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Abstract. In this paper we consider the problem of best uniform approximation
of a real valued semi-Lipschitz function F defined on an asymmetric metric space
(X, d), by the elements of the set Ed(F |Y ) of all extensions of F |Y (Y ⊂ X),
preserving the smallest semi-Lipschitz constant. It is proved that, this problem
has always at least a solution, if (X, d) is (d, d)-sequentially compact, or of finite
diameter.
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1. INTRODUCTION

Let X be a non-empty set. A function d : X × X → [0,∞) is called a
quasi-metric on X [14] if the following conditions hold:

1) d(x, y) = d(y, x) = 0 iff x = y,
2) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

The function d : X × X → [0,∞) defined by d(x, y) = d(y, x), for all
x, y ∈ X is also a quasi-metric on X, called the conjugate quasi-metric of d.

A pair (X, d) where X is a non-empty set and d a quasi-metric on X, is
called a quasi-metric space.

If d can take the value +∞, then it is called a quasi-distance on X.
Each quasi-metric d on X induces a topology τ(d) which has as a basis the

family of balls (forward open balls [5])
(1) B+(x, ε) := {y ∈ X : d(x, y) < ε}, x ∈ X, ε > 0.
This topology is called the forward topology of X ([5], [9]), and is denoted also
by τ+.

Observe that the topology τ+ is a T0-topology. If the condition 1) is replaced
by 1′) d(x, y) = 0 iff x = y, then the topology τ+ is a T1-topology (see [14],
[15]).
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Analogously, the quasi-metric d induces the topology τ(d) on X, which has
as a basis the family of backward open balls ([5])

(2) B−(x, ε) := {y ∈ X : d(y, x) < ε}, x ∈ X, ε > 0

This topology is called the backward topology of X ([5], [9]) and is denoted
also by τ−.

For more information about quasi-metric spaces and their applications see,
for example, the papers [5], [6], [7], [9], [14] and the references quoted therein.

Let (X, d) be a quasi-metric space. A sequence (xk)k≥1 ⊂ X is called
d-convergent (forward convergent) to x0 ∈ X, respectively d-convergent (back-
ward convergent) to x0 ∈ X iff

(3) lim
k→∞

d(x0, xk) = 0, respectively lim
k→0

d(xk, x0) = lim
k→∞

d(x0, xk) = 0.

(see [5], Definition 2.4)
A subset K of X is called d-compact (forward compact) if every open cover

of K with respect to the forward topology τ+ has a finite subcover. We say
that a subset K of X is d-sequentially compact (forward-sequentially compact)
if every sequence in K has a d-convergent (forward convergent) subsequence
with limit in K ([5], Definition 4.1).

The d-compact (backward compact) and d-sequentially compact (backward
-sequentially compact) subset of X - are defined in a similar way.

Finally, a subset Y of (X, d) is called (d, d)-sequentially compact if every
sequence (yn)n≥1 in Y has a subsequence (ynk

)k≥1, d-convergent to some u ∈ Y
and d-convergent to some v ∈ Y. By Lemma 3.1 in [5] if follows that we can
take u = v in the definition of (d, d)-sequentially compactness, if (X, d) is a T1
quasi-metric space. A subset Y of (X, d) is called d-bounded (forward bounded
in [5]) if there exist x ∈ X and r > 0, such that Y ⊂ B+(x, r). Y is called
d-totally bounded if for every ε > 0, there exists n ∈ N, and the forward balls
B+(y1, ε), B+(y2, ε), ..., Bn(yn, ε), yi ∈ Y, i = 1, n such that Y ⊂

n⋃
i=1

B+(yi, ε).

Similar definitions are given for d-boundedness and d-total boundedness of
a subset Y of (X, d).

