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REMARKS ON INTERPOLATION
IN CERTAIN LINEAR SPACES (IV)∗

ADRIAN DIACONU†

Abstract. In the papers [5], [6], [7] we shall study a way of extending the model
of interpolation the real functions, with simple nodes, to the case of the functions
defined between linear spaces, specially between linear normed spaces.

In order to keep as many characteristics as possible from the case of the
interpolation of real functions, in this paper we present a model of construction
of the abstract interpolation polynomials and the divided differences based on
the properties of multilinear mappings.

The aim of the present paper is the study of the conduct of the abstract
interpolation polynomial, in the case when that the function for interpolation is a
abstract polynomial. In the lest part we will construct the abstract interpolation
polynomial and the divided differences, in the case in which the spaces X and
Y have finite dimensions.
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1. INTRODUCTION

In the papers [2], [3], [4] and [6] we have defined the abstract interpolation
polynomial attached to the function f : E → Y, where E ⊆ X and X is a
linear space, Y is an algebra with a special structure. At the same time we
have presented an example in which our construction is realized, different from
the case of the real function’s interpolation.

In order to emphasize some properties of these interpolation polynomials
we will recall the elements of the construction from the aforementioned paper.

Let us consider the real or complex linear spaces X and Y ; we note by
L (X,Y ) the set of the linear mappings from X to Y and for n ≥ 2 we intro-
duce:

Ln (X,Y ) = L (X,Ln−1 (X,Y )) ,
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with L1 (X,Y ) = L (X,Y ) . We notice that Ln (X,Y ) represents the set of n−
linear mappings from X × ...×X︸ ︷︷ ︸

n times

to Y.

Particularly L2 (X,Y ) represents the set of the bilinear mappings from Y×Y
to Y.

Let be θX and θY the null elements of the space X and Y respectively. We
will note by Θn the null element of the space Ln (X,Y ) . For n = 1 we will use
the notation Θ.

Let us consider now U ∈ L (X,Y ) and B ∈ L2 (Y, Y ) . Using these elements
we introduce the sequence (An)n∈N where for any n ∈ N, we have An ∈
Ln (X,Y ) through A1 (u) = U (u) for u ∈ X and:
(1) An (u1, ..., un) = B (An−1 (u1, ..., un−1) , U (un)) ,
for (u1, ..., un) ∈ Xn and n ∈ N, n ≥ 2.

We now suppose the next properties:
I) the mapping B ∈ L (Y, Y ) determines in Y a commutative algebra,

therefore:
a) for any u, v ∈ Y we have B (u, v) = B (v, u) ;
b) for any u, v, w ∈ Y we have B (B (u, v) , w) = B (u,B (v, w)) ;

II) there exists Y0 ⊆ U (X) ⊆ Y so that (Y0, B) is an abelian group and
the mapping U : U−1 (Y0)→ Y0 is a bijective mapping.

Let now be the set D ⊆ X and a sequence (xn)n∈N ⊆ D. Using k, n ∈ N we
introduce the non-linear mappings:

wk,n : X → Y ; wk,n (x) = An+1 (x− xk, x− xk+1, ..., x− xk+n)
and for any x ∈ X, the mapping w′k,n (x) ∈ L (X,Y ) by:

w′k,n (x)h =
k+n∑
i=k

An+1 (x− xk, ..., x− xi−1, x− xi+1, ..., x− xk+n) ,

having evidently for any i ∈ {k, k + 1, ..., k + n} the equality:
(2) w′k,n (xi)h = An+1 (xi − xk, ..., xi − xi−1, xi − xi+1, ..., xi − xk+n, h)
and evidently w′k,n (xi) ∈ L (X,Y ) .

In the papers [2], [6] and [7] we have shown that for certain values k, n ∈ N
and for any i, j ∈ {k, k + 1, ..., k + n} with i 6= j we have:

xi − xj ∈ U−1 (x0) ,
then for i ∈ {k, k + 1, ..., k + n} the restrictions at U−1 (Y0) of the mappings
defined through (2), denoted by:[

w′k,n (xi)
]

0
: U−1 (Y0)→ Y0

as bijective, thus there exist the mappings:[
w′k,n (xi)

]−1

0
: Y0 → U−1 (Y0) .
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Considering the set sp (Y0) representing the linear cover of the set Y0, the
aforementioned mapping will prolong through linearity at sp (Y0) , obtaining
the mapping

[
w′k,n (xi)

]−1

∗
∈ L (sp (Y0) , X) with the restriction to Y0 being[

w′k,n (xi)
]−1

0
itself.

Let us consider n ∈ N, D ⊆ X m and the elements x0, x1, ..., xn ∈ D,
supposing that they satisfy the aforementioned hypothesis for the spaces X,Y
and for the mappings U ∈ L (X,Y ) , B ∈ L2 (Y, Y ) .

After that we suppose that for any i, j ∈ {0, 1, ..., n} with i 6= j we have
xi − xj ∈ U−1 (x0) and so the mapping

[
w′0,n (xi)

]−1

∗
∈ L (sp (Y0) , X) exists.

Let now be a function f : X → Y supposing that:

f (x1) , f (x2) , ..., f (xn) ∈ sp (Y0) .

In this way we can define the mapping L (x0, x1, ..., xn; f) : X → Y defined
by:

(3)
L (x0, x1, ..., xn; f) (x) =

=
n∑
i=0
An+1

(
x− x0, ... |

i
..., x− xn,

[
w′0,n (xi)

]−1

∗
f (xi)

)
,

where: (
x− x0, ... |

i
..., x− xn

)
=

= (x− x0, ...x− xi−1, x− xi+1..., x− xn)

and we can easily show that for any i ∈ {0, 1, ..., n} we have:

L (x0, x1, ..., xn; f) (xi) = f (xi) .

