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KOVARIK’S FUNCTION ORTHOGONALIZATION ALGORITHM WITH
APPROXIMATE INVERSION∗

CONSTANTIN POPA†

Abstract. Z. Kovarik proposed in 1970 a method for approximate orthogonal-
ization of a finite set of linearly independent vectors from a Hilbert space. This
method uses at each iteration a symmetric and positive definite matrix inversion.
In this paper we describe an algorithm in which the above matrix inversion step
is replaced by an arbitrary odd degree polynomial matrix expression. We prove
that this new algorithm converges to the same orthonormal set of vectors as the
original Kovarik’s method. Some numerical experiments presented in the last
section of the paper show us that, even for small degree polynomial expressions
the convergence properties of the new algorithm are comparable with those of
the original one.
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1. A MATRIX APPROACH OF KOVARIK’S ALGORITHM

Let H be a (real) Hilbert space with the scalar product and the associated
norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. In some space Rq the vectors will
be considered as column vectors and the euclidean scalar product and norm
will be denoted by 〈·, ·〉2 and ‖ · ‖2, respectively. For a q× q matrix A we shall
denote by At, (A)i, (A)ij , σ(A), ρ(A) the transpose, i-th row, (i, j)-th element,
spectrum and spectral radius, respectively, and by ‖ A ‖2, ‖ A ‖∞ the matrix
norms defined by (see e.g. [1])

(1) ‖ A ‖2=
√
ρ(AtA), ‖ A ‖∞= max

1≤i≤q

q∑
j=1
|(A)ij |.

For a linearly independent system of vectors Φ = {φ1, . . . , φn} ⊂ H the Gram
matrix G(Φ), defined by

(2) (G(Φ))ij = 〈φj , φi〉, i, j = 1, . . . , n
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is symmetric and positive definite (SPD, for short), thus its square root G(Φ)
1
2

exists and is also SPD. We define the number trace(G(Φ)) by

(3) trace(G(Φ)) =
n∑
i=1

(G(Φ))ii =
n∑
i=1
〈φi, φi〉 =

n∑
i=1
‖ φi ‖2 .

If σ(G(Φ)) = {σ1, . . . , σn}, then trace(G(Φ)) = σ1 + · · · + σn. For the above
system Φ the author considered in [1] the norm ||| · ||| defined by

(4) |||Φ|||2 = 1
n

trace(G(Φ)) = 1
n

n∑
i=1
‖ φi ‖2

and proved the inequality
(5) |||Φ|||2 ≤ ρ(G(Φ)) =‖ G(Φ) ‖2,
where ‖ G(Φ) ‖2 is the spectral norm of the matrix G(Φ). Moreover, for an
n× n matrix C = (cij)i,j , he defined the product Ψ = Φ · C by

(6) Ψ = {ψ1, . . . , ψn}, ψi =
n∑
j=1

cijφj , i = 1, . . . , n.

Remark 1. If we consider the systems Ψ = (φ1, . . . , φn),Φ = (ψ1, . . . , ψn)
as (ordered) vectors in Hn = H × H × · · · × H, we can write (6) in the
following “matrix by vector multiplication form”, very useful in computations
(see Section 2)

(7) Ψ =


ψ1
ψ2
. . .
ψn

 = Ct


φ1
φ2
. . .
φn

 .
Let Φ∞ = {φ∞1 , . . . , φ∞n } be given by (see (6)–(7))

(8) Φ∞ = Φ · (G(Φ))−
1
2 .

According to [2], Φ∞ is an orthonormal system, i.e.

(9) 〈φ∞j , φ∞i 〉 =
{

1, j = i
0, j 6= i

and the following result holds.

Lemma 2. Let C = (cij)i,j be an arbitrary n× n matrix. Then
(10) |||Φ∞ · C||| ≤ ‖ C ‖2 .

In [2] Z. Kovarik proposed his approximate orthogonalization algorithm.
It will be briefly presented in what follows, together with the corresponding
convergence results.

Algorithm 3. Let Φ0 = Φ; for k = 0, 1, . . . do
(11) Gk = G(Φk);Kk = (I −Gk)(I +Gk)−1;Sk = I +Kk; Φk+1 = Φk · Sk.
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Theorem 4. For any linearly independent system Φ, the sequence (Φk)k≥0
generated by (11) converges to Φ∞ (in H). Moreover, the following estimate
holds
(12) |||Φ∞ − Φk||| ≤ ‖ K0 ‖2

k

2 , ∀k ≥ 1.

