ON AN AITKEN TYPE METHOD*

ION PĂVĂLOIU and EMIL CĂTINAŞ ${ }^{\dagger}$

Abstract

In this note we study the convergence of a generalized Aitken type method for approximating the solutions of nonlinear equations in \mathbb{R}. We obtain conditions which assure monotone convergence of the generated sequences. We also obtain a posteriori estimations for the errors.

MSC 2000. 65 H 05.
Keywords. Nonlinear equations, Aitken method.

1. INTRODUCTION

Consider the equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

where $f:[a, b] \rightarrow \mathbb{R}, a, b \in \mathbb{R}, a<b$.
Consider also the following two equations, both equivalent to (11):

$$
\begin{equation*}
x-g_{i}(x)=0, g_{i}:[a, b] \rightarrow[a, b], i=1,2 . \tag{2}
\end{equation*}
$$

In order to approximate a root x^{*} of (11), we consider the sequence $\left(x_{n}\right)_{n \geq 0}$, generated by the following relations:

$$
\begin{align*}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\left[x_{n}, g_{1}\left(x_{n}\right) ; f\right]}-\frac{\left[x_{n}, g_{1}\left(x_{n}\right), g_{2}\left(x_{n}\right) ; f\right] f\left(x_{n}\right) f\left(g_{1}\left(x_{n}\right)\right)}{\left[x_{n}, g_{1}\left(x_{n}\right) ; f\right]\left[x_{n}, g_{2}\left(x_{n}\right) ; f\right]\left[g_{1}\left(x_{n}\right), g_{2}\left(x_{n}\right) ; f\right]} \tag{3}\\
& \quad x \in[a, b], n=0,1,2, \ldots,
\end{align*}
$$

where $[x, y ; f]$ denotes the first order divided difference of f on x and y.
Relation (3) suggests an Aitken type method. If we assume that $f \in C^{3}[a, b]$ and $f^{\prime}(x) \neq 0$ for all $x \in[a, b]$, denoting $F=f([a, b])$, it is known that there exists $f^{-1}: F \rightarrow[a, b]$ and $f^{-1} \in C^{3}([a, b])$. Moreover, the following relation holds

$$
\begin{equation*}
\left(f^{-1}(y)\right)^{\prime \prime \prime}=\frac{3\left(f^{\prime \prime}(x)\right)^{2}-f^{\prime}(x) f^{\prime \prime \prime}(x)}{\left(f^{\prime}(x)\right)^{5}} \tag{4}
\end{equation*}
$$

where $y=f(x)$ and $x \in[a, b]$ (see [1], 2], [4, (7).

[^0]In [3] was studied the convergence of a Steffensen type method, analogous to (3). In order to obtain a control of the error at each iteration step, we have studied in [6] the cases when the generalized Steffensen type method leads to monotone approximations. Under some reasonable conditions of monotonicity and convexity (concavity) on f, in [6] were obtained monotone sequences which yield bilateral approximations to the solution x^{*} of (11). A condition such that the Steffensen type method studied in [6] to lead to monotone approximations is that the sign of the expression

$$
\begin{equation*}
E_{f}(x)=3\left(f^{\prime \prime}(x)\right)^{2}-f^{\prime}(x) f^{\prime \prime \prime}(x) \tag{5}
\end{equation*}
$$

to be negative: $E_{f}(x)<0, \forall x \in[a, b]$.
In this note we shall show that if $E_{f}(x)>0 \forall x \in[a, b]$, one may construct functions g_{1} and g_{2}, and on may choose the initial approximations $x_{0} \in[a, b]$ such that, under some reasonable hypotheses on f, the sequence (3) converges monotonically.

In an analogous fashion as in [6], we can easily show that for a given $x_{n} \in$ $[a, b]$, then exists $\left.\xi_{n} \in\right] c_{n}, d_{n}\left[\right.$, where $\left[c_{n}, d_{n}\right]$ is the smallest interval containing the points $x_{n}, g_{1}\left(x_{n}\right), g_{2}\left(x_{n}\right), x^{*}$, such that

$$
\begin{equation*}
x^{*}-x_{n+1}=-\frac{E_{f}\left(\xi_{n}\right) f\left(x_{n}\right) f\left(g_{1}\left(x_{n}\right)\right) f\left(g_{2}\left(x_{n}\right)\right)}{6\left[f^{\prime}\left(\xi_{n}\right)\right]^{5}}, n=0,1, \ldots \tag{6}
\end{equation*}
$$