At the same time there exists D0 ∈ Y and Dk ∈ Lk (X,Y ) for any k = 1, n
such that:

L (x0, x1, ..., xn; f) (x) = Dnx
n +Dn−1x

n−1 + ...+D1x+D0,

here for any k = 1, n we denote:

Dkx
k = Dk(x, ..., x)︸ ︷︷ ︸

k times

.

Due to the aforementioned reasons the non-linear mapping defined through
the equality (3) will be called (U-B) abstract interpolation polynomial
of the function f : X → Y corresponding to nodes x0, x1, ..., xn.

In the expression (3) of the abstract interpolation polynomial a very im-
portant element is the coefficient of the term in xn, namely the mapping
Dn ∈ Ln (X,Y ) , mapping that we will denote by [x0, x1, ..., xn; f ] , and that
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will be defined through:

(4)
[x0, x1, ..., xn; f ]h1...hn =

=
n∑
i=1
An+1

(
h1, ..., hn;

[
w′0,n (xi)

]−1

∗
f (xi)

)
.

This mapping is called generalized divided difference of the order n
of the function f : D → Y on the nodes x0, x1, ..., xn.

The main result of the papers [6], [7] on expressed through the following
theorem:

Theorem 1. With the given facts and with the aforementioned hypotheses:
a) we have the equalities:

(5) [x0, x1, ..., xn; f ] (xn − x0) = [x1, ..., xn; f ]− [x0, ..., xn−1; f ] ,
the equality being taken between the elements of the space Ln−1 (X,Y ) ;

b) the (U-B) abstract interpolation polynomial verifies the recurrence re-
lation:

(6)
L (x0, x1, ..., xn; f) (x) = L (x0, x1, ..., xn−1; f) (x) +

+ [x0, x1, ..., xn; f ] (x− x0) (x− x1) ... (x− xn−1) ;
c) the (U-B) abstract interpolation polynomial can be written under New-

ton’s form ( using the abstract divided differences ):

(7)
L (x0, x1, ..., xn; f) (x) =

= f (x0) +
n∑
i=1

[x0, x1, ..., xi; f ] (x− x0) (x− x1) ... (x− xi−1) ;

d) the (U-B) abstract interpolation polynomial verifies a relation of the
Aitken-Steffensen’s type:

(8)
B (L (x0, x1, ..., xn; f) (x) , U (xn − x0)) =
= B (L (x1, ..., xn; f) (x) , U (x− x0))−
−B (L (x0, ..., xn−1; f) (x) , U (x− xn)) ;

e) for any n ∈ N and anyx ∈ X we have:

(9)
f (x) = L (x0, x1, ..., xn; f) (x) +

+ [x0, x1, ..., xn, x; f ] (x− x0) (x− x1) ... (x− xn) .

For the proof one can consult [2], [6], [7].
The aim of the present paper is the study of the conduct of the abstract

interpolation polynomial in he case when that the function f : D → Y is a
abstract polynomial.

In the last part we will construct the abstract interpolation polynomial and
the divided differences, in the case in which the spaces X and Y have finite
dimensions.
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2. SOME PROPERTIES OF THE ABSTRACT INTERPOLATION POLYNOMIAL AND

OF THE DIVIDED DIFFERENCES

For these properties it is necessary to introduce the mappings that we will
define hereafter.

We consider the sequence (xn)n∈N ⊆ D and the numbers k, n ∈ N. Let be
afterwards p ∈ N, p ≤ n + 1 and i1, i2, ..., ip ∈ N with the verification of the
inequalities k ≤ i1 < i2 < ... < ip ≤ k + n.

For x ∈ X we introduce the mappings w[i1,i2,...,ip]
k,n (x) ∈ L (X,Y ) defined

through:

(10) w
[i1,i2,...,ip]
k,n (x)h = An−p+2 (t1, ..., tn−p+1, h)

where:
{t1, ..., tn−p+1} = {x− xk, ..., x− xk+n}�

{
x− xi1 , ..., x− xip

}
keeping the order succession from the initial set.

We evidently have that for any s ∈ {k, k + 1, ..., k + n}� {i1, i2, ..., ip} ,

w
[i1,i2,...,ip]
k,n (xs) = Θ,

Θ representing the null mapping of the space L (X,Y ) , as well as:

w
[i]
k,n (xi) = w′k,n (xi) ,

for any i ∈ {k, k + 1, ..., k + n} .
It is also easy to remark that the restrictions to the set U−1 (Y0) are bijective,

so there exist the mappings:[
w

[i1,i2,...,ip]
k,n (x)

]−1

0
: Y0 → U−1 (Y0) ,

representing the inverses of the mappings defined by (10).

Definition 2. Let be U ∈ L (X,Y ) and B ∈ L2 (Y, Y ) such that B de-
termines on Y a commutative algebra and the mappings sequence (An)n∈N is
introduced by (1) .

a) The mapping:
Mn : X → Y, Mn (x) = An(x, ..., x︸ ︷︷ ︸

n times

)

is called (U-B)monomial with the n degree.
b) A mapping P : X → Y for which there exist the elements a0, a1, ...

..., an ∈ Y such that:

P (x) = a0 +
n∑
k=1

B (ak,Mk (x)) ,

where for any k = 1, n the mapping Mk : X → Y represents the mono-
mial with the k degree, is called (U-B) polynomial that n degree.
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Let us consider n, k ∈ N; k ≥ n and for any i ∈ {0, 1, ..., n} the elements:

u
(k)
i =

[
w′0,n (xi)

]−1
Mk (xi) ∈ X.

We have as follows:

Lemma 3. For any k, n ∈ N, k ≥ n, p ≤ n + 1 and i1, i2, ..., ip ∈ N with
0 ≤ i1 < i2 < ... < ip ≤ n we have:

(11)
p∑
j=1

w
[i1,...,ip]
0,n

(
xij

)
u

(k)
ij

=
∑

α1+...+αp=k−p+1
Ak−p+1x

α1
i1
...x

αp

ip
.

