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Abstract. In this paper, the order of simultaneous approximation, convergence
results of the iterates and shape preserving properties, for complex Bernstein-
Stancu polynomials (depending on one parameter) attached to analytic functions
on compact disks are obtained.
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1. INTRODUCTION

Concerning the convergence of Bernstein polynomials in the complex plane,
Bernstein proved (see e.g. [6, p. 88]) that if f : G → C is analytic in the
open set G ⊂ C, with D1 ⊂ G (where D1 = {z ∈ C : |z| < 1}), then
the complex Bernstein polynomials Bn(f)(z) =

∑n
k=0

(n
k

)
zk(1 − z)n−kf( kn),

uniformly converge to f in D1.
Estimates of order O( 1

n) of this uniform convergence and, in addition, of
the simultaneous approximation, were found in [2]. Also, in [2] it was proved
that the complex Bernstein polynomials preserve (beginning with an index),
the univalence, starlikeness, convexity and spirallikeness.

In [3], quantitative and qualitative approximation results for iterates of
complex Bernstein polynomials were obtained.

The goal of this paper is to extend the above mentioned approximation
results, to the following kind of complex Bernstein-Stancu polynomials:

S<γ>n (f)(z) =
n∑
k=0

p<γ>n,k (z)f( kn), γ ≥ 0, z ∈ C,

∗Supported by the Romanian Ministry of Education and Research, under CEEX grant,
2-CEx 06-11-96.
†Department of Mathematics and Computer Science, University of Oradea, Universităţii
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where γ may to depend on n and

p<γ>n,k (z) =
(n
k

) z(z+γ)...(z+(k−1)γ)(1−z)(1−z+γ)...(1−z+(n−k−1)γ)
(1+γ)(1+2γ)...(1+(n−1)γ) .

For γ = 0, these polynomials become the classical complex Bernstein polyno-
mials.

2. APPROXIMATION PROPERTIES

Concerning the approximation orders by the Bernstein-Stancu polynomials
defined in Introduction, the main results are expressed by the following.

Theorem 2.1. Let DR = {z ∈ C; |z| < R} be with R > 1 and let us suppose
that f : DR → C is analytic in DR, that is we can write f(z) =

∞∑
k=0

ckz
k, for

all z ∈ DR.
Let 0 ≤ γ which can be dependent on n and 1 ≤ r < R. Then, for all |z| ≤ r

and n ∈ N, we have
|S<γ>n (f)(z)− f(z)| ≤M<γ>

2,r,n (f),
where

0 < M<γ>
2,r,n (f) = 2

n

∞∑
j=2

j(j − 1)|cj |rj + γ(r + 1)
6r

∞∑
j=2

j(j − 1)(2j − 1)|cj |rj <∞.

Also, if 1 ≤ r < r1 < R, then for all |z| ≤ r and n, p ∈ N, we have∣∣∣[S<γ>n (f)](p)(z)− f (p)(z)
∣∣∣ ≤ M<γ>

2,r1,n(f)p!r1

(r1 − r)p+1 .

Proof. Since S<γ>n (f)(z) =
∞∑
k=0

ckS
<γ>
n (ek)(z), we get

|S<γ>n (f)(z)− f(z)| ≤
∞∑
k=0
|ck| · |S<γ>n (ek)(z)− ek(z)|.

To estimate |S<γ>n (ek)(z) − ek(z)| for any fixed n ∈ N, we will consider two
possible cases: 1) 0 ≤ k ≤ n; 2) k > n.

We will use the well-known representation (see [8])

S<γ>n (f)(z) =
n∑
p=0

(n
p

) z(z+γ)...(z+(p−1)γ)
(1+γ)...(1+(p−1)γ) ∆p

1/nf(0).