2. THE CONE OF SEMI-LIPSCHITZ FUNCTIONS

Definition 1. [15] Let Y be a non-empty subset of a quasi-metric space
(X, d). A function f : Y → R is called d-semi-Lipschitz if there exists a number
L ≥ 0 (named a d-semi-Lipschitz constant for f) such that

(4) f(x)− f(y) ≤ Ld(x, y),

for all x, y ∈ Y.
A function f : Y → R, is called ≤d-increasing if f(x) ≤ f(y), whenever

d(x, y) = 0.
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Denote by RY≤d the set of all ≤d-increasing functions on Y. This set is a
cone in the linear space RY of real valued functions defined on Y, i.e. for each
f, g ∈ RY≤d and λ ≥ 0 it follows that f + g ∈ RY≤d and λf ∈ RY≤d.

For a d-semi-Lipschitz function f on Y, put [14]:

(5) ‖f |d = sup
{

(f(x)−f(y))∨0
d(x,y) : d(x, y) > 0; x, y ∈ Y

}
Then ‖f |d is the smallest d-semi-Lipschitz constant of f (see also [10], [15]).

For a fixed element θ ∈ Y denote

(6) d-SLip0Y := {f ∈ RY≤d : ‖f |d <∞ and f(θ) = 0},

the set of all d-semi-Lipschitz real valued functions defined on Y vanishing at
the fixed element θ ∈ Y.

Observe that if (X, d) is a T1 quasi-metric space, then every real-valued
function on X is ≤d-increasing [14].

The set d-SLip0Y is a cone (a subcone of RY≤d) and the functional ‖·|d : d-
SLip0Y → [0,∞) defined by (5) is subadditive and positive homogeneous on
d-SLip0Y. Moreover ‖f |d = 0 iff f = 0, and consequently ‖·|d is a quasi-norm
(asymmetric norm) on the cone d-SLip0Y.

In [15] some properties of the “normed cone” (d-SLip0Y, ‖·|d) are presented.
Similar properties in the case of d−semi-Lipschitz functions on a quasi-metric
space with values in a quasi-normed space (space with asymmetric norm) are
discussed in [16], [17]. For more information concerning other properties of
quasi-metric spaces, see also [7], [13].

Now, let (X, d) be a quasi-metric space and let Y be a non-empty subset of
X. A real valued function f defined on Y is called τ+-lower semi-continuous
(τ+-l.s.c in short) (respectively τ−-upper semi-continuous (τ− − u.s.c.)) at
x0 ∈ Y, if for every ε > 0 there exists r > 0 such that for every x ∈ B+(x0, r)
(respectively, for every x ∈ B−(x0, r)), f(x) > f(x0)− ε (respectively f(x) <
f(x0) + ε).

Proposition 2. Let (X, d) be a quasi-metric space, θ ∈ X a fixed element,
and Y ⊆ X with θ ∈ Y. Then every f ∈ d-SLip0Y is τ−-u.s.c and τ+-l.s.c.,and
every f ∈ d-SLip0Y is τ+-u.s.c. and τ−-l.s.c. on Y.

Proof. Let f ∈ d-SLip0Y such that ‖f |d = 0. Then f ≡ 0 and f is τ−-u.s.c.
and τ+-l.s.c at every y ∈ Y.

Now, let ‖f |d > 0 and y0 ∈ Y. The inequality

f(y)− f(y0) ≤ ‖f |d d(y, y0), y ∈ Y

implies
f(y) ≤ f(y0) + ‖f |d d(y, y0), y ∈ Y.

So that
f(y) < f(y0) + ε,
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for every ε > 0 and every y ∈ B−
(
y0,

ε
‖f |d

)
, showing that f is τ−-u.s.c at

y0 ∈ Y.
Similarly,

f(y0)− f(y) ≤ ‖f |d · d(y0, y), y ∈ Y,
implies

f(y) ≥ f(y0)− ‖f |d d(y0, y),
so that

f(y) > f(y0)− ε,
for every y ∈ B+

(
Y0,

ε
‖f |d

)
, showing that f is τ+-l.s.c. in y0 ∈ Y.

Similarly one prove that every f ∈ d-SLip0Y is τ+-u.s.c. and τ−-l.s.c. on
Y. �

Observe that if f is in d-SLip0Y, then −f ∈ d-SLip0Y, and −f is τ+-u.s.c,
and τ−-l.s.c. on Y, i.e. if y0 ∈ Y then

• ∀ε > 0, ∃r > 0 such that (−f)(y) < (−f)(y0)+ε, for all y ∈ B+(y0, r),
and respectively
• ∀ε > 0, ∃r > 0 such that (−f)(y) > (−f)(y0)−ε, for all y ∈ B−(y0, r).

