ such that $u_1 \in \text{dom } f$. Taking into account that f is M-convex and the property (P^*) is fulfilled, then there exists $x^* \in M$ such that

(13)
$$f(u_1) < f(x_0) - \frac{\epsilon}{2} + \langle x^*, u_1 - x_0 \rangle.$$

But, by (12), exists $u_2 > x_0$ such that

(14)
$$f(u_2) < f(x_0) - \frac{\epsilon}{2} + \langle x^*, u_2 - x_0 \rangle.$$

Considering (13) and (14) we obtain that $L(f, f(x_0) - \frac{\epsilon}{2}, x^*)$ is not convex i.e. f is not M-convex. Therefore f must be lower semicontinuous in x_0 . Now, if we suppose, by a contradiction, that f is not upper semicontinuous in $x_0 \in ri(\operatorname{dom} f)$, then there exist a net $\{x_n\}_{n \in \mathbb{N}} \subset \operatorname{dom}(f)$ and $\epsilon > 0$ such that $x_n \to x_0$ and

$$f(x_n) - f(x_0) > \epsilon$$
, for every $n \in \mathbb{N}$.

Following the same steps as in previous case we obtain that there exist $v_1, v_2 \in \text{dom}(f)$ and $x^* \in M$ such that

(15)
$$f(v_1) > f(x_0) + \frac{\epsilon}{2} + \langle x^*, v_1 - x_0 \rangle.$$

and

(16)
$$f(v_2) > f(x_0) + \frac{\epsilon}{2} + \langle x^*, v_2 - x_0 \rangle.$$

But, by (15) and (16) we find that $L(f, f(x_0) + \frac{\epsilon}{2}, x^*)$ is not convex. This ended the proof.

REMARK 21. In the above theorem the condition that f to be M-convex can be replaced by the following property: for every $x \in X$ and $v \in X$ there exist $M_{xv} \subset \mathbb{R}$ such that $F(t) = f(x+tv), t \in \mathbb{R}$, is M_{xv} -convex and (P^*) is fulfilled. Particularly, this property holds for radial upper convex functions.

THEOREM 22. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a radial upper convex function. If f is bounded from above in a neighborhood of one point $x_0 \in int(\text{dom } f)$, then it is locally bounded, that is, for every $x \in int(\text{dom } f)$ there exists a neighborhood on which f is bounded.

Proof. We first show that if f is bounded from above in a neighborhood of x_0 , it is also bounded from below in the same neighborhood. Since f is radial upper convex, we can find $r_{x_0} > 0$ such that for every $v \in X$ with ||v|| = 1, the function $F(t) = f(x_0 + tv)$ is $(-\infty, -r_{x_0}) \cup (r_{x_0}, +\infty)$ -convex. Let $\varepsilon > 0$, K > 0 such that $f(x) \leq K$ for every $x \in S(x_0; \varepsilon) \subseteq \text{dom} f$.

For every $z \in S(x_0; \varepsilon)$, there exists $\lambda \ge 0$ and $y \in X$ such that ||y|| = 1 and $z = x_0 + \lambda y$.

Taking $x_0 = \frac{1}{2}(x_0 + \lambda y) + \frac{1}{2}(x_0 - \lambda y)$, since the function F is $(-\infty, -r_{x_0}) \cup (r_{x_0}, +\infty)$ -convex, we obtain

$$F(0) \leq F(\lambda) + \frac{1}{2} \inf \left\{ -2\lambda t \mid |t| > r_{x_0}, \ F(\lambda) - F(-\lambda) \leq -2\lambda t \right\}$$
$$\leq F(\lambda) + \lambda \inf \left\{ |t| \mid F(\lambda) - F(-\lambda) \leq -2\lambda t \right\} \leq F(\lambda) + \max\{2K, r_{x_0}\},$$

therefore $f(z) \ge f(x_0) - \max\{2k, r_{x_0}\} \ge -K - \max\{2k, r_{x_0}\}$, which prove that f is bounded from below on $S(x_0, \epsilon)$.

