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WEAKER CONDITIONS FOR THE CONVERGENCE OF
NEWTON-LIKE METHODS

IOANNIS K. ARGYROS∗

Abstract. We provide a semilocal convergence analysis for a certain class of
Newton-like methods for the solution of a nonlinear equation containing a non
differentiable term. Our approach provides: weaker sufficient conditions; finer
error bounds on the distances involved; a more precise information on the loca-
tion of the solution than before, and under the same computational cost.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the nonlinear equation

(1) F (x) +G (x) = 0,

where F,G are operator defined on an open subset Q at a Banach space X
with values in a Banach space Y . Operator F is Fréchet-differentiable on
U (z, R), while the differentiability of G is not assumed.

Recently, in [3], we used the Newton-like method

(2) x0 ∈ U (z,R) , xn+1 = xn −A (xn)−1 [F (xn) +G (xn)] (n ≥ 0)

to generate a sequence approximating x∗. Here, A (v) ∈ L (X,Y ) (v ∈ X),
denotes the space of bounded linear operators from X into Y . If A (x) = F ′ (x)(
x ∈ U (z,R)

)
, then method (2) reduces to the popular Newton’s method

(3) yn+1 = yn − F ′ (yn)−1 F (yn)
(
y0 ∈ U (z,R)

)
(n ≥ 0) .

A survey on local as well as semilocal convergence theorems for Newton
methods can be found in [2]–[18], and the references there.
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Throughout this study we assume there exist z ∈ X, R > 0, a ≥ 0, b ≥ 0,
η̄ ≥ 0 with A (z)−1 ∈ L (Y,X), and for any x, y ∈ U (z, r) ⊆ U (z,R) =
{x ∈ X |‖x− z‖ ≤ R} ⊆ Q

(4)
∥∥∥A (z)−1 [A (x)−A (x0)]

∥∥∥ ≤ w0 (‖x− x0‖) + a,

∥∥∥A (z)−1 [F ′ (x+ t (y − x))−A (x)
]∥∥∥ ≤(5)

≤ w (‖x− z‖+ t ‖x− y‖)− w1 (‖x− z‖+ b, t ∈ [0, 1])

(6)
∥∥∥A (z)−1 [G (x)−G (y)]

∥∥∥ ≤ w2 (r) ‖x− y‖ ,

(7)
∥∥∥A (z)−1 [F (z) +G (z)]

∥∥∥ ≤ η̄,
where, w0 (r), w1 (z), w2 (r), w (r), w (r + t)−w1 (r) (t≥0) are non-decreasing,
non-negative functions on [0, R] with w (0) = w0 (0) = w1 (0) = w2 (0) = 0,
and parameters a, b satisfy
(8) a+ b < 1.

Using (4)–(8) instead of the less flexible conditions considered in [5], [8]–
[13], [18] we showed in [3] and under the same computational cost that the
following can be obtained:

(a) weaker sufficient convergence conditions for method (2);
(b) finer error bounds on the distances

‖xn+1 − xn‖ , ‖xn − x∗‖ (n ≥ 0) ;
(c) more precise information on the location of the solution.

Here we continue the work in [3] to show how to improve even further on
(a)–(c).

2. SEMILOCAL CONVERGENCE ANALYSIS FOR METHOD (2)

It is convenient to define scalar iteration {tn} for some r0 ∈ [0, r], r ∈ [0, R] ,
η ≥ 0

t0 = r0, t1 = r0 + η,(9)

tn+2 = tn+1+ 1
1−a−w0(tn+1)

{[∫ 1

0
w [tn+θ (tn+1−tn)] dθ−w1(tn)+b

]
· (tn+1−tn)+

∫ tn+1

tn
w2 (θ)dθ

}
(n ≥ 0) .

Iteration {tn} plays a crucial role in the study of the convergence of Newton-
like method (2). It turns out that under certain conditions {tn} is a majorizing
sequence for {xn}, [3], [5]. Here we try to weaken the earlier conditions and
further improve estimates on the error bounds and location of the solution x∗.
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Clearly, if
(10) tn < w−1

0 (1− a) (n ≥ 0) ,
then it follows from (9) that sequence {tn} is nondecreasing, bounded above
by w−1

0 (1− a), and as such it converges to some t∗ ∈
[
0, w−1

0 (1− a)
]
.