Proposition 3. Let (X, d) be a quasi-metric space, θ ∈ X a fixed element,
and Y ⊂ X, with θ ∈ Y.

(a) If Y is d-sequentially compact, then each f ∈ d-SLip0Y attains its
maximum value on Y ;

(b) If Y is d- sequentially compact, then each f ∈ d-SLip0Y attains its
minimum value on Y.

Proof. (a) Let Y be d-sequentially compact and M := sup f(Y ), where M ∈
R∪ {+∞}. Then there exists a sequence (yn)n≥1 in Y such that lim

n→∞
f(yn) =

M. Because Y is d-sequentially compact, there exists y0 ∈ Y and a subsequence
(ynk

)k≥1 of (yn)n≥1 such that lim
n→∞

d(yn,k, y0) = 0. By the τ−-u.s.c. of f at y0 it
follows:

M = lim
k→∞

f(ynk
) = lim

k
sup f(ynk

) ≤ f(y0) = M,

implying M <∞ and f(y0) = M.
(b) If f ∈d-SLip0Y, it follows−f ∈ d-SLip0Y, and because Y is d-sequentially

compact, by (a), it follows that −f attains its maximum value on Y, i.e. f
attains its minimum value on Y. �

Proposition 4. Let (X, d) be a quasi-metric space, θ ∈ X a fixed element,
and Y ⊆ X with θ ∈ Y.

(a) If Y is d-sequentially compact, then the functional ‖·|d∞ : d−SLip0Y →
[0,∞) defined by

(7) ‖f |d∞ = max{f(y) : y ∈ Y }
is an asymmetric norm on d-SLip0Y.
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(b) If Y is d-sequentially compact, then the functional ‖·|d∞ : d-SLip0Y →
[0,∞) defined by

(8) ‖f |d∞ = max{−f(y) : y ∈ Y }, f ∈ d-SLip0Y,

is an asymmetric norm on d-SLip0Y ;
(c) If Y is (d,d)-sequentially compact, then the functional ‖·|∞ :d-SLip0Y →

[0,∞) defined by

(9) ‖f |∞ = ‖f |d∞ ∨ ‖f |
d
∞ , f ∈ d-SLip0Y

is the uniform norm on the cone d-SLip0Y.

Proof. (a) By Proposition 3 (a), the functional (7) is well defined. For every
f ∈ d-SLip0Y, we have ‖f |d∞ ≥ f(θ) = 0. If f ∈ d-SLip0Y and ‖f |d∞ > 0 then
there exists y0 ∈ Y such that f(y0) = ‖f |d∞ > 0. It follows f 6= 0.

• Obviously,
‖f + g|d∞ ≤ ‖f |

d
∞ + ‖g|d∞

and
‖λf |d∞ = λ ‖f |d∞

for all f, g ∈ d-SLip0Y and λ ≥ 0.
(b) For every f ∈ d-SLip0Y it follows that −f ∈ d-SLip0Y, and because Y

is d-sequentially compact, then −f attains its maximum value on Y, and

‖f |d∞ = max{−f(y) : y ∈ Y }
is an asymmetric norm on d-SLip0Y.

(c) By Proposition 3, if Y is (d, d)-sequentially compact, then every f ∈ d-
SLip0Y, attains its maximum and minimum value on Y.

• We have
‖f‖∞ = max{|f(y)| : y ∈ Y } =

= (max{f(y) : y ∈ Y }) ∨ (max{−f(y) : y ∈ Y })

= ‖f |d∞ ∨ ‖f |
d
∞ .

�

3. BEST UNIFORM APPROXIMATION BY EXTENSIONS

In the following the quasi-metric space (X, d) is supposed (d, d)-sequentially
compact. Let θ ∈ X be a fixed element, and Y ⊆ X with θ ∈ Y. Consider
also the normed cones (d-SLip0Y, ‖·|d) and (d-SLip0X, ‖·|d), where ‖·|d is the
asymmetric norm defined as in (5), where d is replaced by d.