Denoting
Dn,p,k =

(n
p

)
∆p

1/nek(0) =
(n
p

)
[0, 1

n , ...,
p
n ; ek] p!np ,

since ek is convex of any order, it follows that all Dn,p,k ≥ 0 and

S<γ>n (ek)(z) =
min{n,k}∑
p=0

Dn,p,k
z(z+γ)...(z+(p−1)γ)
(1+γ)...(1+(p−1)γ) .
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Also, since S<γ>n (f)(1) = f(1), we get
n∑
p=0

Dn,p,k =
min{n,k}∑
p=0

Dn,p,k = 1.

Note that since for any j = 0, 1, ..., we have r+jγ
1+jγ ≤ r, for all 0 ≤ p ≤

min{n, k} ≤ k and |z| ≤ r we obtain
|z(z+γ)...(z+(p−1)γ)|
(1+γ)...(1+(p−1)γ) ≤ r

r+γ
1+γ · ...

r+(p−1)γ
1+(p−1)γ ≤ r

p ≤ rk,

which for all |z| ≤ r and n, k ∈ N, immediately implies

|S<γ>n (ek)(z)| ≤ rk
min{n,k}∑
p=0

Dn,p,k = rk.

Case 1). If k = 0, then obviously we have S<γ>n (ek)(z)− ek(z) = 0. There-
fore, let us suppose that 1 ≤ k ≤ n. By using the representation in [8], we
obtain

|S<γ>n (ek)(z)− ek(z)| ≤
∣∣∣n(n−1)...(n−(k−1))

nk
· z(z+γ)...(z+(k−1)γ)

(1+γ)...(1+(k−1)γ) − z
k
∣∣∣

+
k−1∑
p=0

Dn,p,k

∣∣∣ z(z+γ)...(z+(p−1)γ)
(1+γ)...(1+(p−1)γ)

∣∣∣
:=E<γ>n,k (z) + F<γ>n,k (z).

For |z| ≤ r it follows

F<γ>n,k (z) ≤ rk
k−1∑
p=0

Dn,p,k = rk[1−Dn,k,k] = rk[1− n(n−1)...(n−(k−1))
nk

] ≤ rk k(k−1)
2n .

Here we have applied the inequality 1−
∏
xi ≤

∑
(1−xi), with all 0 ≤ xi ≤ 1.

Also,

E<γ>n,k (z) ≤
∣∣∣n(n−1)...(n−(k−1))

nk
z(z+γ)...(z+(k−1)γ)
(1+γ)...(1+(k−1)γ) −

z(z+γ)...(z+(k−1)γ)
(1+γ)...(1+(k−1)γ)

∣∣∣
+
∣∣∣ z(z+γ)...(z+(k−1)γ)

(1+γ)...(1+(k−1)γ) − z
k
∣∣∣

≤
∣∣∣ z(z+γ)...(z+(k−1)γ)

(1+γ)...(1+(k−1)γ)

∣∣∣ · ∣∣∣1− n(n−1)...(n−(k−1))
nk

∣∣∣
+
∣∣∣ z(z+γ)...(z+(k−1)γ)

(1+γ)...(1+(k−1)γ) − z
k
∣∣∣ ≤ rk k(k−1)

2n +
∣∣∣ z(z+γ)...(z+(k−1)γ)

(1+γ)...(1+(k−1)γ) − z
k
∣∣∣ .

For any fixed |z| ≤ r, let us denote gk(α)(z) = z(z+α)...(z+(k−1)α)
(1+α)...(1+(k−1)α) , where

α ≥ 0. Then, by the mean value theorem, there is ξ ∈ [0, γ] such that∣∣∣ z(z+γ)...(z+(k−1)γ)
(1+γ)...(1+(k−1)γ) − z

k
∣∣∣ = |gk(γ)(z)− gk(0)(z)| ≤ γ ·max

∣∣∣dgk(ξ)(z)
dα

∣∣∣ .
But denoting uj(α)(z) = z+jα

1+jα , we have gk(α)(z) = z
k−1∏
j=1

uj(α)(z) and

dgk(α)(z)
dα = z

k−1∑
j=1

(
z+jα
1+jα

)′
α
·

k−1∏
i=1,i 6=j

z+iα
1+iα = z

k−1∑
j=1

j(1−z)
(1+jα)2

k−1∏
i=1,i 6=j

z+iα
1+iα .
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Since j
(1+jξ)2 ≤ j2, passing to modulus (for 0 ≤ ξ ≤ γ and |z| ≤ r), we obtain

∣∣∣dgk(ξ)(z)
dα

∣∣∣ ≤ r(r + 1)
k−1∑
j=1

j2rk−2 = (r + 1)rk−1 k(k−1)(2k−1)
6 .

