REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 36 (2007) no. 1, pp. 39-49
ictp.acad.ro/jnaat

WEAKER CONDITIONS FOR THE CONVERGENCE OF
NEWTON-LIKE METHODS

IOANNIS K. ARGYROS*

Abstract. We provide a semilocal convergence analysis for a certain class of
Newton-like methods for the solution of a nonlinear equation containing a non
differentiable term. Our approach provides: weaker sufficient conditions; finer
error bounds on the distances involved; a more precise information on the loca-
tion of the solution than before, and under the same computational cost.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution z* of the nonlinear equation

(1) F(x)+G () =0,

where F,G are operator defined on an open subset () at a Banach space X
with values in a Banach space Y. Operator F is Fréchet-differentiable on

U (z, R), while the differentiability of G is not assumed.
Recently, in [3], we used the Newton-like method

(2)  20€U(2,R), Tny1 =n — A(zn) " [F (20) + G (2,)] (n > 0)

to generate a sequence approximating x*. Here, A (v) € L(X,Y) (v € X),
denotes the space of bounded linear operators from X into Y. If A (z) = F' (z)

(ac e U (z, R)), then method reduces to the popular Newton’s method

8 Y=t~ F ) Fu) (well(zR) (n=0),

A survey on local as well as semilocal convergence theorems for Newton
methods can be found in [2]-[18], and the references there.
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Throughout this study we assume there exist z € X, R>0,a >0,b >0,
7 >0 with A(z)"! € L(Y,X), and for any x,y € U(z,7) C U(z,R) =

{reX||lz—z2]|<R}CQ
(4) |4 A @)~ A@o)]| < wo (lle = zoll) + o

(5) A F @+t —a) - A@)| <
<w (o= 2| +tlz = yl) = wi (lz = 2] +b,¢ € 0,1)

(6) 471G @) - G W) <ws () 2 -y,
(7) AP ) + G R))| <,
where, wq (1), wy (2), we (1), w (r), w (r+t)—w; (r) (¢ are non-decreasing,

>

0)
non-negative functions on [0, R] with w (0) = wp (0) = wy (0) = we (0) = 0,

and parameters a, b satisfy
(8) a+b<1.

Using (4)—(8) instead of the less flexible conditions considered in [5], [§]-
[13], [18] we showed in [3] and under the same computational cost that the
following can be obtained:

(a) weaker sufficient convergence conditions for method ;
(b) finer error bounds on the distances

[2ns1 =zl flzn =27 (0> 0);

(¢) more precise information on the location of the solution.

Here we continue the work in [3] to show how to improve even further on
(a)~(c).
2. SEMILOCAL CONVERGENCE ANALYSIS FOR METHOD (2)

It is convenient to define scalar iteration {t,} for some rg € [0,7], r € [0, R],
n=>0

(9) tO =To, tl =T + m,

1
bz = b+ oy || [ 0 b0 o —ta) 0w )+

-@H—W+A7Lﬂmw}(nzm.

Iteration {t¢, } plays a crucial role in the study of the convergence of Newton-
like method (2)). It turns out that under certain conditions {t, } is a majorizing
sequence for {z,}, [3], [5]. Here we try to weaken the earlier conditions and
further improve estimates on the error bounds and location of the solution x*.
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Clearly, if
(10) ty <wyt(1—a) (n>0),
then it follows from @D that sequence {t,} is nondecreasing, bounded above
by wy ! (1 — a), and as such it converges to some t* € {0, wet (1 - a)].

We can provide stronger but more manageable conditions which imply .

We need the following general result on majorizing sequences for Newton-
like method .

LEMMA 1. Assume there exist constant d > 0, sequences a, € [0,1), b, > 0,
cn >0, and d, > 0 such that for

an = a+ wy (ty) , bn:(l—an)fl7

(11) Cp = { /01 W [ty + 0 (th+1 — tn)] dO — wy (t,) + b+ wa (tn41) }bm

do=dy=r9, di=dy=ro+n,
(12) dp=ro+n+ci(ti—to) + c2 (ba—t1)+- -+ cp1 (tno1—tn2) (n>2),
the following conditions hold for all n > 0:
(13) wo (En> < wp (dp) <wp(d) <1-—a.

