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Rev. Anal. Numér. Théor. Approx., vol. 36 (2007) no. 2, pp. 123–138

ictp.acad.ro/jnaat

APPROXIMATING SOLUTIONS OF EQUATIONS
USING NEWTON’S METHOD WITH A MODIFIED NEWTON’S

METHOD ITERATE AS A STARTING POINT

IOANNIS K. ARGYROS∗

Abstract. In this study we are concerned with the problem of approximating a
locally unique solution of an equation in a Banach space setting using Newton’s
and modified Newton’s methods. We provide weaker convergence conditions for
both methods than before [6]–[8]. Then, we combine Newton’s with the modified
Newton’s method to approximate locally unique solutions of operator equations
in a Banach space setting. Finer error estimates, a larger convergence domain,
and a more precise information on the location of the solution are obtained under
the same or weaker hypotheses than before [6]–[8]. Numerical examples are also
provided.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of nonlinear equation
(1) F (x) = 0,
where F is a Fréchet-differentiable operator defined on an open convex subset
D of a Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time-invariant system is driven by the equation
ẋ = Q(x) for some suitable operator Q, where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
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(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative – when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

The most popular methods for approximation x∗ are undoubtedly Newton’s
method
(2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D),
and the modified Newton’s method
(3) yn+1 = yn − F ′(y0)−1F (yn) (n ≥ 0), (y0 = x0).
There is an extensive literature on the semilocal as well as the local convergence
results for both methods under various hypotheses. Such results can be found
in [4], [6], [7], and the references there.

The most popular hypotheses are of Newton–Kantorovich type [4], [6], [7].
Indeed, let x0 ∈ D. Assume there exist constants η > 0, ` > 0 such that

F ′(x0)−1 ∈ L(Y,X),(4)
‖F ′(x0)−1F (x0)‖ ≤ η,(5)
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖ for all x, y ∈ D,(6)

h = `η ≤ 1
2 ,(7)

and
(8) U(x0, s

∗) = {x ∈ X | ‖x− x0‖ ≤ s∗} ⊆ D,
where,

(9) s∗ = 1−
√

1− 2h
`

.

Estimate (7) is the crucial non-optimum sufficient condition for the semilocal
convergence of both methods [4], [6], [7] (see also Theorem 1).

Under condition (7) method (2) converges quadratically to x∗ (if (7) holds
as a strict inequality) whereas method (3) converges linearly to x∗. There are
examples in the literature where both methods converge to x∗ but condition
(7) is violated. Therefore one would expect that there may be conditions
weaker than (7). This is the motivation for our study. Note that in view of
the Lipschitz condition (6) it follows that there exists `0 > 0 such that the
center-Lipschitz condition
(10) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `0‖x− x0‖ for all x ∈ D
holds.
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In general

(11) `0 ≤ `,

holds true, and `
`0

can be arbitrarily large [2]–[4].
Recently, in [3, pp. 387, Case 3, for δ0 = δ], we showed that condition (7)

can always be replaced by the weaker

(12) h1 = `1η ≤
1
2 , `1 = 1

8 (`+ 4 `0 +
√
`2 + 8 `0 `) ,

in the case of Newton’s method (2) (see also, Examples 9–11).
Here, we show that in the case of the modified method (3), for convergence,

condition (7) can be replaced by

(13) h0 = `0η ≤
1
2 ,

and (6) by weaker condition (10). Finer error estimates on the distances
involved, a larger convergence domain, and a more precise information on the
location of the solution than in earlier results [6] are also obtained this way
(see Theorem 3 for method (2), and Theorem 5 for method (3)).

Using (13) (whenever (7) (or (12) do not hold), we can employ method (3)
for a finite number of steps, say N until condition (7) (or (12)) is satisfied for
x0 = yN . Then faster method (2) takes over from method (3).

The above advantages extend to the local convergence of methods (2) and
(3) (see Theorems 10 and 11). Numerical examples are also provided. The
technique introduced here can extend to other Newton-type iterative methods
[1], [3], [4], [5].