It follows
E<γ>n,k (z) ≤ rk k(k−1)

2n + γ(r + 1)rk−1 k(k−1)(2k−1)
6 .

Collecting all the above estimates, we get for all |z| ≤ r

|S<γ>n (ek)(z)− ek(z)| ≤rk k(k−1)
2n + rk k(k−1)

2n + γ(r + 1)rk−1 k(k−1)(2k−1)
6

=rk
[
k(k−1)
n + γ · r+1

r ·
k(k−1)(2k−1)

6

]
.

Case 2). We have

|S<γ>n (ek)(z)− ek(z)| ≤|S<γ>n (ek)(z)|+ |ek(z)|

≤
n∑
p=0

Dn,p,k

∣∣∣ z(z+γ)...(z+(p−1)γ)
(1+γ)...(1+(p−1)γ)

∣∣∣+ |ek(z)|.
Reasoning as in the above Case 1), we get

|S<γ>n (ek)(z)− ek(z)| ≤ rn + rk ≤ 2rk ≤ 2(k−1)k
n rk.

Collecting all the results in the Cases 1) and 2), we immediately obtain, for
all |z| < r and k = 0, 1, 2, ...,

|S<γ>n (ek)(z)− ek(z)| ≤ rk
[

2k(k−1)
n + γ · r+1

r ·
k(k−1)(2k−1)

6

]
,

which implies the corresponding estimate in statement.
For the simultaneous approximation, denoting by Γ the circle of radius

r1 > r and center 0, since for any |z| ≤ r and v ∈ Γ, we have |v − z| ≥ r1 − r,
by the Cauchy’s formulas it follows that for all |z| ≤ r and n ∈ N, we have

|[S<γ>n (f)](p)(z)− f (p)(z)| = p!
2π

∣∣∣∣∫
Γ

S<γ>n (f)(v)−f(v)
(v−z)p+1 dv

∣∣∣∣ ≤M<γ>
2,r1,n(f) p!2π

2πr1
(r1−r)p+1

=M<γ>
2,r1,n(f) p!r1

(r1−r)p+1 ,

which proves the theorem. �

Remark 2.2. For γ = 0 we get the results in [2]. �

3. ITERATES

Defining the m-th iterates by mS<γ>n (f)(z), first we prove the following
qualitative result.
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Theorem 3.1. Let DR = {z ∈ C; |z| < R} be with R > 1 and let us suppose
that f : DR → C is analytic in DR, that is we can write f(z) =

∞∑
k=0

ckz
k, for

all z ∈ DR. Let 0 ≤ γ. Uniformly in |z| ≤ r, where 1 ≤ r < R, we have

lim
m→∞

mS<γ>n (f)(z) = (1− z)f(0) + zf(1), ∀n ∈ N.

Proof. From [1], Remark 2 after Theorem 9, p. 165, for any n ∈ N, we have
lim
m→∞

mS<γ>n (f)(x) = (1−x)f(0) +xf(1), uniformly with respect to x ∈ [0, 1].
From the classical Vitali’s result, it suffices to show that for any fixed n ∈ N,
the sequence (mS<γ>n (f)(z))m∈N is uniformly bounded for |z| ≤ r.