We can provide stronger but more manageable conditions which imply (10).
We need the following general result on majorizing sequences for Newton-

like method (2).

Lemma 1. Assume there exist constant d ≥ 0, sequences an ∈ [0, 1), bn ≥ 0,
cn ≥ 0, and dn ≥ 0 such that for

an = a+ w0 (tn) , bn = (1− an)−1 ,

cn =
{∫ 1

0
w [tn + θ (tn+1 − tn)] dθ − w1 (tn) + b+ w2 (tn+1)

}
bn,(11)

d0 = d0 = r0, d1 = d1 = r0 + η,

dn=r0+η + c1 (t1−t0) + c2 (t2−t1)+· · ·+ cn−1 (tn−1−tn−2) (n ≥ 2) ,(12)
the following conditions hold for all n ≥ 0:

(13) w0
(
dn
)
≤ w0 (dn) ≤ w0 (d) < 1− a.

Then sequence {tn} generated by iteration (9) is well defined, nondecreasing
bounded above by w−1

0 (1− a), and converges to some t∗.
Moreover the following error bounds hold:

(14) tn ≤ dn ≤ dn ≤ d (n ≥ 0)
and
(15) tn+1 − tn = cn (tn − tn−1) (n ≥ 1) .

Proof. It suffices to show hypotheses of the Lemma imply condition (10).
Indeed using (9), (11)–(13) we can have in turn for all n ≥ 2 (since (10) holds
for n = 0, 1 by the initial conditions):
tn+2 = tn+1 + cn+1 (tn+1 − tn) = tn + cn (tn − tn−1) + cn+1 (tn+1 − tn)

= · · ·+ r0 + η + c1 (t1 − t0) + · · ·+ cn+1 (tn+1 − tn) = dn+2 ≤ dn+2,(16)
which shows (14) for all n ≥ 0. Moreover, by (13) we obtain
(17) w0 (tn) ≤ w0 (dn) < 1− a for all n ≥ 0,
which shows (10). �

That completes the proof of the Lemma.
For simplicity next, we provide some choices of functions and parameters

defined above in the special case of Newton’s method (3). That is we choose
(18) A (x) = F ′ (x) , G (x) = 0 (x ∈ U (z,R)) , z = x0, and r0 = 0.
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Then we have η = η̄.

Remark 2. Assume the Lipschitz choices:
(19) w0 (r) = `0r, w (r) = w1 (r) = `r (r ∈ [0, R]) , and a = b = 0,
where
(20) 0 ≤ `0 ≤ `,

holds in general, and `
`0

can be arbitrarily large [3].
(a) The Newton-Kantorovich case. Assume `0 = `, and

(21) h = 2`η ≤ 1.
Note that (21) is the famous for its simplicity and clarity Newton-
Kantorovich which is the sufficient condition for the convergence of
Newton’s method to x∗ [2]–[18].

Define dn, d (n ≥ 0) by

(22) dn = η + 1
21h

21−1η + · · ·+ 1
2n−1h

2n−1η,

and
(23) d = 1−

√
1−h
` (` 6= 0) .

Then it follows from the proof of the Newton-Kantorowich’s theorem
[14] that

(24) an < 1,
and condition (10) hold.

(b) Assume that the following conditions hold:
(25) hδ = (δ`0 + `) η ≤ δ for δ ∈ [0, 1] ,

or
(26) hδ ≤ δ, 2`0η

2−δ ≤ 1, `0δ2

2−δ ≤ ` for δ ∈ [0, 2] ,
or

(27) hδ ≤ δ, `0η ≤ 1− 1
2δ for δ ∈ [δ0, 2) ,

where,

(28) δ0 =
− `
`0

+

√(
`
`0

)2
+8 ``0

2 (`0 6= 0) .
Then, by Theorem 3 in [3, p. 663], conditions (10), and (24) hold for

(29) dn =
[
1 + δ

2 + · · ·+
(
δ
2

)n−1
]
η (n ≥ 1) ,

and
�(30) d = 2η

2−δ .
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Moreover, other alternatives which imply condition (10) are given in Re-
marks 2, 3 and Lemma 2 can follow.