2. SEMILOCAL CONVERGENCE ANALYSIS

The following semilocal convergence result for methods (2) and (3) can be
found in [7]:

Theorem 1. Let F : D ⊆ X → Y be a differentiable operator.
Assume there exist x0 ∈ D, and constants ` > 0, η > 0 such that

F ′(x0)−1 ∈ L(Y,X),
‖F ′(x0)−1F (x0)‖ ≤ η,
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖ for all x, y ∈ D,

h = `η ≤ 1
2 ,

and
U(x0, s

∗) ⊆ D,
where

s∗ = 1−
√

1− 2`η
`

.
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Then sequences {yn}, {xn} are well defined, remain in U(x0, s
∗) for all

n ≥ 0 and converge to a unique solution x∗ of equation F (x) = 0 in U(x0, s
∗).

Moreover the following estimates hold:
‖yn+1 − yn‖ ≤ qn‖y1 − y0‖ ≤ qnη,

‖yn − x∗‖ ≤
qn

1− q η,

‖xn+2 − xn+1‖ ≤
`(sn+1 − sn)2

2(1− `sn+1) ,

and
‖xn − x∗‖ ≤ s∗ − sn, s∗ = lim

n→∞
sn,

where,

s0 = 0, s1 = η, sn+2 = sn+1 + `(sn+1 − sn)2

2(1− `sn+1) (n ≥ 0),

and
(14) q = 1−

√
1− 2`h .

Remark 2. There is a plethora of estimates on the distances ‖xn+1 − xn‖,
‖xn − x∗‖, ‖yn+1 − yn‖, ‖yn − x∗‖ (n ≥ 0) [4], [6], [7]. However we decided
to list only the estimates related to what we need in this study. In the case
of Newton’s method (2) we showed in [2], [3] the following improvement of
Theorem 1. �

Theorem 3. [2], [3]. Let F : D ⊆ X → Y be a differentiable operator.
Assume there exist x0 ∈ D, and constants `0 > 0, ` > 0, η ≥ 0 such that

F ′(x0)−1 ∈ L(Y,X),
‖F ′(x0)−1F (x0)‖ ≤ η,
‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `0‖x− x0‖ for all x ∈ D,
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖ for all x, y ∈ D,

h1 = `1η ≤
1
2 ,

U(x0, t
∗) ⊆ D,

where,
t0 = 0, t1 = η, tn+2 = tn+1 + `(tn+1−tn)2

2(1−`0tn+1) (n ≥ 0),
and

t∗ = lim
n→∞

tn ≤ 2 η
2−`2 = t∗0, `2 =

− `
`0

+
√(

`
`0

)2 + 8 `
`0

2 .

Then sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well de-
fined, remains in U(x0, t

∗) for all n ≥ 0 and converges to a unique solution x∗

of equation F (x) = 0 in U(x0, t
∗).
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Moreover the following estimates hold for all n ≥ 0:
‖xn+1 − xn‖ ≤ tn+1 − tn,
‖xn − x∗‖ ≤ t∗ − tn,

tn ≤ sn,(15)
tn+1 − tn ≤ sn+1 − sn,(16)

and
(17) t∗ − tn ≤ s∗ − sn.

Remark 4. Note also that (15) and (16) hold as strict inequalities if `0 < `
[2]–[4]. Moreover we have:

(18) h ≤ 1
2 ⇒ h1 ≤

1
2 ,

but not vice versa unless if `0 = `. That is under the same computational cost
we managed to weaken (7) since in practice the computation of ` also requires
the computation of `0. Furthermore, in Example 9, we show that (12) holds
but condition (7) is violated. �

Concerning the semilocal convergence of the modified Newton’s method we
show that (13) replaces condition (7).

Theorem 5. Let F : D ⊆ X → Y be a differentiable operator.
Assume there exist x0 ∈ D and constants `0 > 0, η > 0, such that

F ′(x0)−1 ∈ L(Y,X),
‖F ′(x0)−1F (x0)‖ ≤ η,
‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `0‖x− x0‖ for all x ∈ D,

h0 = `0η <
1
2 ,

and
(19) U(x0, s

∗
0) ⊆ D,

where,

s∗0 = 1−
√

1− 2`0η
`0

.