We have mS<γ>n (f)(z) =
∞∑
k=0

ck · mS<γ>n (ek)(z). We will prove that for all

n,m, k ∈ N and |z| ≤ r, we have |mS<γ>n (ek)(z)| ≤ rk.
Indeed, for m = 1 it easily follows by (also see the proof of Theorem 2.1)

S<γ>n (ek)(z) =
n∑
j=0

Dn,j,k
z(z+γ)...(z+(j−1)γ)
(1+γ)...(1+(j−1)γ) =

min{n,k}∑
j=0

Dn,j,k
z(z+γ)...(z+(j−1)γ)
(1+γ)...(1+(j−1)γ)

with Dn,j,k ≥ 0 and
n∑
j=0

Dn,j,k =
min{n,k}∑
j=0

Dn,j,k = 1.

Denote hj(z) = z(z + γ)...(z + (j − 1)γ) =
j∑
i=0

c
(j)
i ei(z), where c

(j)
i ≥ 0,

c
(j)
j = 1 and

j∑
i=0

c
(j)
i = hj(1) = (1 + γ)...(1 + (j − 1)γ).

By the linearity of S<γ>n , we get

|2S<γ>n (ek)| =

∣∣∣∣∣∣
min{n,k}∑
j=0

Dn,j,k
1

(1+γ)...(1+(j−1)γ) ·
j∑
i=0

c
(j)
i S<γ>n (ei)(z)

∣∣∣∣∣∣
≤

min{n,k}∑
j=0

Dn,j,k
1

(1+γ)...(1+(j−1)γ) ·
j∑
i=0

c
(j)
i rj

≤rk,

and by mathematical induction it follows that for all n,m, k ∈ N we have

|mS<γ>n (ek)(z)| ≤ rk, for all |z| ≤ r.

This implies that

|mS<γ>n (f)(z)| ≤
∞∑
k=0
|ck| · |mS<γ>n (ek)(z)| ≤

∞∑
k=0
|ck|rk <∞,

for all m,n ∈ N, which proves the theorem. �

We also have the following quantitative result.
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Theorem 3.2. Let DR = {z ∈ C; |z| < R} be with R > 1 and let us suppose
that f : DR → C is analytic in DR, that is we can write f(z) =

∞∑
k=0

ckz
k, for

all z ∈ DR. Let 0 ≤ γ, 1 ≤ r < R and Dn,k,k = n(n−1)...(n−(k−1))
nk

. Then, for
all |z| ≤ r we have

|mS<γ>n (f)(z)− f(z)| ≤

≤ m
∞∑
k=2
|ck|

[
2k(k−1)

n +
(
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

)
+ γ(k − 1)2

]
rk.

Proof. From the proof of Theorem 3.1, it follows that for all n,m, k ∈ N
and |z| ≤ r, we have |mS<γ>n (ek)(z)| ≤ rk. Also |mS<γ>n (f)(z) − f(z)| ≤
∞∑
k=2
|ck| · |mS<γ>n (ek)(z) − ek(z)|. We have two possibilities: 1) 2 ≤ k ≤ n; 2)

k > n.
Case 1). With the notations for gj(α)(z) in the proof of Theorem 2.1 and

for hj(z), c(j)
i in the proof of Theorem 3.1, we can write

|mS<γ>n (ek)(z)− ek(z)| =

=
∣∣∣∣∣
m−1∑
p=0

pS<γ>n [S<γ>n (ek)(z)− ek(z)]
∣∣∣∣∣

=
∣∣∣∣∣
m−1∑
p=0

pS<γ>n

[ k∑
j=1

Dn,j,k · gj(γ)(z)− ek(z)
]∣∣∣∣∣

=
∣∣∣∣∣
m−1∑
p=0

[ k∑
j=1

Dn,j,k · pS<γ>n (gj(γ))(z)−p S<γ>n (ek)(z)
]∣∣∣∣∣

≤
m−1∑
p=0

k−1∑
j=1

Dn,j,k|pS<γ>n (gj(γ))(z)|

+
m−1∑
p=0
|Dn,k,k ·p S<γ>n (gk(γ))(z)−p S<γ>n (ek)(z)|
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=
m−1∑
p=0

k−1∑
j=1

Dn,j,k|pS<γ>n (gj(γ))(z)|

+
m−1∑
p=0

∣∣∣∣∣ Dn,k,k
(1+γ)...(1+(k−1)γ) ·

p S<γ>n

[ k∑
i=0

c
(k)
i ei(z)