Remark 3. Assume there exist parameters α1 ∈ [0, 1− a), b ∈ [0, 1], α2
(depending on b and α1) such that
(31) w0 (r0 + η) ≤ α1 < 1− a,

(32) α1 ≤ α2,

(33) q (α2) ≤ b for b ∈ [0, 1)
or
(34) q (α2) < 1 for b = 1,
where
(35)

q (α) = 1
1−a−α

{∫ 1

0
w
[
w−1

0 (α+ θη) dθ
]
−w1

(
w−1

0 (α)
)

+ b+w2
(
w−1

0 (α)
)}

.

Then, function

(36) d (b) = r0 +
(
1 + b+ b2 + · · · bn + · · ·

)
η,

is well defined on interval Ib = [α1, α2] (b 6= 1) .
Moreover assume there exists α∗ ∈ Ib such that

�(37) w0 (d (α∗)) ≤ α∗.

Then using induction on n ≥ 0 we can show condition (6). Indeed (10)
holds for n = 0, 1 by the initial conditions. By (9) we have

t2 − t1 ≤ q (α∗) (t1 − t0) ,
so

w0 (t2) ≤ w0 [t1 + q (α∗) (t1 − t0)] ≤ w0 (d (α∗)) ≤ α∗ < 1.
If

w0 (tn) ≤ α∗ < 1− a, then tn+1 − tn ≤ q (α∗) (tn − tn−1) ,
so

w0 (tn+1) ≤ w0 [tn + q (α∗) (tn − tn−1)]

≤ w0
[
r0 +

(
1 + α∗ + (α∗)2 + · · ·+ (α∗)n−1

)
, c
]

≤ w0 (d (α∗)) ≤ α∗ < 1− a,
which completes the induction.

Hence, we showed:

Lemma 4. Under the stated hypotheses:
(a) the condition (10) holds;
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(b) the sequence {tn} is nondecreasing and converges to some t∗ such that
(38) w0 (tn) ≤ w0 (t∗) ≤ 1− a;

(c) the following error bounds hold for all n ≥ 0 :
(39) 0 ≤ tn+2 − tn+1 ≤ q (α∗) (tn+1 − tn) ≤ b (tn+1 − tn) ≤ bn+1η,

and
(40) 0 ≤ t∗ − tn ≤ bnη

1−b .

Remark 5.
(a) For b = 1, condition (34) together with (9) imply

(41) 0 ≤ tn+1 − tn < tn − tn−1 (n ≥ 1)
Hence, we deduce again t∗ = lim

n→∞
tn exists.

Moreover, if we replace (10) by
(42) w0 (t∗) < 1− a

the conclusions (a) and (b) of Lemma 2 hold, where as for error bounds
of the form (39) we use (41).

(b) It can easily be seen from (33)–(36) that conditions (33) and (34) can
be replaced by

(43) q1 (α2) ≤ b for b ∈ [0, 1)
or

(44) q1 (α2) < 1 for b = 1,
respectively, where

�(45) q1 (α) = q
(

η
1−b

)
.

We provide the main semilocal convergence theorem for Newton-line method
(2), which improves our earlier result (see Theorem 3, p. 663 in [3]).

Theorem 6. Assume:
hypotheses (4)–(8), (10) hold for

r0 ∈ [0, r] , η = r1 − r0, r ∈ [0, R](46)
w−1

0 (1− a) + r0 ≤ r, U (z, r) ⊆ Q,(47)
and
(48) x0 ∈ D (t∗) ,
where
(49) t∗ = lim

n→∞
tn,

{tn} is given by (9) above, and r1, D (t∗) are defined by (12), (14) from [3],
respectively.
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Then, iteration {xn} (n ≥ 0) generated by Newton-like method (2) is well
defined, remains in U (z, t∗) for all n ≥ 0, and converges to a solution x∗ of
equation F (x) +G (x) = 0.

Moreover, the following error bounds hold for all n ≥ 0 :
(50) ‖xn+1 − xn‖ ≤ tn+1 − tn
and
(51) ‖xn − x∗‖ ≤ t∗ − tn.