2. THE CONVERGENCE OF THE AITKEN METHOD

We consider the following hypotheses on the functions f_{1}, g_{1}, g_{2}, and on the initial approximation $x_{0} \in[a, b]$:
i. $f \in C^{3}[a, b]$ and $E_{f}(x)>0, \forall x \in[a, b]$ where E_{f} is given by (5);
ii. $f\left(x_{0}\right)<0$;
iii. $f^{\prime}(x)>0, \forall x \in[a, b]$;
iv. $f^{\prime \prime}(x) \geq 0, x \in[a, b]$;
v. g_{1} and g_{2} are continuous functions, decreasing on $[a, b]$;
vi. equation (11) has a solution $\left.x^{*} \in\right] a, b[$;
vii. $g_{1}\left(x_{0}\right) \leq b, g_{2}\left(x_{0}\right) \leq b$;
viii. equations (11) and (2) are equivalent.

The following result holds:
Theorem 1. If functions f_{1}, g_{1}, g_{2} and the initial approximation $x_{0} \in[a, b]$ verify hypotheses i.-viii., then the sequences $\left(x_{n}\right)_{n \geq 0},\left(g_{1}\left(x_{n}\right)\right),\left(g_{2}\left(x_{n}\right)\right)$ generated by (3) have the following properties:
j. the sequence $\left(x_{n}\right)_{n \geq 0}$ is increasing;
jj. the sequences $\left(g_{1}\left(x_{n}\right)\right),\left(g_{2}\left(x_{n}\right)\right)_{n \geq 0}$ are decreasing;
jjj. $\lim x_{n}=\lim g_{1}\left(x_{n}\right)=\lim g_{2}\left(x_{n}\right)=x^{*} ;$
jv. the following relations hold:

$$
x^{*}-x_{n} \leq \min \left\{g_{1}\left(x_{n}\right)-x_{n}, g_{2}\left(x_{n}\right)-x_{n}\right\}, \quad n=0,1, \ldots .
$$

Proof. Let $x_{n} \in[a, b]$ be an approximation of the solution x^{*} such that $f\left(x_{n}\right)<0, g_{1}\left(x_{n}\right) \leq b, g_{2}\left(x_{n}\right) \leq b$. From ii. and iii. it follows $x_{n}<x^{*}$. By v. we have $g_{1}\left(x_{n}\right)>x^{*}, g_{2}\left(x_{n}\right)>x^{*}$. Taking into account the fact that $f\left(x_{n}\right)<0, f\left(g_{1}\left(x_{n}\right)\right)>0$ and using hypothesis iii. and iv., from (3) it follows that $x_{n+1}>x_{n}$. Since $f\left(g_{2}\left(x_{n}\right)\right)>0$, by iii., i. and (6) we get $x_{n+1}<x^{*}$.

By v. and $x_{n}<x_{n+1}$ it follows $\left.g_{1}\left(x_{n}\right)>g_{1}\left(x_{n+1}\right)\right)$ and $g_{2}\left(x_{n}\right)>g_{2}\left(x_{n+1}\right)$. By v. it also follows that $g_{1}\left(x_{n+1}\right)>x^{*}$ and $g_{2}\left(x_{n+1}\right)>x^{*}$. These relations imply j . and jj .

In order to prove jjj., let $\ell=\lim x_{n}$. For $n \rightarrow \infty$, from (3) we obtain $f(\ell)=0$ and hence $\ell=x^{*}$. Obviously, from the continuity of g_{1} and g_{2} it follows that $\lim g_{1}\left(x_{n}\right)=g_{1}\left(x^{*}\right)=x^{*}$ and $\lim g_{2}\left(x_{n}\right)=g_{2}\left(x^{*}\right)=x^{*}$.

Relations jv. are obvious, and allow us to evaluate the a posteriori error at each iteration step.

3. CONSTRUCTION OF FUNCTIONS g_{1} AND g_{2}

The basic conditions on g_{1} and g_{2} on v . and vii.
We shall consider a function $g:[a, b] \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
g(x)=x-\lambda f(x) \tag{7}
\end{equation*}
$$

where $\lambda \in \mathbb{R}$.
If $g^{\prime}(x) \leq 0$, then g is decreasing. This attracts

$$
1-\lambda f^{\prime}(x)<0
$$

i.e.,

$$
\begin{equation*}
\lambda>\frac{1}{f^{\prime}(x)} \tag{8}
\end{equation*}
$$

But since $f^{\prime}(x)>0$ and $f^{\prime \prime} \geq 0$, we obtain

$$
f^{\prime}(a) \leq f^{\prime}(x) \leq f^{\prime}(b)
$$

or

$$
\begin{equation*}
\frac{1}{f^{\prime}(a)} \geq \frac{1}{f^{\prime}(x)} \geq \frac{1}{f^{\prime}(b)} \tag{9}
\end{equation*}
$$

By (99), it is obvious that if $\lambda>\frac{1}{f^{\prime}(a)}$ then (8) is verified for every $x \in[a, b]$, from which g is decreasing.