]
−p S<γ>n (ek)(z)

∣∣∣∣∣
≤

m−1∑
p=0

k−1∑
j=1

Dn,j,k|pS<γ>n (gj(γ))(z)|

+
m−1∑
p=0

∣∣∣ Dn,k,k
(1+γ)...(1+(k−1)γ) ·

p S<γ>n (ek)(z)−p S<γ>n (ek)(z)
∣∣∣

+
m−1∑
p=0

Dn,k,k
(1+γ)...(1+(k−1)γ)

∣∣∣∣∣
k−1∑
i=0

c
(k)
i ·

p S<γ>n (ei)(z)
∣∣∣∣∣

:= T1 + T2 + T3.

Reasoning exactly as in the proof of Theorem 3.1, we easily get for all j, p and
|z| ≤ r that

|pS<γ>n (gj(γ))(z)| ≤ rj .

Taking into account the formula for 1 − Dn,k,k in the proof of Theorem 2.1,
we get

T1 ≤
m−1∑
p=0

k−1∑
j=1

rkDn,j,k = mrk[1−Dn,k,k] ≤ mrk k(k−1)
2n .

Also,

T2 =
m−1∑
p=0
|pS<γ>n (ek)(z)|

[
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

]
≤mrk

[
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

]
.

Finally,

T3 ≤
m−1∑
p=0

Dn,k,k
(1+γ)...(1+(k−1)γ) [(1 + γ)...(1 + (k − 1)γ)− 1]rk

=mrkDn,k,k

[
1− 1

(1+γ)...(1+(k−1)γ)

]
.

But, taking into account the inequalities Dn,k,k ≤ 1 and

1−
k−1∏
j=1

xj ≤
k−1∑
j=1

(1− xj), 0 ≤ xj ≤ 1, j = 1, ..., k − 1,
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applied for xj = 1
1+jγ , we obtain

Dn,k,k

[
1− 1

(1+γ)...(1+(k−1)γ)

]
≤
k−1∑
j=1

[1− 1/(1 + jγ)] =
k−1∑
j=1

jγ
1+jγ

≤(k − 1) · γ(k−1)
1+γ(k−1) ≤ γ(k − 1)2.

Collecting all these inequalities, we obtain

|mS<γ>n (ek)(z)− ek(z)| ≤ mrk
[
k(k−1)

2n +
(
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

)
+ γ(k − 1)2

]
.

Case 2). We get

|mS<γ>n (ek)(z)− ek(z)| ≤ |mS<γ>n (ek)(z)|+ |ek(z)| ≤ 2rk ≤ 2k(k−1)
n rk.

As a conclusion, from both Cases 1) and 2), we obtain

|mS<γ>n (f)(z)− f(z)| ≤
∞∑
k=2
|ck| · |mS<γ>n (ek)(z)− ek(z)| =

=
n∑
k=2
|ck| · |mS<γ>n (ek)(z)− ek(z)|+

∞∑
k=n+1

|ck| · |mS<γ>n (ek)(z)− ek(z)|

≤
n∑
k=2
|ck|mrk

[
k(k−1)

2n +
(
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

)
+ γ(k − 1)2

]
+

∞∑
k=n+1

|ck|rk 2k(k−1)
n

≤ m
∞∑
k=2
|ck|rk

[
2k(k−1)

n +
(
1− Dn,k,k

(1+γ)...(1+(k−1)γ)

)
+ γ(k − 1)2

]
rk,

which proves the theorem. �

Remark 3.3. For γ = 0 we get the results in [3]. �

Corollary 3.4. (i) Let 1 ≤ r < R. For γ := γn = 1/n and |z| ≤ r we
have the estimate

|mS<γn>n (f)(z)− f(z)| ≤ m

n

∞∑
k=2
|ck|

[
2k(k − 1) + 2(k − 1)3 + (k − 1)2

]
rk.