An extension results for semi-Lipschitz functions, analogous to Mc Shane’s
Extension Theorem [8] for real-valued Lipschitz functions defined on a subset
of a metric space was proved in [10] (see also [12]).
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Proposition 5. [10] For every f ∈ d-SLip0Y there exists at least one
function F ∈ d-SLip0X, such that
(10) F |Y = f and ‖F |d = ‖f |d .

A function F with the properties included in Proposition 5, is called an
extension, preserving the asymmetric norm of f (or an extension preserving
the smallest semi-Lipschitz constant of f).

Denote the set of all extensions of f preserving asymmetric norm, by
(11) Ed(f) = {F ∈ d-SLip0X : F |Y = f and ‖F |d = ‖f |d}
The set Ed(f) is convex in d-SLip0X, the functions
(12) Fd(f)(x) = inf {f(y) + ‖f |d d(x, y) : y ∈ Y } , x ∈ X,
and
(13) Gd(f)(x) = sup {f(y)− ‖f |d · d(y, x) : y ∈ Y } , x ∈ X,
are extremal elements of Ed(f), and

(14) Gd(f)(x) ≤ F (x) ≤ Fd(f)(x),
for all F ∈ Ed(f) (see [10], [11]).

Now let RX be the linear space of all real valued functions defined on (X, d).
One considers the quasi-distance ( [15], p.67)

Dd : RX × RX → [0,∞)
defined by
(15) Dd(f, g) = sup {(f(x)− g(x)) ∨ 0 : x ∈ X} .
Obviously, d-SLip0X ⊂ RX≤d ⊂ RX , and the quasi-distance Dd may be re-
stricted to d-SLip0X.

The quasi-distance Dd generates the topology τ(Dd ), named the topology
of quasi-uniform convergence. In [15] (Corollary 4, p.67), it is proved that
the unit ball U0 of d-SLip0X is compact with respect to the topology of quasi-
uniform convergence τ(Dd), (and τ(Dd) too, where Dd(f, g) = Dd(g, f), f, g ∈
d-SLip0X).

We have

Proposition 6. For every f ∈ d-SLip0Y, the set Ed(f) is compact with
respect to the topology τ(Dd), (and τ(Dd), too).

Proof. Because Fd(f) defined in (12) and Gd(f) defined in (13) are in Ed(f),
and they satisfy the inequalities (14), it follows

Dd(F, Fd(f)) = 0, and Dd(F,Gd(f) = Dd(Gd(f), F ) = 0
for every F ∈ Ed(f). It follows that Ed(f) is Dd-totally bounded (and Dd-
totally bounded too).
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Let (Fn)n≥1 be a sequence in Ed(f). Because Fn(x) ≤ Fd(f)(x), for all
x ∈ X, it follows that Dd(Fn, Fd(f)) = 0, n = 1, 2, ..., i.e. (Fn)n≥1 is Dd-
convergent to Fd(f). It follows that Ed(f) is Dd-sequentially compact. By
Proposition 4.6 in [5], because Ed(f) is totally Dd-bounded an Dd-sequentially
compact it follows that the set Ed(f) is Dd-compact (i.e. compact with respect
to the topology τ(Dd)).

Because Gd(f)(x) ≤ F (x), for all x ∈ X and every F ∈ Ed(f), it follows
that Dd(Gd(f), F ) = Dd(F,Gd(f)) = 0. Consequently, Ed(f) is Dd-compact
too. (i.e. with respect to the topology τ(Dd)). �

Obviously, for every F ∈ d-SLip0X, F |Y ∈ d-SLip0Y and the set Ed(F |Y )
is a (Dd, Dd)-compact subset of d-SLip0X, by Proposition 6.

Now, we consider the following optimization problem:
For F ∈ d-SLip0X, find G0 ∈ Ed (F |Y ) such that

(16) Dd(F,G0) = inf{Dd(F,G) : G ∈ Ed(F |Y )}.
This problem (of best approximation) has always at least one solution, because
Ed(F |Y ) is Dd-compact. Analogously, the problem of existence of an element
G0 ∈ Ed(F |Y ) such that

(17) Dd(F,G0) = inf{Dd(F,G) : G ∈ Ed(F |Y )},

is also assured, because Ed(F |Y ) is Dd-compact too.