Then sequence {yn} (n ≥ 0) generated by the modified Newton’s method (3)
is well defined, remains in U(x0, s

∗
0) for all n ≥ 0 and converges to a unique

solution x∗ of equation F (x) = 0 in U(x0, s
∗
0).

Moreover the following estimates hold for all n ≥ 0:
‖yn+1 − yn‖ ≤ qn0 ‖y1 − y0‖

and
‖yn − x∗‖ ≤

qn0
1− q0

η,
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where
q0 = 1−

√
1− 2`0η .

Proof. We shall show that the assumptions of the contraction mapping prin-
ciple are satisfied for the operator
(20) P (x) = x− F ′(x0)−1F (x) on U(x0, s

∗
0).

Let x, y ∈ U(x0, s
∗
0). Then we can obtain the identity

P (x)− P (y) = x− y − F ′(x0)−1(F (x)− F (y))

= F ′(x0)−1
∫ 1

0
{F ′(x0)− F ′[y + t(x− y)]}(x− y)dt.

This identity together with (10) implies the estimate

‖P (x)− P (y)‖ ≤ `0

∫ 1

0
[(1− t)‖x− x0‖+ t‖y − x0‖] dt ‖ x− y ‖

≤ `0 s
∗
0 ‖x− y‖ = q0 ‖x− y‖.(21)

Consequently, P is a contraction operator in the ball U(x0, s
∗
0). To complete

the proof, it remains to show that
PU(x0, s

∗
0) ⊆ U(x0, s

∗
0).

Let x ∈ U(x0, s
∗
0). Then by (20) we can obtain in turn

‖P (x)− x0‖ ≤ ‖P (x)− P (x0)‖+ ‖P (x0)− x0‖

≤
∥∥∥∥F ′(x0)−1

∫ 1

0
{F ′(x0)− F ′[x0 + t(x− x0)]}(x− x0)dt

∥∥∥∥+ η

≤ `0

∫ 1

0
t dt‖x− x0‖2 + η ≤ `0

2 (s∗0)2 + η = s∗0,

by the choice of s∗0. That completes the proof of Theorem 5. �

Remark 6. Note that by (21) the operator P satisfies a Lipschitz condition
with constant q0 in the ball U(x0, s

∗
0). The modified Newton’s method thus

converges at the rate of a geometric progression with quotient q0. �

The above analysis of method (3) relates to the simplest case. More subtle
arguments (see, e.g. Kantorovich and Akilov [6]) show that Theorem 5 remains
valid if the sign< in (19) is replace by≤. Therefore from now on we can replace
(19) by (13) in Theorem 5.

Remark 7. If `0 = ` Theorems 3 and 5 reduce to Theorem 1. Otherwise
these theorems constitute improvements of it. Indeed see (15)–(18), and notice
that

q0 < q

and
s∗0 < s∗.
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Notice also that (7) (or (12)) implies (13) and if t∗ ≤ s∗0 the quadratic conver-
gence of method (2) is guaranteed. Moreover s∗0 given in closed form can then
in practice replace t∗. Furthermore if s∗0 < t∗ then there exists N > 1 such
that xn ∈ U(x0, s

∗
0) for n ≥ N and then again s∗0 can replace t∗. �

Next we show that we can start with method (3) and after a finite number
of steps continue with faster method (2):

Proposition 8. Under hypotheses (4)–(6), (10), (13), and (19), for x0 =
y0, define

α = 1
1−`0 s∗0

,

L = α `,

for a fixed integer N

`2 = sup
x∈U(yN ,rN )

‖F ′(y0)−1 [F ′(x)−F ′(yN )]‖
‖x−yN‖ ,

L0 = α `2 ≤ L,

L =


L if L0 = L

1
8 (L+ 4 L0 +

√
L2 + 8 L0 L) if L0 < L,

N =
[
− ln 2 L α2 η

ln q0

]
+ 1,

rN =


1−
√

1−2 L ηN

L
if L0 = L

2 ηN
2−L2 N

if L0 < L,

ηN = α qN0 η,

and

L2N =
− L
L0

+
√(

L
L0

)2 + 8 L
L0

2 , for L0 6= 0,
where [r] denotes the integer part of real number r.