(ii) If γ := γn = 1/n and mn
n → 0 as n→∞, then mnS<γn>n (f)(z)→ f(z),

uniformly with respect |z| ≤ r.

Proof. (i) Taking γ = 1/n we obtain

1− Dn,k,k
(1+γ)...(1+(k−1)γ) =1−

k−1∏
j=1

n−j
n+j ≤

k−1∑
j=1

[1− n−j
n+j ] = 2

k−1∑
j=1

j

j + n

≤2(k − 1) k−1
n+(k−1) ≤ 2 (k−1)3

n , k ≥ 2,
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which replaced in Theorem 3.2, gives

|mS<γn>n (f)(z)− f(z)| ≤ m
n

∞∑
k=2
|ck|

[
2k(k − 1) + 2(k − 1)3 + (k − 1)2

]
rk.

(ii) It is evident by passing to limit with n→∞ in the estimate of (i). �

Remark 3.5. The results in Theorem 3.2 and Corollary 3.4, are new even
for the case of real functions of one real variable, since they are not covered
by those in [4] or [5], whose estimates one refer to the difference |mLn(f)(x)−
B1(f)(x)|, with B1(f)(x) = f(0)+[f(1)−f(0)]x and mLn(f) representing the
mth iterate of the positive linear operator Ln(f). �

4. GEOMETRIC PROPERTIES

In this section we present the geometric properties of S<γ>n (f)(z).

Theorem 4.1. Let us suppose that G ⊂ C is open, such that D1 ⊂ G and
f : G → C is analytic in G. Also, let us consider (S<γ(n)>

n (f)(z))n∈N, where
we suppose that lim

n→∞
γ(n) = 0.

If f(0) = f ′(0) − 1 = 0 and f is starlike (convex, spirallike of type η,
respectively) in D1, that is for all z ∈ D1 (see e.g. [7])

Re
(
zf ′(z)
f(z)

)
> 0

(
Re
(
zf ′′(z)
f ′(z)

)
+ 1 > 0,Re

(
eiη zf ′(z)

f(z)

)
> 0, resp.

)
,

then there exists an index n0 depending on f (and on η for spirallikeness),
such that, for all n ≥ n0, S<γ(n)>

n (f)(z) are starlike (convex, spirallike of type
η, respectively) in D1.

If f(0) = f ′(0) − 1 = 0 and f is starlike (convex, spirallike of type η,
respectively) only in D1 (that is the corresponding inequalities hold only in D1),
then, for any disk of radius 0 < r < 1 and center 0 denoted by Dr, there exists
an index n0 = n0(f,Dr) (n0 depends on η too in the case of spirallikeness),
such that, for all n ≥ n0, S<γ(n)>

n (f)(z) are starlike (convex, spirallike of type
η, respectively) in Dr (that is, the corresponding inequalities hold in Dr).

Proof. By Theorem 2.1, it follows that we have S
<γ(n)>
n (f)(z) → f(z),

uniformly for |z| ≤ 1, which by the well-known Weierstrass’s theorem implies
[S<γ(n)>
n (f)]′(z)→ f ′(z) and [S<γ(n)>

n (f)]′′(z)→ f ′′(z), for n→∞, uniformly
in D1. In all what follows, denote Pn(f)(z) = S

<γ(n)>
n (f)(z)

[S<γ(n)>
n (f)]′(0)

, well defined for
sufficiently large n. We easily get Pn(f)(0) = 0, P ′n(f)(0) = 1 for sufficiently
large n, and Pn(f)(z) → f(z), P ′n(f)(z) → f ′(z) and P ′′n (f)(z) → f ′′(z),
uniformly in D1.