Remark 5. The above convergence of Φk = {φ(k)
1 , . . . , φ

(k)
n } to Φ∞ is equiv-

alent with (see (4))

(13) lim
k→∞

‖ φ(k)
i − φ

∞
i ‖= 0, i = 1, . . . , n.

Now, if we denote by λ(0)
i the eigenvalues of G0, i.e.

(14) σ(G0) = {λ(0)
1 , . . . , λ(0)

n } ⊂ (0,∞),
then, from the second equality in (11), we obtain

σ(K0) =
{

1−λ(0)
1

1+λ(0)
1
, . . . , 1−λ(0)

n

1+λ(0)
n

}
⊂ (−1, 1),

thus
(15) ‖ K0 ‖2 < 1,
which tells us that the convergence in (12) is at least quadratic. Moreover,
from the equalities (see [2])

(16) Φ∞ = Φk ·G−
1
2

k , ∀k ≥ 0,
we obtain

(17) Φ∞ − Φk = Φ∞ · (I −G
1
2
k ), ∀k ≥ 0,

which together with (9) tell us that the limit in (13) is equivalent with

(18) lim
k→∞

‖ I −G
1
2
k ‖2= 0.

Lemma 6. The Gram matrices Gk = G(Φk), k ≥ 0, can be recursively
generated by the following formulas
(19) Gk+1 = SkGkSk, k ≥ 0,
with Kk and Sk computed as in (11).

Proof. From (11) and (6) we get (also using the symmetry of Gk)

(Gk+1)ij = 〈φk+1
j , φk+1

i 〉 =
n∑
q=1

(Sk)iq(
n∑
p=1

(Sk)jp〈φ(k)
p , φ(k)

q 〉) =

=
n∑
q=1

(Sk)iq(
n∑
p=1

(Sk)jp(Gk)qp) = 〈(Sk)i, Gk(Sk)j〉2 = (SkGkSk)ij ,

which completes the proof. �
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2. THE MODIFIED KOVARIK ALGORITHM

As already observed by Z. Kovarik in [2], for applying the algorithm (3) we
need to compute at each iteration the inverse (I +Gk)−1 of the (SPD) matrix
I + Gk. We shall avoid this difficulty by replacing the matrix inverse with a
polynomial expression with respect to Gk. For this we shall first observe that
after the scaling of the system Φ = Φ0 = {φ(0)

1 , . . . , φ
(0)
n }

(20) ψ
(0)
i = 1√

‖ G0 ‖∞ +1
φ

(0)
i , i = 1, . . . , n.

If Ψ0 = {ψ(0)
1 , . . . , ψ

(0)
n } we get

(21) ‖ G(Ψ0) ‖2=‖ 1
‖ G0 ‖∞ +1G(Φ0) ‖2= ‖ G0 ‖2

‖ G0 ‖∞ +1 < 1.

Then, for a given sequence of integers qk ≥ 1, k ≥ 0, we shall approximate the
inverse (I +Gk)−1 in (11) by the truncated Neumann series S(qk;Gk) defined
by

(22) S(qk;Gk) =
qk∑
i=0

(−Gk)i.

Then, the modified Kovarik algorithm is the following.

Algorithm 7. Starting with Ψ0 = {ψ(0)
1 , . . . , ψ

(0)
n } from (20), for k ≥ 0,

do
(23) Γk = G(Ψk);Kk = (I − Γk)S(qk; Γk);Sk = I +Kk; Ψk+1 = Ψk · Sk.

The next (main) result of the paper shows the convergence of the algorithm
(7).

Theorem 8. If Ψ0 = {ψ(0)
1 , . . . , ψ

(0)
n } is defined as in (20) and all the inte-

gers qk, k ≥ 0, are odd, then the sequence (Ψk)k≥0 generated in (23) converges
to Φ∞ from (8) in the sense (13), i.e.

(24) lim
k→∞

‖ ψ(k)
i − φ

∞
i ‖= 0, ∀i = 1, . . . , n.

In order to prove it we need some auxiliary results which will be presented
below.

Lemma 9. Let Γ0 = G(Ψ0) and Q be an n × n orthonormal matrix such
that
(25) Γ0 = Qt diag(γ(0)

1 , . . . , γ(0)
n ) Q

with (see (21))

(26) σ(Γ0) = {γ(0)
1 , . . . , γ(0)

n } ⊂ (0, 1).
Then, if qk are all odd numbers we have

(27) Γk = Qt diag(γ(k)
1 , . . . , γ(k)

n ) Q,
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with γ(k)
i , i = 1, . . . , n, recursively defined by

(28) γ
(k+1)
i =

(
2 + (γ(k)

i )qk+1(γ(k)
i − 1)

1 + γ
(k)
i

)2

· γ(k)
i ∈ (0, 1),∀k ≥ 1.