In the second member we have been using the notation:

Ak−p+1x
α1
i1
...x

αp

ip
= Ak−p+1(xi1 , ..., xi1︸ ︷︷ ︸

α1 times

, ..., xip , ..., xip︸ ︷︷ ︸
αp times

).

Proof. We will use the mathematical induction according to p.
Because for any i ∈ {0, 1, ..., n} we have:

u
(k)
i =

[
w′0,n (xi)

]−1
Mk (xi) ,

we deduce that:

w′0,n (xi)u(k)
i = Mk (xi) = Ak(xi, ..., xi︸ ︷︷ ︸

k times

) = Akx
k
i .

therefore the equality (11) is true for p = 1.
We suppose that this equality is true for p = s and we follow how it is

established for p = s+ 1.
From the hypothesis of the induction we have:

s−1∑
j=1

w
[i1,...,is−1,is]
0,n

(
xij

)
u

(k)
ij

+ w
[i1,....,is−1,is]
0,n (xis)u(k)

is
=

=
∑

α1+...+αs=k−s+1
Ak−s+1x

α1
i1
...xαs

is
.

Adding now the index is+1 to i1, ..., is ∈ N so the inequalities 0 ≤ i1 < ... <
is < is+1 ≤ n are true, form the same hypothesis of the induction, replacing
is by is+1, and αs by αs+1 we will have:

s−1∑
j=1

w
[i1,...,is−1,is+1]
0,n

(
xij

)
u

(k)
ij

+ w
[i1,...,is−1,is+1]
0,n

(
xis+1

)
u

(k)
is+1

=

=
∑

α1+...+αs=k−s+1
Ak−s+1x

α1
i1
...x

αs−1
is−1

x
αs+1
is+1

.
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From the last two equalities, through substraction, we will have:

(12)

s−1∑
j=1

[
w

[i1,...,is−1,is]
0,n

(
xij

)
− w[i1,...,is−1,is+1]

0,n

(
xij

)]
u

(k)
ij

+

+w[i1,....,is−1,is]
0,n (xis)u(k)

is
− w[i1,...,is−1,is+1]

0,n
(
xis+1

)
u

(k)
is+1

=

=
∑

α1+...+αs=k−s+1

[
Ak−s+1x

α1
i1
...xαs

is
−Ak−s+1x

α1
i1
...x

αs+1
is+1

]
.

The first member of this equality can be written under the form:

(13) B

(
U
(
xis − xis+1

)
,
s+1∑
j=1

w
[i1,i2,...,is,is+1]
0,n

(
xij

)
u

(k)
ij

)
.

Indeed, because for j = 1, s− 1 we have:

U
(
xis − xis+1

)
= U

(
x− xis+1

)
− U (x− xis)

we will have as well:

B
(
U
(
xis − xis+1

)
, w

[i1,...,is+1]
0,n

(
xij

)
u

(k)
ij

)
=

= B
(
U
(
x− xis+1

)
, An−k+1

(
t1, ..., tn−s, u

(k)
ij

))
−

−B
(
U (x− xis) , An−k+1

(
t1, ..., tn−s, u

(k)
ij

))
=

= An−s+2
(
t1, ..., tn−s, xij − xis+1 , u

(k)
ij

)
−

−An−s+2
(
t1, ..., tn−s, xij − xis , u

(k)
ij

)
=

=
[
w

[i1,...,is−1,is]
0,n

(
xij

)
− w[i1,...,is−1,is+1]

0,n

(
xij

)]
u

(k)
ij
.

The former reasoning can be used as well in the cases j = s, j = s+ 1.
But for j = s, we have w[i1,...,is−1,is+1]

0,n (xis)u(k)
ij

= θY , while for j = s+ 1 we
have w[i1,...,is−1,is]

0,n
(
xis+1

)
= θY , therefore indeed the first member from (12)

can be written under the form (13).
In what concerns the second member of the relation (12) it has been ascer-

tained that for any α1, ..., αs with α1 + ...+ αs = k − s+ 1 we have:

Ak−s+1x
α1
i1
...x

αs−1
is−1

xαs
is
−Ak−s+1x

α1
i1
...x

αs−1
is−1

xαs
is+1

=

=
αs∑
r=1

[
Ak−s+1x

α1
i1
...x

αs−1
is−1

x
αs−(r−1)
is

xr−1
is+1
−Ak−s+1x

α1
i1
...x

αs−1
is−1

xαs−r
is

xris+1

]
=

=
αs∑
r=1

Ak−s+1x
α1
i1
...x

αs−1
is−1

xαs−r
is

(
xis − xis+1

)
xr−1
is+1

=

= B

(
U
(
xis − xis+1

)
,
αs∑
r=1

Ak−sx
α1
i1
...x

αs−1
is−1

xαs−r
is

xr−1
is+1

)
.
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Thus the expression of the second member of the equality (12) will be
written under the form:

(14) B

(
U
(
xis − xis+1

)
,

∑
α1+...+αs=k−s+1

αs∑
r=1

Ak−sx
α1
i1
...x

αs−1
is−1

xαs−r
is

xr−1
is+1

)
.

But xis − xis+1 ∈ U−1 (Y0) , therefore U
(
xis − xis+1

)
∈ Y0, while (Y0, B) is

an abelian group, so from (12), (13) and (14) we deduce that:

(15)

s+1∑
j=1

w
[i1,i2,...,is,is+1]
0,n

(
xij

)
u

(k)
ij

=

=
∑

α1+...+αs=k−s+1

αs∑
r=1

Ak−sx
α1
i1
...x

αs−1
is−1

xαs−r
is

xr−1
is+1

.