Set
x0 = yN .

Moreover, assume:
(22) U(yN , rN ) ⊆ D.
Then the following hold:
(23) ‖ F ′(yN )−1 F (yN ) ‖≤ ηN ,

(24) ‖ F ′(yN )−1 [F ′(x)− F ′(y)] ‖≤ L ‖ x− y ‖,

(25) ‖ F ′(yN )−1 [F ′(x)− F ′(yN )] ‖≤ L0 ‖ x− yN ‖,
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(26) HN = L ηN ≤
1
2;

Newton’s method (2), starting at x0 = x0 converges to a unique solution x∗∗

of equation F (x) = 0 in U(yN , rN ),

and
N0 ≤ N1,

where
N0 = N for L0 = L,

and
N1 = N for L0 < L.

Moreover, if the inclusion
(27) U(yN , rN ) ⊆ U(y0, s

∗
0),

hold, then
x∗ = x∗∗.

Note that parameter L0 is independent of N if L0 = L, and the inclusion (27)
holds if and only if

‖ yN − y0 ‖ +rN ≤ s∗0.
If ‖ yN − y0 ‖≤ s∗0, then by the definition of rN , there exists an integer N0,
such that (27) holds. In this case N∗ = {N, N0} should replace N in the
Proposition. Hypothesis (22) can now be dropped, since it follows from (19)
and (27).

Proof. Using Theorem 5, and the estimates
‖ F ′(yN )−1 F (yN ) ‖ ≤ ‖ F ′(yN )−1 F ′(y0) ‖ ‖ F ′(y0)−1 F (yN ) ‖

≤ 1
1−`0 ‖yN−y0‖ ‖ F

′(y0)−1 F (yN ) ‖

≤ ‖F ′(y0)−1 F (yN )‖
1−`0 s∗0

≤ α qN0 η = ηN ,

‖ F ′(yN )−1 [F ′(x)− F ′(y)] ‖ ≤ α ‖ F ′(y0)−1 [F ′(x)− F ′(y)] ‖
≤ α ` ‖ x− y ‖= L ‖ x− y ‖,

‖ F ′(yN )−1 [F ′(x)− F ′(yN )] ‖ ≤ α ‖ F ′(y0)−1 [F ′(x)− F ′(yN )] ‖
≤ α `2 ‖ x− yN ‖= L0 ‖ x− yN ‖,

we obtain
HN = L ηN = α2 L qN0 η ≤ 1

2
and

N0 ≤ N1,

by the choice of N .
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It follows by Theorems 1 and 3, with L0, L, ηN , rN , rN replacing `0, `, η,
s∗, t∗0 respectively, that there exists a unique solution x∗∗ of equation F (x) = 0
in U(yN , rN ).

Moreover, if inclusion (27) holds by the uniqueness of the solution x∗ in
U(y0, s

∗
0), we deduce x∗ = x∗∗.

That completes the proof of Proposition 8. �

Let us provide an example.

Example 9. Let X = Y = R, D = [a, 2 − a], a ∈
[
0, 1

2
)

and define scalar
function F on D by

(28) F (x) = x3 − a.

Choose y0 = 1. Using (5), (6), (10) and (28), we obtain

(29) η = 1
3(1− a), `0 = 3− a and ` = 2(2− a).

The Newton–Kantorovich hypothesis (7) becomes

(30) h = 2
3(1− a)(2− a) > 1

2
for all a ∈

[
0, 1

2
)
. That is according to Theorem 1 there is no guarantee that

either methods (2) or (3) starting at x0 = y0 = 1 converge to x∗.
However according to Theorem 3 condition (12) becomes:

(31) h1 ≤
1
2 ,

provided that

(32) a ∈
[
.450339002, 1

2

)
.