Let $x \in int(\text{dom } f)$ and $x \neq x_0$. Then $x = x_0 + \lambda y$, where again $y \in X$, ||y|| = 1 and μ is a positive number.

Since $x \in int(\text{dom } f)$, there exists $\alpha > \mu$ such that $v = x_0 + \alpha y \in int(\text{dom} f)$. Taking $\lambda = \frac{\mu}{\alpha}$, the set

$$V = \{ u \in \text{dom } f \mid u = (1 - \lambda)z + \lambda v, \ z \in S(x_0; \varepsilon) \}$$

is a neighborhood of x $(V = S(x, \gamma))$, where $\gamma = (1 - \lambda)\varepsilon$). Therefore we find $r_z > 0$ such that for every $u \in V$, the function defined by $F(\lambda) = f(z + \lambda(v-z))$, $\lambda \in \mathbb{R}$, is $(-\infty, -r_z) \cup (r_z, +\infty)$ -convex, thus

$$F(\lambda) \le F(0) + \lambda \inf \{t | |t| > r_z, F(1) - F(0) \le t\}.$$

Since f is bounded on $S(x_0; \varepsilon)$, then

$$F(1) - F(0) \le 2K,$$

and

$$\inf \{t | |t| > r_z, \ F(1) - F(0) \le t\} \le \max\{2K, r_z\},\$$

which proved that

$$f(u) \le K + \max\{2K, r_z r\},\$$

for every $u \in V$, i.e. f is also bounded from above on V, as claimed.

Now, we establish an extension of well known continuity theorem of convex functions (see [5], [6]).

THEOREM 23. Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a radial upper convex function. If f is bounded from above in a neighborhood of one point $x_0 \in int(\text{dom } f)$, then f is continuous on int(dom f).

Proof. By Theorem 22, for each $x_0 \in \text{int}(\text{dom } f)$ we can find a neighborhood $S(x_0, 2\epsilon)$ on which f is bounded, i.e. there exist $K_{x_0} > 0$ such that

$$|f(x)| \leq K_{x_0}$$
 for every $x \in S(x_0, 2\epsilon)$.

For the beginnig we prove that for every $x \in int(\text{dom } f)$ we find a constant $\overline{K}_{x_0} > 0$ such that

(17)
$$\inf_{\substack{|t| > r_{x_0} \\ t ||x - x_0|| \ge f(x) - f(x_0)}} t \ge -\overline{K}_{x_0}$$

and

(18)
$$\inf_{\substack{|t| > r_{x_0} \\ t \| x - x_0 \| \ge f(x_0) - f(x)}} t \ge -\overline{K}_{x_0}$$

for every $x \in S(x_0; \varepsilon)$. If we suppose, to the contrary, that (17) not holds, there exists $x \in S(x_0, \epsilon)$ such that

$$\inf_{\substack{|t| > r_{x_0} \\ t ||x - x_0|| \ge f(x) - f(x_0)}} t < -\frac{2K_{x_0}}{\varepsilon}.$$

Now, we take $y \in S(x_0; 2\varepsilon)$ such that $x_0 = \lambda x + (1 - \lambda)y$ and $||y - x_0|| = \varepsilon$.

Since the function $F(t) = f(x_0 + t \frac{x - x_0}{\|x - x_0\|})$ is $(-\infty, -r_{x_0}) \cup (r_{x_0}, +\infty)$ -convex, from Lemma 17, we obtain that

$$\frac{f(x_0) - f(y)}{\varepsilon} \le \frac{1}{\|x - x_0\|} \inf_{\substack{|t| > r_{x_0} \\ t \|x - x_0\| \ge f(x) - f(x_0)}} t \|x - x_0\| < -\frac{2K_{x_0}}{\varepsilon}.$$

Therefore $f(x_0) - f(y) < -2K_{x_0}$ and hence $f(y) > K_{x_0}$, which is not possible because $y \in S(x_0; 2\varepsilon)$. Consequently, the inequality (17) is always true.