We introduce the new indexes β1, β2, ..., βs, βs+1 through:

β1 = α1, ... , βs−1 = αs−1, βs = αs−r, βs+1 = αr−1,

and evidently:{
(β1, ..., βs, βs+1) ∈ Ns+1

/
β1 + ...+ βs + βs+1 = k − s

}
=

=
{

(α1, ..., αs, r) ∈ Ns+1
/
α1 + ...+ αs = k − s+ 1, 1 ≤ r ≤ αs

}
.

Therefore the relation (15) will be written under the form:

(16)
s+1∑
j=1

w
[i1,...,is+1]
0,n

(
xij

)
u

(k)
ij

=
∑

β1+...+βs+βs+1=k−s
Ak−sx

β1
i1
...xβs

is
x
βs+1
is+1

,

which indicates that the equality (11) is true for p = s+ 1.
Therefore according to the principle of the mathematical induction this

equality is true for any p ∈ N.
The lemma is thus proven. �

Remark 4. On the track of the proof we have seen that for p = 1, denoting
i1 = i, the only value of j is 1, in the second member the only possibility is
α1 = k, therefore the equality (11) becomes:[

w
[i]
0,n (xi)

]
u

(k)
i = Akx

k
i .

Let us consider now the case p = n+ 1.
Because 0 ≤ i1 < i2 < ... < in+1 ≤ n the only possibility is ij = j − 1 for

any j = 1, n+ 1, therefore the sum of the first member is:
n+1∑
j=1

w
[0,1,...,n]
0,n (xj−1)u(k)

j−1.
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Evidently however w[0,1,...,n]
0,n (xj−1)h = A1 (h) = U (h) , therefore the equal-

ity (11) becomes:

(17)
n∑
j=1

U
(
u

(k)
j

)
=

∑
α0+α1+...+αn=k−n

Ak−nx
α0
0 xα1

1 ...xαn
n ,

for the summing indexes we have adapted this notation for symmetry reasons.
�

We have the following:

Theorem 5. With the hypotheses and with the above mentioned conditions,
we have:

(18) [x0, x1, ..., xn;Mk] =


Θn for k < n,
An for k = n,∑

α0+...+αn=k−n
Akx

α0
0 xα1

1 ...xαn
n for k > n,

here Θn is the null mapping of the space Ln (X,Y ) . In the case k > n the
equality is understood using the elements of the space Ln (X,Y ) . More pre-
cisely, in this case we have:

[x0, x1, ..., xn;Mk]h1...hn =
∑

α0+...+αn=k−n
Akx

α0
0 xα1

1 ...xαn
n h1...hn,

the terms of the sum being the values:

Ak(x0, ..., x0︸ ︷︷ ︸
α0 times

, x1, ..., x1︸ ︷︷ ︸
α1 times

, ..., xn, ...xn︸ ︷︷ ︸
αn times

, h1, ..., hn) ∈ Y.

Proof. From the definition of the divided difference we have:

[x0, x1, ..., xn;Mk]h1...hn = An

(
h1, ..., hn,

n∑
i=0

[
w′0,n (xi)

]−1

∗
Mk (xi)

)
.

Let us consider first the case k ≥ n.
Because for any i = 0, n we have:

u
(k)
i =

[
w′0,n (xi)

]−1

∗
Mk (xi)
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so:

[x0, x1, ..., xn;Mk]h1...hn = An

(
h1, ..., hn,

n∑
i=0
u

(k)
i

)
=

= B

(
U

( n∑
i=0
u

(k)
i

)
, An (h1, ..., hn)

)
=

= B

( ∑
α0+α1+...+αn=k−n

Ak−nx
α0
0 xα1

1 ...xαn
n , An (h1, ..., hn)

)
=

=
∑

α0+α1+...+αn=k−n
B (Ak−nxα0

0 xα1
1 ...xαn

n , An (h1, ..., hn)) =

=
∑

α0+α1+...+αn=k−n
Akx

α0
0 xα1

1 ...xαn
n h1...hn.

Because h1, ..., hn ∈ X are arbitrary, we deduce that:

[x0, x1, ..., xn;Mk] =
∑

α0+α1+...+αn=k−n
Akx

α0
0 xα1

1 ...xαn
n .

In the special case k = n, the only possibility for the choice of the summing
indexes is α0 = ... = αn = 0, therefore:

[x0, x1, ..., xn;Mn] = An.

Let us consider now the case k < n,
If we note p = k + 1 we deduce that p ∈ {1, ..., n} . For this p, due to the

relation (11), we have:

(19)
p∑
j=1

w
[i1,...,ip]
0,n

(
xij

)
u

(k)
ij

= K ∈ Y,

for any i1, ..., ip ∈ N, with the verification of the inequalities:

0 ≤ i1 < ...... < ip ≤ n .

We are in the framework of the relation (11) if we consider L0 (X,Y ) = Y.
Therefore A0 ∈ L0 (X,Y ) , so A0 = K ∈ Y.

If we introduce a new index ip+1 with 0 ≤ i1 < ... < ip < ip+1 ≤ n the
relation (19) will be true as well in the case when the indexes are changed in
i1, ..., ip−1, ip+1. We have therefore the relation:

p−1∑
j=1

w
[i1,...,ip−1,ip]
0,n

(
xij

)
u

(k)
ij

+ w
[i1,...,ip−1,ip]
0,n

(
xip
)
u

(k)
ip

=

=
p−1∑
j=1

w
[i1,...,ip−1,ip+1]
0,n

(
xij

)
u

(k)
ij

+ w
[i1,...,ip−1,ip+1]
0,n

(
xip+1

)
u

(k)
ip+1

= K,
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from which:
p−1∑
j=1

[
w

[i1,...,ip−1,ip]
0,n

(
xij

)
− w[i1,...,ip−1,ip+1]

0,n

(
xij

)]
u

(k)
ij

+

+ w
[i1,...,ip−1,ip]
0,n

(
xip
)
u

(k)
ip
− w[i1,...,ip−1,ip+1]

0,n
(
xip+1

)
u

(k)
ip+1

= θY ,

so:

B

(
U
(
xip − xip+1

)
,
p+1∑
j=1

w
[i1,i2,...ip+1]
0,n

(
xij

)
u

(k)
ij

)
= θY .