Using condition (13) we can do even better since

(33) h0 = 1
3(1− a)(3− a) ≥ 1

2
provided that

(34) a ∈
[4−

√
10

2 ,
1
2

)
which improves the choice for a given by (32). However only linear and not
quadratic convergence is guaranteed.

Let us now use a = .49. In particular (7) does not hold since for η = .17,
` = 3.02

h1 = .5134 > 1
2 .
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However (13) holds since for `0 = 2.51:

h0 = .4267 ≤ 1
2 .

We get
q0 = .617116205, α = 2.61175848, s∗0 = .24586303,

(35) N = [4.0325] + 1 = 5.
Moreover we obtain

x0 = y4 = .78911736.
Finally note that x∗ = .788373516.

Our motivation for introducing condition (10) instead of (6) for the conver-
gence modified Newton’s method (3) can also be seen in the following exam-
ples.

Example 10. Let X = Y = R, D = [0,∞), x0 = 1 and define function F
on D by

(36) F (x) = x1+ 1
i

1+ 1
i

+ c1x+ c2,

where c1, c2 are real parameters and i > 2 an integer. Then F ′(x) = x
1
i + c1

is not Lipschitz on D. However, center Lipschitz condition (10) holds for
`0 = (1 + c1)−1 (c1 6= −1).

Indeed, we have

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ = (1 + c1)−1∣∣x1
i − x

1
i
0
∣∣

= (1+c1)−1|x−x0|

x
i−1

i
0 +···+x

i−1
i

≤ `0|x− x0|.

Example 11. We consider the integral equation

(37) u(s) = f(s) + λ

∫ b

a
G(s, t)u(t)1+ 1

n dt, n ∈ N.

Here, f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a real
number, and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem

u′′ = λu1+ 1
n ,

u(a) = f(a), u(b) = f(b).
These type of problems have been considered in [2]–[7].

Equations of the form (37) generalize equations of the type

(38) u(s) =
∫ b

a
G(s, t)u(t)ndt
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studies in [4], [6], [7].
Instead of (37) we can try to solve the equation F (u) = 0 where

F : Ω ⊆ C[a, b]→ C[a, b], Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a
G(s, t)u(t)1+ 1

n dt.

The norm we consider is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ
(

1 + 1
n

)∫ b

a
G(s, t)u(t)

1
n v(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in
Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then
F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |λ|
(

1 + 1
n

)∫ 1

0
x(t)

1
n dt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,

or, equivalently, the inequality

(39)
∫ 1

0
x(t)

1
n dt ≤ L2 max

x∈[0,1]
x(s),

would hold for all x ∈ Ω and for a constant L2. But this is not true. Consider,
for example, the functions

xj(t) = t
j , j ≥ 1, t ∈ [0, 1].

If these are substituted into (39)

1
j1/n

(
1+ 1

n

) ≤ L2
j ⇔ j1− 1

n ≤ L2

(
1 + 1

n

)
, ∀j ≥ 1.

This inequality is not true when j →∞.
Therefore, condition (6) fails in this case. However, condition (10) holds.

To show this, let x0(t) = f(t) and α = min
s∈[a,b]

f(s), α > 0. Then, for v ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖

= |λ|
(

1 + 1
n

)
max
s∈[a,b]

∣∣∣∣∫ b

a
G(s, t)

(
x(t)

1
n − f(t)

1
n
)
v(t)dt

∣∣∣∣
≤ |λ|

(
1 + 1

n

)
max
s∈[a,b]

G(s, t)|x(t)− f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+· · ·+f(t)(n−1)/ndt‖v‖.
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Hence,

‖F ′(x)− F ′(x0)‖ ≤
|λ|
(
1 + 1

n

)
α(n−1)/n max

s∈[a,b]

∫ b

a
G(s, t)dt‖x− x0‖

≤ K‖x− x0‖,

where K = |λ|(1+ 1
n

)
α(n−1)/nN , N = max

s∈[a,b]

∫ b
a G(s, t)dt, and `0 = ‖F ′(x0)−1K‖. Finally

note that condition (13) is satisfied for sufficiently small λ.