Furthermore, the solution x∗ is unique in U (z, t∗) if

(52)
∫ 1

0
[w ((2t+ 1) t∗)− w1 (t∗)] dt+ w2 (3t∗) + w0 (t∗) + a+ b < 1,

and in U (z,R0) for R0 ∈ (t∗, r] , if

(53)
∫ 1

0
[w (t∗ + t [t∗ +R0))− w1 (t∗)] dt+w2 (2t∗ +R0)+w0 (t∗)+a+b < 1.

Proof. Simply repeat the corresponding proof of Theorem 3 from [3] but
use condition (10) above instead of (54)–(57) in [3] until the uniqueness part.

To show uniqueness in U (z, t∗) , let y∗ be a solution of equation (1) in
U (z, t∗) . Using (2), (4)–(6), (52) we obtain in turn:

‖y∗−xk+1‖≤
∥∥∥A (xk)−1A (z)

∥∥∥{∫ 1

0

[∥∥∥A (z)−1[F ′ (xn+t ( y∗−xn)−A (xn)
]∥∥∥dt

]
+
∥∥∥A (z)−1 (G (xk)−G (y∗))

∥∥∥}
≤ 1

1−a−w0(t∗)

{∫ 1

0
[w (‖xk−z‖+t ‖y∗−xk‖)−w1 (‖xk−z‖)] ‖y∗−xk‖ dt+

+b ‖y∗−xk‖+
∫ ‖xk−z‖+‖y∗−xk‖

‖xk−z‖
w2 (t) dt

}

≤ 1
1−a−w0(t∗)

{∫ 1

0
[w ((1+2t) t∗)−w1 (t∗)] dt+b+w2 (3t∗)

}
‖y∗−xk‖

< ‖y∗ − xk‖ → 0 as k →∞.

That is x∗ = y∗. If y∗ ∈ U (z,R0) then, as above,
‖y∗ − xk+1‖ ≤

≤ 1
1−a−w0(t∗)

{∫ 1

0
[w (t∗+t (t∗+R0))−w1 (t∗)] dt+b+w2 (2t∗+R0)

}
‖y∗−xk‖

< ‖y∗ − xk‖ → 0 as k →∞.
Hence, again we get x∗ = y∗. �

We now return back to conditions (18), (19) to show that there are finer
choices for the sequences

{
dn
}

, {dn} than the ones given in [3] or [5].
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Remark 7. Assume: there exist parameters `0 > 0, ` > 0, η > 0, β ≥ 1
such that
(54) pβ = (`+ 2`0β) η < 2.

Then the interval
(55) I =

[
1, 1

`0η
− `

2`0

]
6= ∅,

and the function
(56) c = c(β) = `

2(1−`0βη)

is well defined on I and
(57) 0 ≤ cη < 1.

Moreover, assume
(58) tn+1 ≤ βη, for all n ≥ 0.
It then follows
(59) tn+2 − tn+1 = `

2(1−`0tn+1)(tn+1 − tn)2 ≤ c(tn+1 − tn)2

and
(60) c(tn+2 − tn+1) ≤ [c(tn+1 − tn)]2 ≤ . . . ≤ (cη)2n+1

.

Let
(61) d(β) = η + 1

c

[
(cη)21

+ . . .+ (cη)2n

+ . . .
]
.

Then d is a well defined function for all β ∈ I.
Furthermore assume there exists γ ∈ I such that:

(62) d(γ) ≤ γη.
It follows by hypotheses (54), (58) and (62) that sequence {tn} is nondecreasing
and bounded above by γη and it converges to some t∗. It turns out that
hypothesis (58) can be dropped since it is implied by the other two. �

In particular using induction on n ≥ 0 we can show condition (10). Indeed
(10) holds for n = 0, 1 by the initial conditions. By (9) we can have in turn:
(63) t2 − t1 ≤ c(γ)(t1 − t0)2,