Suppose first that f is starlike in D1. Then, by hypothesis, we get |f(z)| > 0
for all z ∈ D1 with z 6= 0, which, from the univalence of f in D1, implies that
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we can write f(z) = zg(z), with g(z) 6= 0, for all z ∈ D1, where g is analytic
in D1 and continuous in D1.

Writing Pn(f)(z) in the form Pn(f)(z) = zQn(f)(z), obviously Qn(f)(z) is
a polynomial of degree ≤ n− 1. Also, for |z| = 1 we have |f(z)− Pn(f)(z)| =
|z| · |g(z)−Qn(f)(z)| = |g(z)−Qn(f)(z)|, which by the uniform convergence in
D1 of Pn(f) to f and by the maximum modulus principle, implies the uniform
convergence in D1 of Qn(f)(z) to g(z).

Since g is continuous in D1 and |g(z)| > 0 for all z ∈ D1, there exist an
index n1 ∈ N and a > 0 depending on g, such that |Qn(f)(z)| > a > 0, for all
z ∈ D1 and all n ≥ n0. Also, for all |z| = 1, we have

|f ′(z)− P ′n(f)(z)| =
= |z[g′(z)−Q′n(f)(z)] + [g(z)−Qn(f)(z)]|
≥
∣∣|z| · |g′(z)−Q′n(f)(z)| − |g(z)−Qn(f)(z)|

∣∣
=
∣∣|g′(z)−Q′n(f)(z)| − |g(z)−Qn(f)(z)|

∣∣ ,
which from the maximum modulus principle, the uniform convergence of P ′n(f)
to f ′ and of Qn(f) to g, evidently implies the uniform convergence of Q′n(f)
to g′.

Then, for |z| = 1, we get
zP ′n(f)(z)
Pn(f) = z[zQ′n(f)(z)+Qn(f)(z)]

zQn(f)(z) = zQ′n(f)(z)+Qn(f)(z)
Qn(f)(z)

→ zg′(z)+g(z)
g(z) = f ′(z)

g(z) = zf ′(z)
f(z) ,

which again, from the maximum modulus principle, implies
zP ′n(f)(z)
Pn(f) → zf ′(z)

f(z) , uniformly in D1.

Since Re
(
zf ′(z)
f(z)

)
is continuous in D1, there exists ε ∈ (0, 1), such that

Re
(
zf ′(z)
f(z)

)
≥ ε, for all z ∈ D1.

Therefore
Re
[
zP ′n(f)(z)
Pn(f)(z)

]
→ Re

[
zf ′(z)
f(z)

]
≥ ε > 0

uniformly on D1, i.e., for any 0 < ρ < ε, there is n0 such that for all n ≥ n0
we have

Re
[
zP ′n(f)(z)
Pn(f)(z)

]
> ρ > 0, for all z ∈ D1.

Since Pn(f)(z) differs from S
<γ(n)>
n (f)(z) only by a constant, this proves the

starlikeness of S<γ(n)>
n (f)(z), for sufficiently large n.

If f is supposed to be starlike only in D1, the proof is identical, with the
only difference that instead of D1, we reason for Dr.
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The proofs in the cases when f is convex or spirallike of order η are similar
and follow from the following uniform convergences (on D1 or on Dr)

Re
[
zP ′′n (f)(z)
P ′n(f)(z)

]
+ 1→ Re

[
zf ′′(z)
f ′(z)

]
+ 1, Re

[
eiη zP ′n(f)(z)

Pn(f)(z)

]
→ Re

[
eiη zf ′(z)

f(z)

]
,

as n→∞, which proves the theorem. �

Remark 4.2. If f is univalent in D1, then from the uniform convergence
in Theorem 2.1 and a well-known result in complex analysis, concerning se-
quences of analytic functions converging locally uniformly to an univalent
function, it is immediate that for sufficiently large n, the complex polyno-
mials S<γ(n)>

n (f)(z) (where γ(n) → 0, for n → ∞), must be univalent in
D1. �
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