3. LOCAL CONVERGENCE ANALYSIS

In order for us to cover the local convergence of methods (2) and (3) we
start the theorem [7]:

Theorem 12. Let F : D ⊆ X → Y be a differentiable operator. Assume
there exist x∗ ∈ D and a constant K > 0 such that:

F ′(x∗)−1 ∈ L(Y,X), F (x∗) = 0,(40)
‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ K ‖x− y‖ for all x, y ∈ D,(41)

and

(42) U(x∗, rRN ) ⊆ D

where,

(43) rRN = 2
3 K .

Then
(a) sequence {xn} generated by Newton’s method (2) is well defined, re-

mains in U(x∗, rRN ) for all n ≥ 0, converges to x∗ provided that
x0 ∈ U(x∗, rRN ) and

(44) ‖xn+1 − x∗‖ ≤ K ‖xn−x∗‖2

2(1−K ‖xn−x∗‖) (n ≥ 0).

If (58) is replaced by

(45) U(x∗, rRM ) ⊆ D,

where,

(46) rRM = 2
5 K ,

then
(b) sequence {yn} generated by modified Newton’s method (3) is well de-

fined, remains in U(x∗, rRM ) for all n ≥ 0, converges to x∗ provided
that x0 ∈ U(x∗, rRM ), and

(47) ‖yn+1 − x∗‖ ≤
K
[
‖x∗−y0‖+ 1

2‖yn−x∗‖
]

1−K ‖x∗−y0‖ ‖yn − x∗‖ (n ≥ 0).
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Proof. The proof of (a) can be found in [8], whereas the proof of (b) is a
special case of part (b) in our Theorem 11 that follows.

It follows from condition (41) that there exists K0 ∈ (0,K) such that:
(48) ‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ K0 ‖x− x∗‖ for all x ∈ D.
Then using a combination of conditions (41) and (48) for method (2), and
only condition (48) for method (3) we can show: �

Theorem 13. Let F : D ⊆ X → Y be a differentiable operator.
Assume there exist x∗ ∈ D and constants K0 > 0, K > 0 such that:

F ′(x∗)−1 ∈ L(Y,X), F (x∗) = 0,
‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ K0 ‖x− x∗‖ for all x ∈ D,
‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ K ‖x− y‖ for all x, y ∈ D,

and
(49) U(x∗, rAN ) ⊆ D
where,
(50) rAN = 2

2 K0+K .

(a) Then sequence {xn} generated by Newton’s method (2) is well defined,
remains in U(x∗, rAN ) for all n ≥ 0, converges to x∗ provided that
x0 ∈ U(x∗, rAN ) and

(51) ‖xn+1 − x∗‖ ≤ K ‖xn−x∗‖2

2(1−K0 ‖xn−x∗‖) (n ≥ 0).

Using only the center-Lipschitz condition, and if (49) is replaced by
(52) U(x∗, rAM ) ⊆ D,

and (48), where,
(53) rAM = 2

5 K0
,

then,
(b) sequence {yn} generated by the modified Newton’s method (3) is well

defined, remains in U(x∗, rAM ) for all n ≥ 0, converges to x∗ provided
that x0 ∈ U(x∗, rAM ),

and

(54) ‖yn+1 − x∗‖ ≤
K0
[
‖x∗−y0‖+ 1

2‖yn−x∗‖
]
‖yn−x∗‖

1−K0 ‖x∗−y0‖ (n ≥ 0).