From xip−xip+1 ∈ U−1 (Y0) we have U
(
xip − xip+1

)
∈ Y0 and similarly with

the proof of the Lemma 3, we deduce that:
p+1∑
j=1

w
[i1,i2,...ip+1]
0,n

(
xij

)
u

(k)
ij

= θY .

In the special case of q = n + 1 we have 0 ≤ i1 < i2 < ... < in+1 ≤ n we
obtain ij = j − 1 for any j = 1, n+ 1, thus previous equality will be written:

n∑
j=0

w
[0,1,...,n]
0,n u

(k)
j = θY ,

so:
n∑
j=0

U
(
u

(k)
j

)
= θY .

Because of the linearity of the mapping U, we have from here:
n∑
j=0

u
(k)
j = θX .

In this way for any h1, ..., hn ∈ X we have:

[x0, x1, ..., xn;Mk]h1...hn = An+1

(
h1, ..., hn;

n∑
j=0

u
(k)
j

)
=

= An+1 (h1, ..., hn; θX) = θY ,

so
[x0, x1, ..., xn;Mk] = Θn.

The theorem is proven. �

We establish now:

Theorem 6. Let us consider the previously introduced elements, a set D ⊆
X, the points x0, x1, ..., xn ∈ D, the function f : D → Y such that f (x0) , f (x1)
, ..., f (xn) ∈ sp (Y0) . We consider a ∈ sp (Y0) and the mapping g : D →
Y, g (x) = B (a, f (x)) .

We have the relation:
(20) [x0, x1, ..., xn; g]h1...hn = B (a, [x0, x1, ..., xn; f ]h1...hn) .
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Proof. From the definition of the divided difference, it results that:

(21) [x0, x1, ..., xn; g]h1...hn =
n∑
i=0
An+1

(
h1, ..., hn,

[
w′0,n (xi)

]−1
g (xi)

)
.

For any i ∈ {0, 1, ..., n} we have evidently:

(22)
[
w′0,n (xi)

]−1
g (xi) =

[
w′0,n (xi)

]−1
B (a, g (xi)) .

For any i, j = 0, n; i 6= j we have xi − xj ∈ U−1 (Y0) ; we deduce that for:

q = An (xi − x1, ..., xi − xi−1, xi − xi+1, ..., xi − xn+1) ∈ Y0

there exists q′ ∈ Y0 such that B (q, q′) = u0 ( u0 being the neutral element of
the group (Y0, B) ). As well for any t ∈ Y0 we have B (t, u0) = t, that is:

B
(
t, B

(
q, q′

))
= t⇔ B

(
B
(
q, q′

)
, t
)

= t⇔ B
(
q,B

(
q′, t

))
= t,

namely:

B
(
An (xi − x1, ..., xi − xi−1, xi − xi+1, ..., xi − xn+1) , B

(
q′, t

))
= t,

or:

An+1
(
xi − x1, ..., xi − xi−1, xi − xi+1, ..., xi − xn+1, U

−1B
(
q′, t

))
= t⇔

⇔
[
w′0,n (xi)

]
U−1B

(
q′, t

)
= t⇔ B

(
q′, t

)
= U

[
w′0,n (xi)

]−1
t

From this relation we notice that for b, z ∈ Y0 we have:

(23) U
[
w′0,n (xi)

]−1
B (b, z) = B

([
w′0,n (xi)

]−1
z, b

)
.

Indeed, we have:

U
[
w′0,n (xi)

]−1
B (b, z) = B

(
q′, (b, z)

)
= B

((
q′, z

)
, b
)

=

= B

(
U
[
w′0,n (xi)

]−1
z, b

)
,

therefore the relation (23) is true.
The relation (23) will be extended as well to the case when the elements

b, z ∈ Y0 are replaced respectively by a, y ∈ sp (Y0) .
Indeed, if a, y ∈ sp (Y0) then there exists:

p, q ∈ N; α1, ..., αp;β1, ..., βq ∈ K; b1, ..., bp; z1, ..., zq ∈ Y0

such that:

a =
p∑

k=1
αkbk, y =

q∑
j=1

βjzj ,
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so because of the linearity of the mappings U,
[
w′0,n (xi)

]−1
and B we have:

U
[
w′0,n (xi)

]−1
B (a, y) =

p∑
k=1

q∑
j=1

αkβjU
[
w′0,n (xi)

]−1
B (bk, zj) =

=
p∑

k=1

q∑
j=1

αkβjB

(
U
[
w′0,n (xi)

]−1
zj , bk

)
=

= B

(
U
[
w′0,n (xi)

]−1 q∑
j=1

zj ,
p∑

k=1
bk

)
= B

(
U
[
w′0,n (xi)

]−1
y, a

)
.

Now, for i ∈ {0, 1, ..., n} we choose y = f (xi) and we have:

(24) U
[
w′0,n (xi)

]−1
B (a, f (xi)) = B

(
U
[
w′0,n (xi)

]−1
f (xi) , a

)
.

From the relations (22) and (24) we obtain for any i ∈ {0, 1, ..., n} the
equalities:

An+1

(
h1, ..., hn,

[
w′0,n (xi)

]−1
g (xi)

)
=

= B

(
An (h1, ..., hn) , U

[
w′0,n (xi)

]−1
B (a, f (xi))

)
= B

(
An (h1, ..., hn) , B

(
U
[
w′0,n (xi)

]−1
f (xi) , a

))
= An+2

(
U−1
∗ (a) , h1, ..., hn,

[
w′0,n (xi)

]−1
f (xi)

)
= B

(
a,An+1

(
h1, ..., hn,

[
w′0,n (xi)

]−1
f (xi)

))
.