In order to obtain $g\left(x_{0}\right) \leq b$, we need that $x_{0}-\lambda\left(x_{0}\right) \leq b$, which leads to $\lambda \leq \frac{x_{0}-b}{f\left(x_{0}\right)}$ which in turn holds if x_{0} is sufficiently close to x^{*}.

Let $\lambda_{i}, i=1,2, \lambda_{1} \neq \lambda_{2}$ be two numbers such that

$$
\frac{1}{f^{\prime}(a)} \leq \lambda_{i} \leq \frac{x_{0}-b}{f\left(x_{0}\right)} ;
$$

then functions $g_{i}, i=1,2$ given by

$$
g_{i}(x)=x-\lambda_{i} f(x)
$$

verify hypotheses v . and vii.

4. NUMERICAL EXAMPLE

Consider the equation

$$
f(x)=x-2 \cos x=0,
$$

with $x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$.
Obviously, $f^{\prime}(x)>0$, for all $x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, and $f^{\prime \prime}(x)>0, x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$. If in (7) we take $\lambda_{1}=0.5, \lambda_{2}=0.6$ and $x_{0}=\frac{\pi}{6}$, then g_{1} and g_{2} verify v. and vii.

We have:

$$
g_{1}(x)=\cos x+\frac{x}{2}, g_{2}(x)=\frac{6 \cos x+2 x}{5} .
$$

Obviously, $g_{1}\left(\frac{\pi}{6}\right)<\frac{\pi}{2}$ and $g_{2}\left(\frac{\pi}{6}\right)<\frac{\pi}{2}$. Function E_{f} is given by

$$
E_{f}(x)=4+8 \cos ^{2} x+2 \sin x>0, \forall x \in\left[\frac{\pi}{6}, \frac{\pi}{2}\right]
$$

In the table below we have obtained the following results.

Table 1. Numerical results

n	x_{n}	$g_{1}\left(x_{n}\right)$	$g_{2}\left(x_{n}\right)$	$f\left(x_{n}\right)$
1	0.5235987755982988	1.127824791583588	1.248669994780646	$-1.208452031970579 \cdot 10^{+0}$
2	1.027717814817341	1.030632925047758	1.031215947093841	$-5.830220460833369 \cdot 10^{-3}$
3	1.029866528928396	1.029866529462959	1.029866529569871	$-1.069125232788792 \cdot 10^{-9}$
4	1.029866529322259	1.029866529322259	1.029866529322259	0

The numerical results confirm that inequalities

$$
0 \leq x^{*}-x_{4}<10^{-15}
$$

hold.

REFERENCES

[1] M.A. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York and London, 1980.
[2] I. PĂVĂLOIU, Solutions Equations by Interpolation, Dacia, Cluj-Napoca, 1981 (in Romanian).
[3] I. PĂVĂLOIU, Bilateral approximation of solution of equations by order three Steffensentype methods, Studia Univ. "Babeş-Bolyai", Mathematica, LI (2006) no. 3, pp. 105-114.
[4] I. PĂVĂloiu and N. Pop, Interpolation and Applications, Risoprint, Cluj-Napoca, 2005 (in Romanian).
[5] I. PĂVĂLOIU, Approximation of the roots of equations by Aitken-Steffensen-type monotonic sequences, Calcolo, 32 (1995) nos. 1-2, pp. 69-82.
[6] I. PĂVĂloiu and E. CĂtinaş, On a Steffensen type method, Proceedings of the Ninth International Symposion on Symbolic and Numeric Algoritms for Scientific Computing (SYNASC 2007), September 26-29, 2007, Timişoara, Romania, IEEE Computer Society, pp. 369-375.
[7] B.A. Turowicz, Sur les derivées d'ordre superieur d'une fonction inverse, Ann. Polon. Math., 8 (1960), pp. 265-269.

Received by the editors: August 14, 2006.

[^0]: *This work was supported by MEdC under grant 2CEEX06-11-96/19.09.2006.
 \dagger "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: \{pavaloiu,ecatinas\}@ictp.acad.ro.