Then sequence {t,} generated by iteration @D is well defined, nondecreasing
bounded above by wal (1 —a), and converges to some t*.
Moreover the following error bounds hold:

(14) th <dn, <d,<d (n>0)
and
(15) togl —tn = Cn (tn —tho1)  (n>1).

Proof. Tt suffices to show hypotheses of the Lemma imply condition ([10)).

Indeed using @, f we can have in turn for all n > 2 (since holds
for n = 0,1 by the initial conditions):

tnt2 = tnt1 + 1 (bnp1 — tn) = tn +cn (tn — th—1) + cnt1 (tnse1 — tn)
(16) =--Fro+n+ci(ti—to) + -+ cnp1 (tns1 — tn) = dnya < dnya,
which shows for all n > 0. Moreover, by we obtain
(17) wo (tn) < wo (dyp) <1 —a for alln >0,
which shows (|10]). O

That completes the proof of the Lemma.
For simplicity next, we provide some choices of functions and parameters
defined above in the special case of Newton’s method . That is we choose

(18) A(x)=F'(z), G(z)=0 (z€U(zR)), 2=z, and 79 = 0.
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Then we have n = 7.

REMARK 2. Assume the Lipschitz choices:
(19) wo (r) =Lor, w(r)=wi(r)=40r(re[0,R]), anda=0b=0,
where
(20) 0</4 <Y,
holds in general, and % can be arbitrarily large [3].

(a) The Newton-Kantorovich case. Assume ¢y = ¢, and

(21) h=2n<1.

Note that is the famous for its simplicity and clarity Newton-
Kantorovich which is the sufficient condition for the convergence of
Newton’s method to x* [2]-[18].

Define d,,,d (n > 0) by

) =+ Iy g
and

> a="1==E (1£0).
Then it follows from the proof of the Newton-Kantorowich’s theorem
[14] that

(24) a, <1,

and condition hold.
(b) Assume that the following conditions hold:

(25) hs = (80p + 0)n < & for § € [0,1],
or

(26) hs <6, 2on <1 L <pforgelo,2,
or

(27) hs <6, Lon<1—36for § € [6y,2),
where,

¢ £\? o
—%-i- % +8%
(28) o = (2 ) (o #0).
Then, by Theorem 3 in [3, p. 663], conditions (10), and hold for

n—1
(29) dn_[1+g+...+(g) :|17 (nZl),
and
(30) d:%_ 0
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Moreover, other alternatives which imply condition are given in Re-
marks 2, 3 and Lemma 2 can follow.

REMARK 3. Assume there exist parameters oy € [0,1 —a), b € [0,1], as
(depending on b and «aq) such that

(31) wo(T0+T])§a1<1—CL,
(32) a1 S a9,

(33) q(ag) <b for be0,1)
or

(34) g(ag) <1 for b=1,
where

(35)

1
q(a)= 1(1&{/ w [wo_l (o + 6n) dﬁ} — w1 (wo_l (a)) + b+ we (wo_l (a)) }
0
Then, function
(36) d(b) =ro+ (14+b+b+ 0"+ )n,
is well defined on interval I, = [a1, ] (b# 1).
Moreover assume there exists a® € I such that
(37) wo (d (o)) < ™. O

Then using induction on n > 0 we can show condition @ Indeed
holds for n = 0,1 by the initial conditions. By @ we have

ta —t1 < q(a®) (t1 — o),
SO
wo (tQ) S wo [tl + q (Oé*) (tl — to)] S wo (d (Oé*)) S Oé* < 1.
If
wo (t,) < a* < 1—a, then tp41 —ty, < g () (tn — tn-1),
SO
Wo (tn—i-l) < wp [tn +4q (a*) (tn - tn—l)]
< wy {7’0 + (1 +a* + (04*>2 4+t (a*)”_1> 70}
<wg(d(a”)) <a* <1—a,

which completes the induction.
Hence, we showed:

LEMMA 4. Under the stated hypotheses:
(a) the condition holds;
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(b) the sequence {t,} is nondecreasing and converges to some t* such that
(38) wo (tn) <wo (t*) <1—gq;

(c) the following error bounds hold for alln >0 :
(39) 0 <tnro—tnp1 < q (@) (tnr1 — tn) <b(tnsr —tn) <"y,

and
* b"
(40) 0<t" —t, <
REMARK 5.
(a) For b =1, condition together with (9)) imply
(41) 0<tpt1—tn <tp—tp_1 (n>1)

Hence, we deduce again t* = li_)m t, exists.
n—oo
Moreover, if we replace by
(42) wo(t*) <1—a

the conclusions (a) and (b) of Lemma 2 hold, where as for error bounds

of the form (39) we use (41)).
(b) It can easily be seen from (33)—(36) that conditions and can
be replaced by

(43) @ (a2) <b for bel0,1)
or
(44) q1 (042) <1 for b=1,
respectively, where
(45) a1 (@) =g (%) O

We provide the main semilocal convergence theorem for Newton-line method
([2), which improves our earlier result (see Theorem 3, p. 663 in [3]).

THEOREM 6. Assume:

hypotheses —, hold for

(46) ro € [0,7], n=r1—1r9, r€]0,R]
(47) wol(l—a)+ro<r, Ulzr)CQ,

and

(48) xo € D (t),

where

(49) t* = T}Lnéo tn,

{tn} is given by (9) above, and r1, D (t*) are defined by (12)), from [3],

respectively.
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Then, iteration {x,} (n > 0) generated by Newton-like method is well
defined, remains in U (z,t*) for all n > 0, and converges to a solution x* of
equation F (z) + G (z) = 0.

Moreover, the following error bounds hold for alln > 0 :

(50) ”xn—i—l - xn” S tn—i—l - tn
and
(51) n — *|| < £ — ty.

Furthermore, the solution x* is unique in U (z,t*) if

(52) /01 [w (2t + 1) ) — wy ()] At 4w (3t%) + wo () + a+b < 1,
and in U (z, Ro) for Ry € (t*,r], if

(53) /01 [w (£ + ¢ [t* + Ro)) — wy (t*)] dt +ws (2¢* + Ro)+wo (t*)+a+b < 1.

Proof. Simply repeat the corresponding proof of Theorem 3 from [3] but
use condition above instead of f in [3] until the uniqueness part.
To show uniqueness in U (z,t*), let y* be a solution of equation in

U (z,t*). Using , —@, (52) we obtain in turn:
Iy =zl <[4 @) ] Ao @att (v -2 -Aw)| af
+[A@) G @) -G )|}

1
SHHlUO@){/O w (|lzg—2 [+t [|y* =z ) —wi (lzg— 2] |y — 2k dt+

. |22l Hly x|
+b ||ly* — x|+ wo () dt

llzr—=l|

< ratr] [ 10 (201 @] a0 3)
<|ly*—xk]| =0 as k— occ.
That is 2* = y*. If y* € U (2, Ro) then, as above,
ly" = 2]l <
< e[ B €400 R~ @) s (20 Ry
<|ly*—azk] =0 as k— oo.
Hence, again we get o™ = y*. 0

We now return back to conditions , to show that there are finer
choices for the sequences {En}, {dy} than the ones given in [3] or [5].
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REMARK 7. Assume: there exist parameters fg > 0, ¢ > 0,7 >0, 5> 1
such that

(54) pg = (L+26P)n < 2.
Then the interval
_ 1 ¢
(55) [=[1,7 - %] #90,
and the function
4
(56) c=c(p) = 2(1—Lopn)
is well defined on I and
(57) 0<en<l.
Moreover, assume
(58) tny1 < Bn, forall n > 0.
It then follows
(59) tpio —thy1 = m(thﬂ - tn)2 < C(tn+1 - tn)2
and
n+1
(60) ctnsz — tns1) < [cltusr — t)* < ... < (en)®"
Let
1 n
(61) al(ﬂ):n—i-%[(cn)2 ...+ (en)? —i—}

Then d is a well defined function for all 5 € I.
Furthermore assume there exists v € I such that:

(62) d(y) <.