In this relation U−1
∗ is the prolongation trough linearity of the mapping U−1

to sp (Y0) .
On account of the relation (22) we will have:

[x0, x1, ..., xn; g]h1...hn = B

(
a,

n∑
i=0
An+1

(
h1, ..., hn,

[
w′0,n (xi)

]−1
f (xi)

))
=

= Ba, [x0, x1, ..., xn; f ]h1...hn,

the theorem being in this way proven. �

We have now:

Corollary 7. If for k ∈ N, Mk : X → Y is a (U-B) monomial of the k
degree and we consider the mapping:

g : X → Y, g (x) = B (a,Mk (x))
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with a ∈ sp (Y0) and supposing that all the hypotheses of the previous theorems
are fulfilled, then we have the relation:

(25)

[x0, x1, ...xn; g]h1...hn =

=


θY for k < n,

B (a,An (h1, ..., hn)) for k = n,∑
α0+...+αn=k−n

B (a,Akxα0
0 ...xαn

n h1...hn) for k > n.

Proof. The conclusion of this corollary is evident if we use the Theorems 5
and 6. �

We have now:

Theorem 8. If P : X → Y is a (U-B) polynomial of the k degree, where
k ≤ n with the coefficients in sp (Y0) and supposing that all the hypotheses of
the previous theorems are fulfilled, then for any x0, x1, ..., xn ∈ X we have:
(26) P = L (x0, x1, ..., xn;P ) .

Proof. The Theorem 1-d) indicates that for any x ∈ X we have:
P (x) = L (x0, x1, ..., xn;P ) (x) + [x0, x1, ..., xn, x;P ] (x− x0) ... (x− xn) .
For i ∈ {0, 1, ..., n} , if we introduce gi : X → Y with g0 (x) = a0 and

gi (x) = B (ai,Mi (x)) for i ≥ 1, we have:

P (x) = a0 +
n∑
k=1

B (ak,Mk (x)) =
n∑
k=0

gk (x) ,

in this way:

[x0, x1, ..., xn, x;P ] =
n∑
k=0

[x0, x1, ..., xn, x; gk] .

In the divided differences from the second member in the expression of the
mappings gk there appear monomials having a degree at least two units smaller
than the number of the nodes, so for any k = 0, n we have:

[x0, x1, ..., xn, x; gk] = 0,
therefore:

[x0, x1, ..., xn, x;P ] = Θn+1,

and the theorem is proven. �

Consequently from this result we have:

Theorem 9. If all hypotheses of the Theorem 1 are fulfilled for any x ∈ X
that verifies the conditions x− xi ∈ U−1 (Y0) for any i = 0, n, we have:

L (x0, x1, ..., xn; f) (x) =
( n∑
i=0
d−1
i

)−1 n∑
i=0
d−1
i f (xi) ,
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where for any i = 0, n, the mappings di : U−1
∗ (sp (Y0)) → Y are defined

through:

di (h) = An+2 (xi − x0, ..., xi − xi−1, xi − xi+1, ..., x− xn, h)

for any h ∈ U−1
∗ (sp (Y0)) .

Proof. In the papers [6], [7] we have proven that for any t ∈ Y0 and for any
i, j ∈ {0, 1, ..., n− 1} with i 6= j we have the equality:

(27) A2

(
xi − xj ,

[
w′0,n (xi)

]−1

0
t

)
= U

([
w

[i,j]
0,n (xi)

]−1

0
t

)
.

If for a fixed x /∈ {x0, x1, ..., xn} we introduce the mapping:

W : X → Y ; W (t) = An+2 (t− x0, ..., t− xn, t− x)

and we deduce that for any h ∈ U−1 (sp (Y0)) we have:

W ′ (x)h = An+2 (x− x0, ..., x− xn;h) ,

W ′ (xi)h =
= An+2 (xi − x0, ..., xi − xi−1, xi − xi+1, ..., xi − xnxi − x;h) = −di (h)

and:

W [i,n+1] (xi)h = w′0,n (xih) =
= An+1 (xi − x0, ..., xi − xi−1, xi − xi+1, ..., xi − xn;h) .

From the relation (27), replacing n with n + 1 and considering xn+1 = x,
for any y ∈ Y0 we have:

U
[
w′0,n (xi)

]−1

0
y = U

([
W [i,n+1] (xi)

]−1
y

)
= A2

(
xi − x,

[
W ′ (xi)

]−1
y
)

=

= A2
(
x− xi, d−1

i (y)
)
.

So for same y ∈ Y0 we have:

An+1

(
x− x0, ..., x− xi−1, x− xi+1, ..., x− xn,

[
w′0,n (xi)

]−1

0
y

)
=

= B

(
An (x− x0, ..., x− xi−1, x− xi+1, ..., x− xn) , U

[
w′0,n (xi)

]−1

0
y

)
= B

(
An (x− x0, ..., x− xi−1, x− xi+1, ..., x− xn) , A2

(
x− xi, d−1

i (y)
))

= An+2
(
x− x0, ..., x− xi−1, x− xi+1, ..., x− xn, d−1

i (y)
)

= B
(
w0,n (x) ,

(
Ud−1

i

)
(y)
)
.
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Evidently the relation will be extended through linearity to sp (Y0) , so for
any y ∈ sp (Y0) we have:

(28)
An+1

(
x− x0, ..., x− xi−1, x− xi+1, ..., x− xn,

[
w′0,n (xi)

]−1

∗
y

)
=

= B
(
w0,n (x) ,

(
Ud−1

i

)
(y)
)
.