Proof. According to Lemma 6 and (23) we obtain
(29) Γk+1 = SkΓkSk,
with
(30) Sk = I + (I − Γk)S(qk; Γk).
Now we shall use an induction argument. For this, let Γk be as in (27). Using
the orthonormality of Q, (22) and (29)–(30) we obtain

(31) Sk = Qt diag(d(k)
1 , . . . , d(k)

n ) Q
with

(32) d
(k)
i = 1 + (1− γ(k)

i )
qk∑
j=0

(−1)j(γ(k)
i )j > 0, i = 1, . . . , n.

Then, because γ(k)
i ∈ (0, 1) we obtain (by also taking into account that qk is

odd)

(33) d
(k)
i = 1 + (1− γ(k)

i )(1− (γ(k)
i )qk+1)

1 + γ
(k)
i

,

which gives us, together with (27) and (29),

Γk+1 = Qt diag(γk+1
1 , . . . , γ(k+1)

n ) Q,

with γ
(k+1)
i as in (28). So, it rests us to prove that

(34) γ
(k+1)
i ∈ (0, 1), ∀i = 1, . . . , n.

For this, we consider the function f : [0,∞) −→ R

(35) f(x) =
(

2 + xqk+1(x− 1)
1 + x

)2

· x

and observe that, ∀x ∈ (0, 1),

(36) f(x)− 1 = −(1− x)2 − x(1− x)xqk+1[4− (1− x)xqk+1]
(1 + x)2 < 0.

Then, from (28) and (36), it results (34) and the proof is complete. �

Lemma 10. For any i ∈ {1, . . . , n}, if qk are all odd numbers then the
sequence (γ(k)

i )k≥0, recursively defined in (28), is strictly increasing and

(37) lim
k→∞

γ
(k)
i = 1.



84 Constantin Popa 6

Proof. Using again f(x) from (35) we get, for x ∈ (0, 1),

(38) f(x)− x = x · 3 + x− (1− x)xqk+1

1 + x
· (1− x)(1− xqk+1)

1 + x
> 0.

Then, by a recursive argument we obtain that the sequence (γ(k)
i )k≥0 is strictly

increasing and bounded,

(39) γ
(k)
i ∈ (γ(0)

i , 1), ∀k ≥ 0.

If γi ∈ [0, 1] will denote its limit, i.e.

(40) γi = lim
k→∞

γ
(k)
i , i = 1, . . . , n,

and we shall prove that γi = 1. If this is not true true, i.e.

(41) 0 < γi < 1

(γi 6= 0 because γ(0)
i > 0 and (γ(k)

i )k≥0 is strictly increasing), then from (28)
and (38) we obtain

(42) γ
(k+1)
i − γ(k)

i >
γ

(k)
i (1− γ(k)

i )2

1 + γ
(k)
i

.

The variation of the real function g(x) = x(1−x)2

1+x , x ∈ (0, 1) gives us the
relation

(43) g(x) ≥ min{g(γ(0)
i ), g(γi)} > 0, ∀x ∈ [γ(0)

i , γi].

Thus, if we define ε0 > 0 by

(44) ε0 = min{g(γ(0)
i ), g(γi)},

from (42) we obtain
γ

(k+1)
i > γ

(k)
i + ε0, ∀k ≥ 0,

i.e.

(45) γ
(k+1)
i > γ

(0)
i + k · ε0, ∀k ≥ 0.

The above inequality tells us that it exists an integer k0 ≥ 1 such that

γ
(k+1)
i > γ

(k0+1)
i > γi,

which contradicts (39)–(41). It results that (37) is true and the proof is com-
plete. �

Proof. (of Theorem 8.) From (27) and (37) we obtain that limk→∞ Γk = I,
thus

(46) lim
k→∞

‖ I − Γ
1
2
k ‖2= 0.
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Then, according to (16)–(18) we shall obtain (24) if we can prove for the
systems Ψk equalities similar with (16), i.e.

(47) Φ∞ = Ψk · Γ−
1
2

k , ∀k ≥ 0.