(64) `0t2 ≤ `0[η + c(γ)(t1 − t0)2] ≤ `0d(γ) ≤ `0γη < 1,
and, since

tn+1 − tn ≤ c(γ)(tn − tn−1)2,

we get
(65) `0tn+1 ≤ `0

[
η + c(γ)(t1 − t0)2 + · · ·+ (c(γ))2n] ≤ `0d(γ) ≤ `0γη < 1,

which completes the induction.
Hence we showed:
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Lemma 8. Under the stated hypotheses:
(a) condition (10) holds;
(b) sequence {tn} is nondecreasing and converges to some t∗ such that

(66) tn ≤ t∗ ≤ 1
`0

(`0 6= 0);

(c) the following error bounds hold for all n ≥ 0:
0 ≤ tn+2 − tn+1 ≤ c(γ)(tn+1 − tn)2,(67)
0 ≤ t∗ − tn ≤ c(γ)−1s̄n,(68)

where
s̄n = lim

k→∞

{
[c(γ)η]2n+k−1 + · · ·+ [c(γ)η]2n

}
(69)

≤ lim
k→∞

[c(γ)η]2n [1−(c(γ)η)2k]
1−[c(γ)η]2

≤ [c(γ)η]2n

1−[c(γ)η]2 .(70)

Remark 9.
(a) It follows from (61) that condition (62) can be replaced by the stronger

but easier to check:
(71) d0 (γ) ≤ γη

or
(72) d1 (γ) ≤ γη,

(73) d0 (β) = 1
c(β)[1−(c(β)η)2]

and
(74) d1 (β) = η + c(β)η2

1−(c(β)η)2 .

(b) A practical way of approximating γ can be: Set s0 = `0η, and define
for each fixed n > 1 the function dn (a) by

�(75) dn (a) = η + 1
c

[
(cη)2 + [cη]2

2
+ · · ·+ (cη)2n

]
.

We complete this study with a simple numerical example.

Example 10. Let X = Y = R, x0 = −.6, Q = [−1, 2] and define function
f on q by
(76) f (x) = 1

3x
3 + .897462.

Using (4)–(7), (18), (19), and (76) we obtain
(77) η = .049295, `0 = 3.8, and ` = 11.1.
Condition (21) is violated, since
(78) h = 1.0954 > 1.
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Therefore the Newton-Kantorovich theorem [8] cannot guarantee that New-
ton’s method (3) starting from y0 = x0 converges to x∗ = −.645722284.

However, our condition (54) for, say, γ = 1.5 holds, since
(79) pβ = 1.228305 < 2, d(γ) = .0711047 < .0739425 = γη.

That is our Theorem 6 guarantees the convergence of Newton’s method (3)
to x∗ in this case.

Note that the weaker of the conditions (25) also holds, since
(80) h1 (`+ `0) η ≤ 1,
becomes,
(81) h1 = .739425 < 1.
However error bounds (67), (68) in this case are finer than corresponding (68)
(or (61)) and (69) in [3, p. 662, 664], respectively. �

Remark 11. Condition (54) is weaker than (21), and in general also weaker
than (25) or (26) or (27). Moreover our error bounds (15), (67), (68) are finer
than the corresponding ones in Theorem 3 [3, p. 664] which in turn were shown
in the same paper to be finer than the ones given by then and Yamamoto in
[5]. Furthermore the information on the location of the solution x∗ is more
precise than the corresponding ones in [3] or [5]. �

Remark 12. Assume the Newton-Mysovskii-type conditions [1], [2], [14]:
(82)∥∥∥A (w)−1 [F ′ (x+t (y − x))−A (x)

]∥∥∥≤w (‖x−z‖+t ‖y − x‖)−w1 (‖x− z‖)+b

and ∥∥∥A (w)−1 [G (x)−G (y)]
∥∥∥ ≤ w2 (r) ‖x− y‖ ,

for all
(83) x, y, w ∈ U (z, r) ⊆ U (z,R) ⊆ D, t ∈ [0, 1] ,

where parameter b, functions w, w1, and w2 are as b, w, w1 and w2, respec-
tively. Replace conditions (4)–(6), by (82), (83), condition (8) by b < 1, and
set bn = 1 for all n ≥ 0 (a = 0). �

Then clearly all results obtained here hold in this stranger, but simpler,
setting.

All the above justify the claims (a)–(c) made in introduction.
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