Let there be any h ∈ U−1 (Y0) . We consider the mapping ϕh : X → Y
defined through ϕh (x) = U (h) for any x ∈ X.

Because ϕh : X → Y is a constant function, namely a (U-B) polynomial of
the degree 0, using the Theorem 8, we will have:

L (x0, x1, ..., xn;ϕh) (x) = ϕh (x) = U (h) .
From this last relation together with the equality (28), we have:

U (h) =
n∑
i=0
B
(
w0,n (x) ,

(
Ud−1

i U
)

(h)
)

=(29)

= B

(
w0,n (x) ,

n∑
i=0

(
Ud−1

i U
)

(h)
)

Because (Y0, B) is an abelian group, we deduce that for any a ∈ Y0, there
exists a y ∈ Y0 so that if t ∈ Y0 we have:
(30) B (a,B (y, t)) = t.

Let us fix an i ∈ {0, 1, ..., n} .
From the initial conditions imposed to the nodes to which we add the con-

dition x− xi ∈ U−1 (Y0) , we deduce that the choice:
a = An+1 (xi − x0, ..., xi − xi−1, x− xi, xi − xi+1, ..., xi − xn) ∈ Y0

is possible and so the relation (30) implicates:
B (An+1 (xi − x0, ..., xi − xi−1, x− xi, xi − xi+1, ..., xi − xn) , B (y, t)) = t,

or
diU

−1B (y, t) = t,

namely:
B (y, t) = Ud−1

i t

for any t ∈ Y0.
From this we deduce that, for any u, v ∈ Y0, replacing in the previous

equality t = B (u, v) we obtain:

Ud−1
i B (u, v) = B (y, (u, v)) = B (B (y, u) , v) = B

(
Ud−1

i u, v
)
.

We consider now in the previous relation u = U (h) , v = w0,n (x) and we
obtain:

Ud−1
i B (w0,n (x) , U (h)) = B

(
w0,n (x) ,

(
Ud−1

i U
)

(h)
)
.
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We use now the relation (2) and we obtain:

U (h) = B

(
w0,n (x) ,

n∑
i=0

(
Ud−1

i U
)

(h)
)

=
n∑
i=0
Ud−1

i B (w0,n (x) , U (h))

and because of the injectivity of the mapping U, we will have:

h =
(

n∑
i=0
d−1
i

)
B (w0,n (x) , U (h))

or

B (w0,n (x) , U (h)) =
(

n∑
i=0
d−1
i

)
(h) .

In this way:

L (x1, x2, ..., xn; f) (x) =

=
n∑
i=0
An+1

(
x− x0, ..., x− xi−1, x− xi+1, ..., x− xn,

[
w′0,n (xi)

]−1

∗
f (xi)

)

= B

(
w0,n (x) , U

(
n∑
i=0
d−1
i f (xi)

))
=
(

n∑
i=0
d−1
i

)−1 n∑
i=0
d−1
i f (xi) .

Obviously, the previous reasoning needs f (xi) ∈ Y0, i = 0, n, but through
linearity the result extends to the case f (xi) ∈ sp (Y0) , i = 0, n; as well.

The theorem is thus proven. �

3. THE EFFECTIVE CONSTRUCTION OF THE ABSTRACT INTERPOLATION

POLYNOMIAL AND OF THE DIVIDED DIFFERENCES IN THE CASE OF A

FUNCTION BETWEEN TWO SPACES WITH FINITE DIMENSIONS

In the paper [7] we have shown that the construction and the properties of
the abstract interpolation polynomial, as well as those of the divided differ-
ences are conditioned as follows:

a) it is necessary for a set Y0 ⊆ Y and a mapping B ∈ L2 (Y, Y ) to exist
such that (Y0, B) to be an abelian group and sp (Y0) = Y ;

b) there exists a linear mapping U : X → Y such that Y0 ⊆ U (X) ;
c) the points x0, x1, ..., xn ∈ X verify the conditions xi − xj ∈ U−1 (Y0)

for any i, j ∈ {0, 1, ..., n} with i 6= j.

The condition b) implicates the fact that dimX ≤ dimY ( the inequality
relation between transfinite numbers ).

We will suppose now that dimX,dimY ∈ N. In this case if K = R or K = C
we have X = Kp and Y = Kq where p, q ∈ N� {0} and p ≤ q.

We define:

Y1 =
{
y =

(
yi
)
i=1,q

/
yi ∈ K; i = 1, q; yp+1 = ... = yq = 1

}
,
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and:
U : Kp → Kq; U (x) = y =

(
y1, ..., yq

)
,

for x =
(
x1, ..., xq

)
, where:

yi =
{
xi for i ∈ {1, 2, ..., p} ,
1 for i ∈ {p+ 1, ..., q}

and we have U (X) = Y 1 ⊆ Y.
We mention that for the co-ordinates of the points form the spaces Kp and

Kq respectively, we use superior indexes.
We now define:

Y0 =
{
y =

(
yi
)
i=1,q

/
yi ∈ K, yi 6= 0, i = 1, p; yp+1 = ... = yq = 1

}
.

Evidently Y0 ⊆ Y1 and from the definition of U we deduce that:

U−1 (Y0) =
{
x =

(
xi
)
i=1,p

/
xi ∈ K, xi 6= 0, i = 1, p

}
.

We now define the bilinear mapping B ∈ L2 (Kq,Kq) that for u, v ∈ Kq, u =(
ui
)
i=1,q , v =

(
vi
)
i=1,q is defined through:

B (u, v) =
(
uivi

)
i=1,q

,

the co-ordinates of the vector B (u, v) from Kq will be obtained through the
products of the co-ordinates with the same rank from the vectors u and v.