For this we shall use the mathematical induction. First, for k = 0 from (20),
(21), (8) we get

(48) Ψ0·Γ−
1
2

0 =
( 1√
‖ G0 ‖∞ +1

Φ0
)
·(
√
‖ G0 ‖∞ +1G−

1
2

0 ) = Ψ0·G−
1
2

0 = Φ∞.

Let now k ≥ 0 be an integer such that (47) holds for it. Then, using (23), (29)
and (7) we successively obtain

Ψk+1 · Γ−
1
2

k+1 = (Ψk · Sk)(SkΓkSk)−
1
2 = St

kΨk(SkΓkSk)−
1
2 =

(49) = [St
k(SkΓkSk)−

1
2 ]Ψk = ((SkΓkSk)−

1
2Sk)tΨk = Ψk · [(SkΓkSk)−

1
2Sk],

which together with (27), (31) and (32) gives us the equality

(50) (SkΓkSk)−
1
2Sk = (QtDkTkDkQ)−

1
2QtDkQ,

where we used the notations

(51) Dk = diag(d(k)
1 , . . . , d(k)

n ), Tk = diag(γ(k)
1 , . . . , γ(k)

n ).

But, because Dk and Tk are diagonal matrices they commute, thus (Q being
orthonormal)

QtDkTkDkQ = (Qt(DkTkDk)
1
2Q)2

and from (50), (27) and (51) we obtain

(52) (SkΓkSk)−
1
2Sk = QtD

− 1
2

k T
− 1

2
k D

− 1
2

k QQtDkQ = QtT
− 1

2
k Q = Γ−

1
2

k .

Then, the relations (51), (49) and the induction hypothesis give us Φ∞ =
Ψk+1 · Γ−

1
2

k+1 and the proof is complete. �

Remark 11. In the other cases for the integers qk, i.e. qk = constant (even)
or qk = arbitrary, the modified algorithm (22)–(23) does not always converge.

3. NUMERICAL EXPERIMENTS

We considered in our experiments a regular discretization of (0, 1): N ≥ 2,
h = 1/N, n = N − 1, xi = ih, i = 1, . . . , n and the piecewise linear (one
dimensional) finite element basis Φ = Φ0 = {φ(0)

1 , . . . , φ
(0)
n }, φ(0)

i : [0, 1] −→ R
defined by (see e.g. [3])

φ
(0)
i (x) =


x−xi−1

h , x ∈ (xi−1, xi]
xi+1−x

h , x ∈ (xi, xi+1)
0, else.
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As the Hilbert space H we considered H1
0 ((0, 1)), with the scalar product

〈φ, ψ〉 =
∫ 1

0

dφ
dx

dψ
dx .

In this context, the Gram matrix G0 = (〈φ(0)
j , φ

(0)
i 〉)i,j=1,...,n is given by

G0 =


2 −1
−1 2 −1
. . . . . . . . . . . . . . . . . .

−1 2 −1
−1 2

 .

We first applied the original Kovarik algorithm (11) (using (19)), for different
values of N ≥ 2 and the stopping test

(53) ‖ Gk+1 −Gk ‖∞ ≤ 10−3.

The numbers of iterations for obtaining (53) are described in Table 1.

Then, for N = 128 we applied the modified Kovarik algorithm (22)–(23)
(with (29)) for qk = constant (odd), ∀k ≥ 0 and the same stopping rule (53).
The numbers of iterations for these tests are presented in Table 2.

The last tests were made as those from above, but only for the first three
(odd) values of qk and different values of N ≥ 2. The numbers of iterations
are described in Table 3.

FINAL REMARKS AND COMMENTS

(1) We observe that for very small values of qk (which means less compu-
tational effort per iteration in (22)–(23)), we got good enough results
(Tables 2 and 3) by comparing them with those for the algorithm (11)
(Table 1).

(2) All the tests indicate a “mesh-independent” behaviour for both Ko-
varik, original and modified algorithms.

(3) All the numerical experiments were performed with the numerical lin-
ear algebra software “OCTAVE”, freely available on the Internet.

Table 1. Algorithm 3
N = 16 N = 32 N = 64 N = 128 N = 256

7 8 9 10 11

Table 2. Algorithm 7 with N = 128
qk = 1 qk = 3 qk = 5 qk = 7 qk = 9 qk = 11

28 22 19 17 16 15
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Table 3. Algorithm 7
N = 16 N = 32 N = 64 N = 128 N = 256

qk = 1 16 26 27 28 29
qk = 3 19 20 21 22 23
qk = 5 16 17 18 19 20
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