Now, because (X, d) is supposed (d, d)-sequentially compact, every F ∈ d-
SLip0X is bounded, and the uniform norm
(18) ‖F‖∞ = max{F (x) : x ∈ X} ∨max{−F (x) : x ∈ X}
is well defined, by Proposition 4, (c).

Moreover, for every G ∈ Ed(F |Y ), we have

(19) ‖F −G‖∞ = Dd(F,G) ∨Dd(F,G).
Now, we consider the following problem of uniform best approximation:
For F ∈ d-SLip0X, find G0 ∈ Ed(F |Y ), such that

(20) ‖F −G0‖∞ = inf{‖F −G‖∞ : G ∈ Ed(F |Y )}.

Proposition 7. Let (X, d) be a (d, d)-sequentially compact quasi-metric
space, θ ∈ X a fixed element, and Y ⊂ X with θ ∈ Y. Then for every F ∈ d-
SLip0X, there exists at least one element G0 ∈ Ed(F |Y ), such that

‖F −G0‖∞ = inf{‖F −G‖∞ : G ∈ Ed(F |Y )}.

Proof. For every G ∈ Ed(F |Y ), using the equality (18), one obtains
inf{‖F −G‖∞ : G ∈ Ed(F |Y )} =

= inf{Dd(F,G) ∨Dd(G,F ) : G ∈ Ed(F |Y )}
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Because Ed(F |Y ) is (Dd, Dd)-compact, the conclusion of Proposition follows.
�

Any solution G0 ∈ Ed(F |Y ) of problem (20) is called an element of best
uniform approximation of F by elements of Ed(F |Y ).

Using (19), one obtains:
If F is such that

F (x) ≥ Fd(F |Y )(x), x ∈ X,

then G0 = Fd(F |Y ) is the unique solution of (20), where Fd(F |Y ) is defined
as in (12);

If F is such that

F (x) ≤ Gd(F |Y )(x), x ∈ X,

then G0 = Gd(F |Y ) is the unique solution of (20), where Gd(F |Y ) is defined
as in (13);

Finally, if F ∈ Ed(F |Y ) i.e. ‖F |d = ‖F |Y |d , then G0 = F.
In the following we consider another situation where a uniform best approx-

imation problem by extensions may be posed and solved.
This is the case when the quasi-metric space (X, d) is of finite diameter, i.e.

such that sup{d(x, y) : x, y ∈ X} = diamX <∞.
For θ ∈ (X, d) denote clτ(d){θ} = {x ∈ X : d(θ, x) = 0} and clτ(d){θ} =

{x ∈ X : d(x, θ) = 0} (see [15], p.68). Let also cl{θ} = clτ(d){θ} ∪ clτ(d){θ}.
The following proposition holds:

Proposition 8. Let (X, d) be a quasi-metric space of finite diameter, and
θ ∈ X a fixed element. Then every f ∈ d-SLip0X is bounded on X \ cl{θ}.

Proof. Let f be in d-SLip0X. By definition, we have f(θ) = 0, and for
x ∈ clτ(d){θ} = {x ∈ X : d(x, θ) = 0} -it follows f(x) ≤ 0, because d(x, θ) = 0
implies f(x) ≤ f(θ) = 0.

Analogously, for x ∈ clτ(d){θ} = {x ∈ X : d(θ, x) = 0} it follows 0 = f(θ) ≤
f(x).

For every x ∈ X \ clτ(d){θ}, we have

f(x)− f (θ) ≤ ‖f |d d(x, θ) ≤ ‖f |d diamX,

and consequently f(x) ≤ ‖f |d diamX <∞.
It follows, f(x) ≤ ‖f |d diamX <∞ for all x ∈ X \ clτ(d){θ}.
For every x ∈ X \ clτ(d){θ} it follows

f(θ)− f(x) ≤ ‖f |d d(θ, x) ≤ ‖f |d diamX.