It follows by hypotheses , and that sequence {t, } is nondecreasing
and bounded above by «n and it converges to some t*. It turns out that

hypothesis can be dropped since it is implied by the other two. O

In particular using induction on n > 0 we can show condition . Indeed
holds for n = 0,1 by the initial conditions. By @D we can have in turn:

(63) ty —t1 < e(7)(t1 — to)?,
(64) lota < Lol + c(7) (1 — t0)°] < bod(7) < loyn < 1,
and, since

tn+1 — tn < C('}/)(tn - tn71)27
we get
(65) Lotni1 < Lo[n+ c(y)(tr — t0)* + -+ + (c(7))*"] < Lod(7) < Loyn < 1,

which completes the induction.
Hence we showed:
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LEMMA 8. Under the stated hypotheses:

(a) condition holds;
(b) sequence {t,} is nondecreasing and converges to some t* such that

(66) tn <t* <4 (fo #0);
(c) the following error bounds hold for all n > 0:
(67) 0 <tni2 —tnr1 < c(y)(tnr1 — tn)Qa
(68) 0 <t —ty < c(y) 50,
where
_ . nt+k—1 n
(69) 50 = lim {[e())”™ " -+ e}
—00
e [1—(e()m) ]
S dm e
[e(x)m)*”
(70) S Tt
REMARK 9.

(a) It follows from that condition can be replaced by the stronger
but easier to check:

(71) d’ () <
or
(72) d' (v) < m,
0 _
(73) d(8) = c(B)[1=(c(B)n)?]
and
1 _ c(B)n?

(b) A practical way of approximating « can be: Set so = {yn, and define
for each fixed n > 1 the function d,, (a) by

(75) dn (@) =n+ 2 [(en) + en* + -+ (en)™]. O
We complete this study with a simple numerical example.

EXAMPLE 10. Let X =Y =R, 29 = —.6, @ = [—1,2] and define function
fon ¢ by

(76) f(z) = L2 + .897462.
Using 7, , , and we obtain
(77) n = .049295, ¢y = 3.8, and £ = 11.1.

Condition is violated, since
(78) h =1.0954 > 1.
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Therefore the Newton-Kantorovich theorem [8] cannot guarantee that New-
ton’s method starting from yy = ¢ converges to z* = —.645722284.
However, our condition for, say, v = 1.5 holds, since

(79) ps = 1.228305 < 2, d(y) = .0711047 < .0739425 = 7.

That is our Theorem |§| guarantees the convergence of Newton’s method
to x* in this case.
Note that the weaker of the conditions also holds, since

(80) hi (€4 Lo)n <1,

becomes,

(81) hy = .739425 < 1.

However error bounds , in this case are finer than corresponding
(or (61)) and in [3, p. 662, 664], respectively. O

REMARK 11. Condition is weaker than , and in general also weaker
than or or . Moreover our error bounds , , are finer
than the corresponding ones in Theorem 3 [3, p. 664] which in turn were shown
in the same paper to be finer than the ones given by then and Yamamoto in
[5]. Furthermore the information on the location of the solution z* is more
precise than the corresponding ones in [3] or [5]. O

REMARK 12. Assume the Newton-Mysovskii-type conditions [1], [2], [14]:
(82)
|4 @)™ [F @+t (y = 2) - A @) <@ (Jo— 2]+t 1y — 2l)=w1 (]2 - 2I1) +D

and

4@ (G (@) - G| < () = - ]I,
for all
(83) r,y,w €U (z,7) CU(z,R) C D, tel0,1],

where parameter b, functions w, wy, and w9 are as b, w, wy and ws, respec-

tively. Replace conditions f@, by , , condition by b < 1, and
set b, =1 for alln >0 (a = 0). O

Then clearly all results obtained here hold in this stranger, but simpler,
setting.
All the above justify the claims (a)—(c) made in introduction.
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