It is easy to verify that (Y0, B) is an abelian group. In this respect the null
element of this group is u0 = (1, 1, ..., 1︸ ︷︷ ︸

q times

) ∈ Kq. Also for u =
(
ui
)
i=1,q , where

ui 6= 0 for any i = 1, q, we have ui 6= 0, therefore if we chose u′ =
(

1
ui

)
i=1,q

this will be the symmetrical element of u from (Y0, B) .
Because of the condition sp (Y0) = Y, we remark that the only case in which

one can apply the theory developed in [6] and [7] is q = p. in this case we have
U = Ip ( the identical mapping from Kp ).

We now have:

Theorem 10. If the system of points x0, x1, ..., xn ∈ Kp, where for any
k = 0, n; xk = (xsk)s=1,p ∈ K

p are chosen so that for any i, j ∈ {0, 1, ..., n} ; i 6=
j and for any s = 1, p we have xsi 6= xsj , then there exists the interpolation
polynomial in an abstract sense of the function f = (f1, ..., fp) : Kp → Kp on
the nodes x0, x1, ..., xn, this polynomial being:

(31)

L (x0, x1, ..., xn; f) (x) =

=
(

n∑
k=0

(xs−xs
0)...(xs−xs

k−1)(xs−xs
k+1)...(xs−xs

n)
(xs

k
−xs

0)...(xs
k
−xs

k−1)(xs
k
−xs

k+1)...(xs
k
−xs

n)y
s
k

)
s=1,p

,
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where:
ysk = fs (xk) = fs

(
x1
k, ..., x

p
k

)
; k = 0, n; s = 1, p

and:

(32) [x0, x1, ..., xn; f ] =
(
Dsj1,...,jn

)
s,j1,...,jn=1,p

where:

(33) Dsj1,...,jn =



n∑
k=0

ys
k

(xs
k
−xs

0)...(xs
k
−xs

k−1)(xs
k
−xs

k+1)...(xs
k
−xs

n)

for j1 = j2 = ... = jn = s,
0 differently.

If for any s = 1, p and k = 0, n we have ysk 6= 0 for the interpolation
polynomial (31) and the divided differences (32)–(33) we have the conclusions
of the Theorems 1, 5, 6, 8 and 9.

Proof. From the facts presented in [6] and [7], the remarks in the begin-
ning of the present paper and the previous considerations, we deduce that the
existence of the abstract interpolation polynomial and of the divided differ-
ences is evident, the requirements referring to the set Y0, the bilinear mapping
B ∈ L2 (Kp,Kp) and U = Ip being fulfilled.

From the definitions of the aforementioned mappings, we deduce that for
any u1, ..., un ∈ Kp where for any k = 1, n; uk = (usk)s=1,p we have:

(34) An (u1, ..., un) = (us1...usn)s=1,p

From this relation it is obvious that the mapping w0,n : Kp → Kp is given
through:

(35)
w0,n (x) = An+1 (x− x0, x− x1, ..., x− xn) =

= ((xs − xs0) (xs − xs1) ... (xs − xsn))s=1,p

and for any k ∈ {0, 1, ..., n} we deduce that w′0,n (xk) ∈ L (Kp,Kp) , and:

(36)

w′0,n (xk)h =
= An+1 (xk − x0, ..., xk − xk−1, xk − xk+1, ..., xk − xn, h) =

=
(
(xsk − xs0) ...

(
xsk − xsk−1

) (
xsk − xsk+1

)
... (xsk − xsn)hs

)
s=1,p

.

From the hypotheses of the theorem we deduce the existence of the mapping[
w′0,n (xk)

]−1
: Kp → Kp defined through:

(37)

[
w′0,n (xk)

]−1
t =

=
(

ts

(xs
k
−xs

0)...(xs
k
−xs

k−1)(xs
k
−xs

k+1)...(xs
k
−xs

n)

)
s=1,p
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and
(38)

An+1
(
x− x0, ..., x− xk−1, x− xk+1, ..., x− xn, [w0,n (xk)]−1 f (xk)

)
=

=
(

(xs−xs
0)...(xs−xs

k−1)(xs−xs
k+1)...(xs−xs

n)
(xs

k
−xs

0)...(xs
k
−xs

k−1)(xs
k
−xs

k+1)...(xs
k
−xs

n)y
s
k

)
s=1,p

,

thus the relation (31) is evidently true.
We will evidently also have:

Remark 11. In the case when n = 1, we obtain for the divided difference
the next form:

(39) [x0, x1; f ] =



y1
1−y

1
0

x1
1−x

1
0

0 ... 0

0 y2
1−y

2
0

x2
1−x

2
0

... 0
... ... ... ...

0 0 ...
yp

1−y
p
0

xp
1−x

p
0


where yik = fi

(
xk1, ..., x

k
p

)
and k ∈ {0, 1} ; i = 1, p.

In the same time it is known that if the functions f1, ..., fp : D → K with
D ⊆ Kp admit continual partial derivatives, then the mapping:

f ′ (x) =
(
∂fi
∂xj

(x)
)
i,j=1,p

∈ L (Kp,Kp)

represents the Fréchet derivative of the mapping f = (f1, ..., fp) : D → Kp.
In the case of a real function with a real variable, which can be derived in

a point x ∈ D, the limit of the divided difference for the nodes tending to x
is the Fréchet derivative of the function f on the point x itself. Which is the
situation in the case of a function f = (f1, ..., fp) : D → Kp with D ⊆ Kp.

The answer is in the very definition of the existence of the Fréchet derivative
in the point x ∈ D. in this case we have:

f (x+ h)− f (x) = f ′ (x)h+ ωf (x, h) ,

where:

lim
h→θp

‖ωf (x,h)‖
Y

‖h‖X
= 0.

But as from the general theory we have that:

f (x+ h)− f (x) = [x, x+ h; f ]h,

the previous result will be written as:

lim
h→θp

‖([x,x+h;f ]−f ′(x))h‖Y
‖h‖X

= 0. �
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