Then f(x) ≥ −‖f |d diamX > −∞, for all x ∈ X \ clτ(d){θ}. Consequently
−‖f |d diamX ≤ f(x) ≤ ‖f |d diamX, x ∈ X \ cl{θ}. �
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Now, let (X, d) be a quasi-metric space of finite diameter, θ ∈ X a fixed
element, and Y ⊂ X with θ ∈ Y. Then, for every F ∈ d − SLip0X, it follows
F |Y ∈ d-SLip0Y, and the set

Ed(F |Y ) = {G ∈ d-SLip0X : G|Y = F |Y , ‖G|d = ‖F |Y |d}

is non empty.
This set is also (Dd, Dd)-compact and the following proposition holds:

Proposition 9. Let (X, d) be a quasi-metric space of finite diameter, θ ∈ X
a fixed element, and Y ⊂ X with θ ∈ Y. Then for every F ∈ d-SLip0X, there
exists at least one element G0 ∈ Ed(F |Y ) such that

∥∥∥(F −G0)|X\cl{θ}
∥∥∥
∞

= inf{
∥∥∥(F −G)|X\cl{θ}

∥∥∥
∞

: G ∈ Ed(F |Y )}.

The proof is immediate.

Example 10. Let X = [−10, 10] and the quasi-metric d : X ×X → [0,∞)
defined by

d(x, y) =
{

y − x if x ≤ y,
2(x− y) if x > y.

Consider θ = 0 and Y = {−1, 0, 1}. Then the function f : Y → R

f(y) =


−1, y = −1,

0, y = 0,
3, y = 1,

is in d− SLip0Y and ‖f |d = 3.
The functions

Fd(f)(x) = inf
y∈Y
{f(y) + 3d(x, y)}

=



−4− 3x, x ∈ [−10,−1],
6x+ 5, x ∈

(
−1, −5

9

]
,

−3x, x ∈
(
−5
9 , 0

]
,

6x, x ∈
(
0, 2

3

]
,

6− 3x, x ∈
(

2
3 , 1
]
,

6x− 3, x ∈ (1, 10] .
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and, respectively

Gd(f)(x) = sup
y∈Y
{f(y)− 3d(y, x)} =

=



6x+ 5, x ∈ [−10,−1],
−3x+ 4, x ∈

(
−1, −4

9

]
,

6x, x ∈
(
−4
9 , 0

]
,

−3x, x ∈
(
0, 1

3

]
,

6x− 3, x ∈
(

1
3 , 1
]
,

−3x− 6, x ∈ (1, 10] .

verifies the conditions:

Fd(f) |Y = Gd(f) |Y = f,

‖Fd(f)|d = ‖Gd(f)|d = ‖f |d = 3,

and
Fd(f)(x) ≥ H(x) ≥ Gd(f)(x), x ∈ [−10, 10],

where H ∈ Ed(f) is an arbitrary extension of f.
Obviously, (X, d) is (d, d)-sequentially compact and Ed(f) is compact in the

uniform topology.
Let F ∈ d− SLip0X such that F |Y = f.
Then

Ed(F |Y ) = Ed(f).
If

F (x) ≥ Fd(f)(x), ∀x ∈ [−10, 10]
then

‖F − Fd(f)‖∞ = inf{‖F −H‖∞ : H ∈ Ed(F |Y )}
For example, let F be the function

F (x) =


Fd(f)(x), x ∈ [−1, 1],
−4x− 5, x ∈ [−10,−1)

7x− 4, x ∈ (1, 10).

Then

‖F − Fd(f)‖∞ = max
x∈[−10,1]

{−x− 1} ∨ max
x∈[1,10]

{x− 1} =

= 9

Similarly, if F (x) ≤ Gd(f)(x), ∀x ∈ [−10, 10]
then

‖F −Gd(f)‖∞ = inf{‖F −H‖∞ : H ∈ Ed(F |Y )}.
�
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http://bath.ac.uk/math-sci/BICS, Preprint, 16, 12 pp, 2005.

[6] Garcia-Raffi, L. M., Romaguera, S. and Sánchez-Pérez, E. A., The dual space
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