Analogue we proof relation (18), using in this case the function $F(t) = f(x + t \frac{x_0 - x}{\|x - x_0\|})$, which is also a $(-\infty, -r_{x_0}) \cup (r_{x_0}, +\infty)$ -convex function.

Now, if we suppose that f is not continuous in x_0 , then we find $\epsilon > 0$ and a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq S(x_0; \varepsilon)$ such that $x_n \to x_0$,

(19)
$$f(x_n) - f(x_0) > \varepsilon$$

or

(20)
$$f(x_n) - f(x_0) < -\varepsilon.$$

From (19) and (20) we find $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$,

$$f(x_n) - f(x_0) = \inf_{\substack{|t| > r_{x_0} \\ t ||x - x_0|| \ge f(x_n) - f(x_0)}} t ||x_n - x_0||$$

and

$$f(x_0) - f(x_n) = \inf_{\substack{|t| > r_{x_0} \\ t \|x - x_0\| \ge f(x_0) - f(x_n)}} t \|x_n - x_0\|.$$

From above relations we obtain that

$$f(x_n) - f(x_0) \le \overline{K}_{x_0} \|x_n - x_0\|$$
, for every $n \ge n_0$,

which is not possible because is a contradiction with (19) or (20).

REMARK 24. It is obvious that in the special case $M = X^*$ we obtain the usual continuity theorem of convex functions.

ACKNOWLEDGEMENT. I would like to express my deep gratitude to Professor Teodor Precupanu, for his support, for the invaluable suggestions, and attention to my work.

REFERENCES

- APETRII, M., A new type of convexity defined by dual perturbations, An. Univ. De Vest Timişoara, seria Matematică Informatică, 45, pp. 11–20, 2007.
- [2] AUSSEL, D., Subdifferential properties of quasiconvex and pseudoconvex functions: unified approach, J. Optim. Theory Appl, 97, pp. 29–45, 1998.
- [3] AUSSEL, D., CORVELLEC, J. N. and LASSONDE, M., Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1, pp. 195–201, 1994.
- [4] AVRIEL, M., DIEWERT, W. E., SCHAIBLE, S. and ZANG, I., Generalized Concavity, Plenum Press, New York and London, 1988.
- [5] BARBU, V. and PRECUPANU, T., Convexity and Optimization in Banach Spaces, D. Reidel Publish. Co., Dordrecht, 1986.

7.0	A , ••
1/1	Anotru
TAT •	TIDCUIII

- [6] BOURBAKI, N., Espaces Vectoriels Topologiques, Act. Sci. et. Ind., Hermann, Paris, 1966.
- [7] CROUZEIX, J. P., Contribution à l'étude des functions quasi-convexes, Thèse de Docteur en Sciences, Univ. Clermont-Ferrand II, 1977.
- [8] CROUZEIX, J. P. and FERLAND, J. A., Criteria for quasiconvexity and pseudoconvexity of quadratic functions: relationships and comparisons, Math. Programming, 23, pp. 193–205, 1982.
- [9] MANGASARIAN, O. L., Pseudo-convex functions, J. Soc. Indust. Appl. Math. Control, 3, pp. 281–290, 1965.
- [10] MARTOS, B., Nonlinear Programming Theory and Methods, Akadémiai Kiadó, Budapest, 1975.
- [11] PENOT, J. P. and QUANG, H. P., Generalized convexity of functions and generalized monotonicity of set-valued maps, J. Optim. Theory Appl., 92, pp. 343–356, 1997.
- [12] PHU, H. X. and AN P. T., Stable generalization of convex function, Optimization, 38, pp. 309–318, 1996.

Received by the editors: July 31, 2007.