Proof. (a) The proof can be found in [2].
(b) Let x ∈ U(x∗, rAM ). Then using (48) we get

(55) ‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ K0 ‖x− x∗‖ ≤ K0 rAM < 1
by the choice of rAM . It follows from (55) and the Banach Lemma on invertible
operators [4], [6] that F ′(x)−1 exists, and
(56) ‖F ′(x)−1F ′(x∗)‖ ≤ 1

1−K0 ‖x−x∗‖ ≤
1

1−K0 rAM
.
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In particular by hypothesis y0 ∈ U(x∗, rAM ) ⊆ U(x∗, rAM ).
Let us assume yk ∈ U(x∗, rAM ) for k = 0, 1, . . . , n. Then using (3), (48)

and (53) we obtain in turn
yn+1 − x∗ = yn − x∗ − F ′(y0)−1F (yn)

= F ′(y0)−1[F ′(y0)(yn − x∗)− F (yn)]
= −F ′(y0)−1[F (yn)− F (x∗)− F ′(y0)(yn − x∗)]

= −F ′(y0)−1F ′(x∗)F ′(x∗)−1
{∫ 1

0
[F ′(x∗ + t(yn − x∗))− F ′(x∗)]

+ [F ′(x∗)− F ′(y0)]
}

(yn − x∗)dt,(57)

and

‖yn+1 − x∗‖ ≤
K0

∫ 1
0 [‖x∗ − y0‖+ t‖yn − x∗‖]

1−K0 ‖x∗ − y0‖
‖yn − x∗‖dt

=
K0

[
‖x∗ − y0‖+ 1

2‖yn − x
∗‖
]

1−K0 ‖x∗ − y0‖
‖yn − x∗‖

< ‖yn − x∗‖ ≤ rAM(58)
which shows (54), and lim

n→∞
yn = x∗.

That completes the proof of Theorem 13. �

Remark 14. In general
(59) K0 ≤ K
holds and K

K0
can be arbitrarily large. If K0 = K Theorem 13 reduces to

Theorem 10. Otherwise Theorem 13 improves Theorem 12 under the same
hypotheses for method (2), and the same or less computational cost for method
(3); finer estimates on the distances ‖xn − x∗‖ (n ≥ 0) are obtained and the
radius of convergence is enlarged. In particular, we have

rRN < rAN(60)
rRM < rAM .(61)

Moreover, since
(62) rRM < rRN ,

iterates from method (3) cannot be used to find the initial guess x0 for faster
method (2).

Examples where estimate (59) holds as in strict inequality can be found
in [2]–[4]. However using Theorem 13 we can achieve this as follows: Let
p ∈ (0, 1) be the desired rate of convergence for method (3). Then by (54) we
have for ‖y0 − x∗‖ ≤ 2p

3 K0+2 p K0
that:

‖yn+1 − x∗‖ ≤ p‖yn − x∗‖.
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Choose:

(63) M =
[

ln 5 K0
2 K0+K

ln p

]
+ 1,

then it can easily be seen that
pMrAM ≤ rAN

and consequently according to (a) of Theorem 11 we can set
x0 = yM .

In case of K0 = K according to (a) of Theorem 10 we can set
x0 = yM1 ,

where,
M1 =

[
ln 5

3
ln p

]
+ 1

(simply set K0 = K in (63)). Note that
M ≤M1.

Finally we observe
rRN < rAM

if
K
K0

>
5
3 ,

which can hold, since K
K0

can be arbitrarily large [2]. �

The ideas presented here can be extended to other Newton-type iterative
methods [1], [3], [4], [5] along the same lines.

4. CONCLUSION

The famous for its simplicity and clarity Newton–Kantorovich hypothe-
sis (7) is the crucial sufficient semilocal convergence condition for both the
quadratically convergent Newton’s method (2), and the linearly convergent
modified Newton’s method (3) [6]. There exist simple numerical examples to
show that both methods converge even when condition (7) is violated [4], [6].
In fact, it is common practice even condition (7) is violated for a certain initial
guess, to still use Newton’s method (2) for a few iterates until condition (7)
is satisfied. However, this approach is considered a shot in the dark, and it is
not working in general [4], [7]. Here we have introduced a certain approach
that works in case condition (7)is violated. First, we showed that condition
(13) is a weaker sufficient convergence hypothesis for the modified Newton’s
method (3) than (7). That is we extended the convergence region of method
(3). Then, if (7) is violated but (13) holds, we start with slower method (3)
until we reach, (after a finite number of steps) a certain iterate for which con-
dition (7) also holds true. We then continue with faster method (2) using this
iterate.
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